1
|
Luo S, Liu Y, Wang X, Wang Z, Yang B, Wang J, Wu L. Development of a certified reference material for D-phenylalanine with evaluation of enantiomeric purity. Anal Bioanal Chem 2024; 416:5177-5189. [PMID: 39117955 DOI: 10.1007/s00216-024-05456-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
D-Phenylalanine (D-Phe) is a small chiral organic molecule that is both an important pharmaceutical intermediate and used as a calibrator for quantifying amino acids in liquid chromatography-circular dichroism. We have developed a process for a national certified reference material (CRM) for D-Phe following ISO 17034:2016. The identity of D-Phe was confirmed using mass spectrometry (MS) and nuclear magnetic resonance (NMR), infrared, and ultraviolet (UV) spectroscopy. The absolute optical conformation was also determined using circular dichroism (CD) spectroscopy and optical rotation measurements. Impurities were identified via liquid chromatography (LC) with a UV-Vis detector and a charged aerosol detector (CAD) and LC-MS. Both mass balance and quantitative NMR were employed for value assessment, and the associated uncertainty was evaluated. The certified purity was determined to be 0.995 ± 0.003 g/g, a validation that was confirmed by CD using L-Phe CRM as a calibrator. Twenty milligrams of raw material was packed in sealed brown glass tubes for storage, and no inhomogeneity was observed. Stability tests revealed that the D-Phe CRM remained stable at -20 °C for at least 26 months, at 4 °C for at least 14 days, and at 25 °C and 60 °C for at least 7 days. The D-Phe CRM can be used to ensure the accuracy and reliability of D-Phe quantitation in the pharmaceutical field and also as a calibrator to ensure traceability to the International System of Units (SI) for L-Phe quantitation and protein purity analysis using LC-CD methods. The approach outlined in this paper also has potential for use in the development of other chiral CRMs.
Collapse
Affiliation(s)
- Shiwen Luo
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Yahui Liu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Xianxia Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Ziliang Wang
- China National Accreditation Service for Conformity Assessment, Beijing, 100062, China
| | - Bin Yang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Jing Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Liqing Wu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China.
| |
Collapse
|
2
|
Wu T, Chen Y, Wei W, Song W, Wu J, Wen J, Hu G, Li X, Gao C, Chen X, Liu L. Mechanism-Guided Computational Design Drives meso-Diaminopimelate Dehydrogenase to Efficient Synthesis of Aromatic d-amino Acids. ACS Synth Biol 2024; 13:1879-1892. [PMID: 38847341 DOI: 10.1021/acssynbio.4c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Aromatic d-amino acids (d-AAs) play a pivotal role as important chiral building blocks and key intermediates in fine chemical and drug synthesis. Meso-diaminopimelate dehydrogenase (DAPDH) serves as an excellent biocatalyst in the synthesis of d-AAs and their derivatives. However, its strict substrate specificity and the lack of efficient engineering methods have hindered its widespread application. Therefore, this study aims to elucidate the catalytic mechanism underlying DAPDH from Proteus vulgaris (PvDAPDH) through the examination of its crystallographic structure, computational simulations of potential energies and molecular dynamics simulations, and site-directed mutagenesis. Mechanism-guided computational design showed that the optimal mutant PvDAPDH-M3 increased specific activity and catalytic efficiency (kcat/Km) for aromatic keto acids up to 124-fold and 92.4-fold, respectively, compared to that of the wild type. Additionally, it expanded the substrate scope to 10 aromatic keto acid substrates. Finally, six high-value-added aromatic d-AAs and their derivatives were synthesized using a one-pot three-enzyme cascade reaction, exhibiting a good conversion rate ranging from 32 to 84% and excellent stereoselectivity (enantiomeric excess >99%). These findings provide a potential synthetic pathway for the green industrial production of aromatic d-AAs.
Collapse
Affiliation(s)
- Tianfu Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yihan Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Wang F, Qi H, Li H, Ma X, Gao X, Li C, Lu F, Mao S, Qin HM. State-of-the-art strategies and research advances for the biosynthesis of D-amino acids. Crit Rev Biotechnol 2024; 44:495-513. [PMID: 37160372 DOI: 10.1080/07388551.2023.2193861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/09/2023] [Indexed: 05/11/2023]
Abstract
D-amino acids (D-AAs) are the enantiomeric counterparts of L-amino acids (L-AAs) and important functional factors with a wide variety of physiological activities and applications in the food manufacture industry. Some D-AAs, such as D-Ala, D-Leu, and D-Phe, have been favored by consumers as sweeteners and fragrances because of their unique flavor. The biosynthesis of D-AAs has attracted much attention in recent years due to their unique advantages. In this review, we comprehensively analyze the structure-function relationships, biosynthesis pathways, multi-enzyme cascade and whole-cell catalysis for the production of D-AAs. The state-of-the-art strategies, including immobilization, protein engineering, and high-throughput screening, are summarized. Future challenges and perspectives of strategies-driven by bioinformatics technologies and smart computing technologies, as well as enzyme immobilization, are also discussed. These new approaches will promote the commercial production and application of D-AAs in the food industry by optimizing the key enzymes for industrial biocatalysts.
Collapse
Affiliation(s)
- Fenghua Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Hongbin Qi
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Huimin Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Xuanzhen Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Xin Gao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Chao Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Shuhong Mao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Hui-Min Qin
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| |
Collapse
|
4
|
Araseki H, Sugishima N, Chisuga T, Nakano S. Development of an Enzyme Cascade System for the Synthesis of Enantiomerically Pure D-Amino Acids Utilizing Ancestral L-Amino Acid Oxidase. Chembiochem 2024; 25:e202400036. [PMID: 38385659 DOI: 10.1002/cbic.202400036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 02/23/2024]
Abstract
Enantiomerically pure D-amino acids hold significant potential as precursors for synthesizing various fine chemicals, including peptide-based drugs and other pharmaceuticals. This study focuses on establishing an enzymatic cascade system capable of converting various L-amino acids into their D-isomers. The system integrates four enzymes: ancestral L-amino acid oxidase (AncLAAO-N4), D-amino acid dehydrogenase (DAADH), D-glucose dehydrogenase (GDH), and catalase. AncLAAO-N4 initiates the process by converting L-amino acids to corresponding keto acids, which are then stereo-selectively aminated to D-amino acids by DAADH using NADPH and NH4Cl. Concurrently, any generated H2O2 is decomposed into O2 and H2O by catalase, while GDH regenerates NADPH from D-glucose. Optimization of reaction conditions and substrate concentrations enabled the successful synthesis of five D-amino acids, including a D-Phe derivative, three D-Trp derivatives, and D-phenylglycine, all with high enantiopurity (>99 % ee) at a preparative scale (>100 mg). This system demonstrates a versatile approach for producing a diverse array of D-amino acids.
Collapse
Affiliation(s)
- Hayato Araseki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan for S.N
| | - Narumi Sugishima
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan for S.N
| | - Taichi Chisuga
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan for S.N
| | - Shogo Nakano
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan for S.N
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
5
|
Yajima T, Katayama A, Ito T, Kawada T, Yabushita K, Yasuda T, Ohta T, Katayama T, Utsumi N, Kayaki Y, Kuwata S. Asymmetric Reductive Amination of α-Keto Acids Using Ir-Based Hydrogen Transfer Catalysts: An Access to Unprotected Unnatural α-Amino Acids. Org Lett 2024; 26:1426-1431. [PMID: 38334425 DOI: 10.1021/acs.orglett.3c04378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
A direct asymmetric reductive amination of α-keto acids catalyzed by Cp*Ir complexes bearing a chiral N-(2-picolyl)sulfonamidato ligand is described. The combined use of optically active 2-phenyglycinol as an aminating agent is effective for the chemo- and stereoselective transfer hydrogenation using formic acid. The subsequent elimination of the hydroxyethyl moiety by orthoperiodic acid can afford various unprotected α-amino acids in satisfactory isolated yields (20 examples) with excellent optical purities (up to >99% ee).
Collapse
Affiliation(s)
- Takaaki Yajima
- Central Research Laboratory, Technology & Development Division, Kanto Chemical Company, Inc., 7-1, Inari 1-chome, Soka-city, Saitama 340-0003, Japan
| | - Akito Katayama
- Central Research Laboratory, Technology & Development Division, Kanto Chemical Company, Inc., 7-1, Inari 1-chome, Soka-city, Saitama 340-0003, Japan
| | - Tsubasa Ito
- Central Research Laboratory, Technology & Development Division, Kanto Chemical Company, Inc., 7-1, Inari 1-chome, Soka-city, Saitama 340-0003, Japan
| | - Takuma Kawada
- Central Research Laboratory, Technology & Development Division, Kanto Chemical Company, Inc., 7-1, Inari 1-chome, Soka-city, Saitama 340-0003, Japan
| | - Kenya Yabushita
- Central Research Laboratory, Technology & Development Division, Kanto Chemical Company, Inc., 7-1, Inari 1-chome, Soka-city, Saitama 340-0003, Japan
| | - Toshihisa Yasuda
- Central Research Laboratory, Technology & Development Division, Kanto Chemical Company, Inc., 7-1, Inari 1-chome, Soka-city, Saitama 340-0003, Japan
| | - Takeshi Ohta
- Central Research Laboratory, Technology & Development Division, Kanto Chemical Company, Inc., 7-1, Inari 1-chome, Soka-city, Saitama 340-0003, Japan
| | - Takeaki Katayama
- Central Research Laboratory, Technology & Development Division, Kanto Chemical Company, Inc., 7-1, Inari 1-chome, Soka-city, Saitama 340-0003, Japan
| | - Noriyuki Utsumi
- Central Research Laboratory, Technology & Development Division, Kanto Chemical Company, Inc., 7-1, Inari 1-chome, Soka-city, Saitama 340-0003, Japan
| | - Yoshihito Kayaki
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Shigeki Kuwata
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
6
|
Liu HL, Wu JM, Deng XT, Yu L, Yi PH, Liu ZQ, Xue YP, Jin LQ, Zheng YG. Development of an aminotransferase-driven biocatalytic cascade for deracemization of d,l-phosphinothricin. Biotechnol Bioeng 2023; 120:2940-2952. [PMID: 37227020 DOI: 10.1002/bit.28432] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/29/2023] [Accepted: 05/07/2023] [Indexed: 05/26/2023]
Abstract
2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO) is the essential precursor keto acid for the asymmetric biosynthesis of herbicide l-phosphinothricin (l-PPT). Developing a biocatalytic cascade for PPO production with high efficiency and low cost is highly desired. Herein, a d-amino acid aminotransferase from Bacillus sp. YM-1 (Ym DAAT) with high activity (48.95 U/mg) and affinity (Km = 27.49 mM) toward d-PPT was evaluated. To circumvent the inhibition of by-product d-glutamate (d-Glu), an amino acceptor (α-ketoglutarate) regeneration cascade was constructed as a recombinant Escherichia coli (E. coli D), by coupling Ym d-AAT, d-aspartate oxidase from Thermomyces dupontii (TdDDO) and catalase from Geobacillus sp. CHB1. Moreover, the regulation of the ribosome binding site was employed to overcome the limiting step of expression toxic protein TdDDO in E. coli BL21(DE3). The aminotransferase-driven whole-cell biocatalytic cascade (E. coli D) showed superior catalytic efficiency for the synthesis of PPO from d,l-phosphinothricin (d,l-PPT). It revealed the production of PPO exhibited high space-time yield (2.59 g L-1 h-1 ) with complete conversion of d-PPT to PPO at high substrate concentration (600 mM d,l-PPT) in 1.5 L reaction system. This study first provides the synthesis of PPO from d,l-PPT employing an aminotransferase-driven biocatalytic cascade.
Collapse
Affiliation(s)
- Han-Lin Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Jia-Min Wu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xin-Tong Deng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Lan Yu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Pu-Hong Yi
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ya-Ping Xue
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Li-Qun Jin
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
7
|
Kawamura Y, Ishida C, Miyata R, Miyata A, Hayashi S, Fujinami D, Ito S, Nakano S. Structural and functional analysis of hyper-thermostable ancestral L-amino acid oxidase that can convert Trp derivatives to D-forms by chemoenzymatic reaction. Commun Chem 2023; 6:200. [PMID: 37737277 PMCID: PMC10517122 DOI: 10.1038/s42004-023-01005-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Production of D-amino acids (D-AAs) on a large-scale enables to provide precursors of peptide therapeutics. In this study, we designed a novel L-amino acid oxidase, HTAncLAAO2, by ancestral sequence reconstruction, exhibiting high thermostability and long-term stability. The crystal structure of HTAncLAAO2 was determined at 2.2 Å by X-ray crystallography, revealing that the enzyme has an octameric form like a "ninja-star" feature. Enzymatic property analysis demonstrated that HTAncLAAO2 exhibits three-order larger kcat/Km values towards four L-AAs (L-Phe, L-Leu, L-Met, and L-Ile) than that of L-Trp. Through screening the variants, we obtained the HTAncLAAO2(W220A) variant, which shows a > 6-fold increase in kcat value toward L-Trp compared to the original enzyme. This variant applies to synthesizing enantio-pure D-Trp derivatives from L- or rac-forms at a preparative scale. Given its excellent properties, HTAncLAAO2 would be a starting point for designing novel oxidases with high activity toward various amines and AAs.
Collapse
Affiliation(s)
- Yui Kawamura
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Chiharu Ishida
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Ryo Miyata
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, 2217-14 Hayashi-cho, Takamatsu, Kagawa, 761-0395, Japan
| | - Azusa Miyata
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Seiichiro Hayashi
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daisuke Fujinami
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Sohei Ito
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Shogo Nakano
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
- PREST, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
8
|
Tan Y, Gao C, Song W, Wei W, Liu J, Gao C, Guo L, Chen X, Liu L, Wu J. Rational Design of Meso-Diaminopimelate Dehydrogenase with Enhanced Reductive Amination Activity for Efficient Production of d- p-Hydroxyphenylglycine. Appl Environ Microbiol 2023; 89:e0010923. [PMID: 37070978 PMCID: PMC10231207 DOI: 10.1128/aem.00109-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/16/2023] [Indexed: 04/19/2023] Open
Abstract
d-p-hydroxyphenylglycine (d-HPG) is an important intermediate in the pharmaceutical industry. In this study, a tri-enzyme cascade for the production of d-HPG from l-HPG was designed. However, the amination activity of Prevotella timonensis meso-diaminopimelate dehydrogenase (PtDAPDH) toward 4-hydroxyphenylglyoxylate (HPGA) was identified as the rate-limiting step. To overcome this issue, the crystal structure of PtDAPDH was solved, and a "binding pocket and conformation remodeling" strategy was developed to improve the catalytic activity toward HPGA. The best variant obtained, PtDAPDHM4, exhibited a catalytic efficiency (kcat/Km) that was 26.75-fold higher than that of the wild type. This improvement was due to the enlarged substrate-binding pocket and enhanced hydrogen bond networks around the active center; meanwhile, the increased number of interdomain residue interactions drove the conformation distribution toward the closed state. Under optimal transformation conditions, PtDAPDHM4 produced 19.8 g/L d-HPG from 40 g/L racemate DL-HPG in a 3 L fermenter within 10 h, with 49.5% conversion and >99% enantiomeric excess. Our study provides an efficient three-enzyme cascade pathway for the industrial production of d-HPG from racemate DL-HPG. IMPORTANCE d-p-hydroxyphenylglycine (d-HPG) is an important intermediate in the synthesis of antimicrobial compounds. d-HPG is mainly produced via chemical and enzymatic approaches, and enzymatic asymmetric amination employing diaminopimelate dehydrogenase (DAPDH) is considered an attractive method. However, the low catalytic activity of DAPDH toward bulky 2-keto acids limits its applications. In this study, we identified a DAPDH from Prevotella timonensis and created a mutant, PtDAPDHM4, which exhibited a catalytic efficiency (kcat/Km) toward 4-hydroxyphenylglyoxylate that was 26.75-fold higher than that of the wild type. The novel strategy developed in this study has practical value for the production of d-HPG from inexpensive racemate DL-HPG.
Collapse
Affiliation(s)
- Yang Tan
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Changzheng Gao
- Department of Cardiology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Wanqing Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Semi-Rational Design of Diaminopimelate Dehydrogenase from Symbiobacterium thermophilum Improved Its Activity toward Hydroxypyruvate for D-serine Synthesis. Catalysts 2023. [DOI: 10.3390/catal13030576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
D-serine plays an essential role in the field of medicine and cosmetics. Diaminopimelate dehydrogenase (DAPDH) is a kind of oxidoreductase that can reduce keto acid into the corresponding D-amino acid. Because of its high stereoselectivity and lack of by-product production, DAPDH has become the preferred enzyme for the efficient one-step synthesis of D-amino acids. However, the types of DAPDH with a reductive amination function reported so far are limited. Although the DAPDH from Symbiobacterium thermophilum (StDAPDH) demonstrates reductive amination activity toward a series of macromolecular keto acids, activity toward hydroxypyruvate (HPPA) for D-serine synthesis has not been reported. In this study, we investigated the activity of the available StDAPDH/H227V toward HPPA by measuring the desired product D-serine. After homologous structure modeling and docking analysis concerning the substrate-binding pocket, four residues, D92, D122, M152, and N253, in the active pocket were predicted for catalyzing HPPA. Through single-point saturation mutation and iterative mutation, a mutant D92E/D122W/M152S was obtained with an 8.64-fold increase in enzyme activity, exhibiting a specific activity of 0.19 U/mg and kcat value of 3.96 s−1 toward HPPA. Using molecular dynamics simulation, it was speculated that the increase in enzyme activity might be related to the change in substrate pocket size and the enhancement of the interactions between the substrate and key residues.
Collapse
|
10
|
Wang X, Yang X, Wang Q, Meng D. Unnatural amino acids: promising implications for the development of new antimicrobial peptides. Crit Rev Microbiol 2023; 49:231-255. [PMID: 35254957 DOI: 10.1080/1040841x.2022.2047008] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The increasing incidence and rapid spread of bacterial resistance to conventional antibiotics are a serious global threat to public health, highlighting the need to develop new antimicrobial alternatives. Antimicrobial peptides (AMPs) represent a class of promising natural antibiotic candidates due to their broad-spectrum activity and low tendency to induce resistance. However, the development of AMPs for medical use is hampered by several obstacles, such as moderate activity, lability to proteolytic degradation, and low bioavailability. To date, many researchers have focussed on the optimization or design of novel artificial AMPs with desired properties. Unnatural amino acids (UAAs) are valuable building blocks in the manufacture of a variety of pharmaceuticals, and have been used to develop artificial AMPs with specific structural and physicochemical properties. Rational incorporation of UAAs has become a very promising approach to endow AMPs with strong and long-lasting activity but no toxicity. This review aims to summarize key approaches that have been used to incorporate UAAs to develop novel AMPs with improved properties and better performance. It is anticipated that this review will guide future design considerations for UAA-based antimicrobial applications.
Collapse
Affiliation(s)
- Xiuhong Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, People's Republic of China
| | - Xiaomin Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, People's Republic of China
| | - Qiaoe Wang
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, People's Republic of China.,Tianjin Gasin-DH Preservation Technology Co., Ltd, Tianjin, People's Republic of China
| |
Collapse
|
11
|
Asymmetric Synthesis of Enantiomerically Pure Aliphatic and Aromatic D-Amino Acids Catalyzed by Transaminase from Haliscomenobacter hydrossis. Catalysts 2022. [DOI: 10.3390/catal12121551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
D-amino acids are valuable building blocks for the synthesis of biologically active compounds and pharmaceuticals. The asymmetric synthesis of chiral amino acids from prochiral ketones using stereoselective enzymes is a well-known but far from exhausted approach for large-scale production. Herein, we investigated a pyridoxal-5′-phosphate-dependent D-amino acid transaminase from Haliscomenobacter hydrossis as a potential biocatalyst for the enzymatic asymmetric synthesis of optically pure aliphatic and aromatic D-amino acids. We studied the catalytic efficiency and stereoselectivity of transaminase from H. hydrossis in the amination of aliphatic and aromatic α-keto acids, using D-glutamate as a source of the amino group. We constructed a one-pot three-enzyme system, which included transaminase and two auxiliary enzymes, hydroxyglutarate dehydrogenase, and glucose dehydrogenase, to produce D-amino acids with a product yield of 95–99% and an enantiomeric excess of more than 99%. We estimated the stability of the transaminase and the cofactor leakage under reaction conditions. It was found that a high concentration of α-keto acids as well as a low reaction temperature (30 °C) can reduce the cofactor leakage under reaction conditions. The obtained results demonstrated the efficiency of transaminase from H. hydrossis in the asymmetric synthesis of enantiomerically pure D-amino acids.
Collapse
|
12
|
Kralik D, Kovářová A, Vobecká L, Hasal P, Slouka Z, Přibyl M. Continuous flow synthesis and separation of mandelic acid enantiomers in a modular microfluidic system. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Pollegioni L, Molla G. The conundrum in enzymatic reactions related to biosynthesis of d-amino acids in bacteria. FEBS J 2022; 289:5895-5898. [PMID: 35587531 PMCID: PMC9790342 DOI: 10.1111/febs.16475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/05/2022] [Indexed: 12/30/2022]
Abstract
d-Amino acids (d-AAs) are key components of the peptidoglycan matrix in bacterial cells. Various bacterial species are known to produce d-AAs by using different enzymes, such as highly specific and broad-spectrum racemases. Miyamoto et al. studied the biosynthesis of d-glutamate in the hyperthermophile and anaerobic Gram-negative bacterium, Thermotoga maritima, which does not possess a broad-spectrum racemase. The investigated TM0831 enzyme catalyzes both a d-amino acid aminotransferase reaction producing d-glutamate and an amino acid racemase activity aimed at generating d-aspartate and d-glutamate from the corresponding l-enantiomers. TM0831 represents an example of natural molecular evolution process favoring the enzyme versatility. Comment on: https://doi.org/10.1111/febs.16452.
Collapse
Affiliation(s)
- Loredano Pollegioni
- “The Protein Factory 2.0”Dipartimento di Biotecnologie e Scienze della VitaUniversità degli studi dell'InsubriaVareseItaly
| | - Gianluca Molla
- “The Protein Factory 2.0”Dipartimento di Biotecnologie e Scienze della VitaUniversità degli studi dell'InsubriaVareseItaly
| |
Collapse
|
14
|
Intermolecular interaction study of Ag-amino acid biomolecular complex using vibrational spectroscopic techniques and density functional theory method. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Hao X, Yan W, Yang J, Bai Y, Qian H, Lou Y, Ju P, Zhang D. Matrine@chitosan-D-proline nanocapsules as antifouling agents with antibacterial properties and biofilm dispersibility in the marine environment. Front Microbiol 2022; 13:950039. [PMID: 35935227 PMCID: PMC9355532 DOI: 10.3389/fmicb.2022.950039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/28/2022] [Indexed: 11/20/2022] Open
Abstract
Antifoulants are the most vital substances in antifouling coatings to prevent marine organisms from colonizing the undersea substrate surfaces. In addition to antibacterial performance, inhibition of biofilm formation is an important criterion for antifouling coatings. In this study, we synthesized pH-responsive matrine@chitosan-D-proline (Mat@CS-Pro) nanocapsules of about 280 nm with antibacterial properties and biofilm dispersibility. The prepared Mat@CS-Pro nanocapsules exhibited high-level antibacterial properties, reaching about 93, 88, and 96% for E. coli, S. aureus, and P. aeruginosa, respectively. Such nanocapsules can cause irreversible damage to bacteria and cause them to lose their intact cell structures. Moreover, Mat@CS-Pro nanocapsules also possessed outstanding dispersal biofilm performances, in which the biofilm thickness of E. coli, S. aureus, and P. aeruginosa was decreased by 33, 74, and 42%, respectively, after 3 days of incubation. Besides, the Mat@CS-Pro nanocapsules had remarkable pH-responsive properties. As the environmental pH became acidic, the nanocapsules swelled to about 475 nm and the released concentration could reach 28.5 ppm after immersion for 10 h but maintained a low releasing rate in pH 8 conditions.
Collapse
Affiliation(s)
- Xiangping Hao
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, China
- Belt and Road Initiative (BRI) Southeast Asia Network for Corrosion and Protection, Ministry of Education (MOE), Shunde Graduate School of University of Science and Technology Beijing, Foshan, China
| | - Weilu Yan
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, China
| | - Jingzhi Yang
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, China
| | - Yun Bai
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, China
| | - Hongchang Qian
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, China
- Belt and Road Initiative (BRI) Southeast Asia Network for Corrosion and Protection, Ministry of Education (MOE), Shunde Graduate School of University of Science and Technology Beijing, Foshan, China
| | - Yuntian Lou
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, China
- Belt and Road Initiative (BRI) Southeast Asia Network for Corrosion and Protection, Ministry of Education (MOE), Shunde Graduate School of University of Science and Technology Beijing, Foshan, China
| | - Pengfei Ju
- Shanghai Aerospace Equipment Manufacturer, Shanghai, China
- *Correspondence: Pengfei Ju
| | - Dawei Zhang
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, China
- Belt and Road Initiative (BRI) Southeast Asia Network for Corrosion and Protection, Ministry of Education (MOE), Shunde Graduate School of University of Science and Technology Beijing, Foshan, China
- Beijing Advanced Innovationation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, China
- Dawei Zhang
| |
Collapse
|
16
|
Yoshikawa M, Kan T, Shirose K, Watanabe M, Matsuda M, Ito K, Kawaguchi M. Free d-Amino Acids in Salivary Gland in Rat. BIOLOGY 2022; 11:390. [PMID: 35336764 PMCID: PMC8944958 DOI: 10.3390/biology11030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Free d-amino acids, which are enantiomers of l-amino acids, are found in mammals, including humans, and play an important role in a range of physiological functions in the central nervous system and peripheral tissues. Several d-amino acids have been observed in saliva, but their origin and the enzymes involved in their metabolism and catabolism remain to be clarified. In the present study, large amounts of d-aspartic acid and small amounts of d-serine and d-alanine were detected in all three major salivary glands in rat. No other d-enantiomers were detected. Protein expression of d-amino acid oxidase and d-aspartate oxidase, the enzymes responsible for the oxidative deamination of neutral and dicarboxylic d-amino acids, respectively, were detected in all three types of salivary gland. Furthermore, protein expression of the d-serine metabolic enzyme, serine racemase, in parotid glands amounted to approximately 40% of that observed in the cerebral cortex. The N-methyl-d-aspartic acid subunit proteins NR1 and NR2D were detected in all three major salivary glands. The results of the present study suggest that d-amino acids play a physiological role in a range of endocrine and exocrine function in salivary glands.
Collapse
Affiliation(s)
- Masanobu Yoshikawa
- Department of Clinical Pharmacology, School of Medicine, Tokai University, Isehara 259-1193, Japan
| | - Takugi Kan
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (T.K.); (K.S.); (M.W.); (M.M.); (K.I.)
| | - Kosuke Shirose
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (T.K.); (K.S.); (M.W.); (M.M.); (K.I.)
| | - Mariko Watanabe
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (T.K.); (K.S.); (M.W.); (M.M.); (K.I.)
| | - Mitsumasa Matsuda
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (T.K.); (K.S.); (M.W.); (M.M.); (K.I.)
| | - Kenji Ito
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (T.K.); (K.S.); (M.W.); (M.M.); (K.I.)
| | | |
Collapse
|
17
|
Li J, Yu S, Wang Y, Yao P, Wu Q, Zhu D. Simultaneous Preparation of (S)-2-Aminobutane and d-Alanine or d-Homoalanine via Biocatalytic Transamination at High Substrate Concentration. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jianjiong Li
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes, and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin
Airport Economic Area, Tianjin 300308, China
| | - Shanshan Yu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes, and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin
Airport Economic Area, Tianjin 300308, China
| | - Yingang Wang
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes, and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin
Airport Economic Area, Tianjin 300308, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Peiyuan Yao
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes, and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin
Airport Economic Area, Tianjin 300308, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Qiaqing Wu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes, and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin
Airport Economic Area, Tianjin 300308, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Dunming Zhu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes, and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin
Airport Economic Area, Tianjin 300308, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
18
|
Ishida C, Miyata R, Hasebe F, Miyata A, Kumazawa S, Ito S, Nakano S. Reconstruction of Hyper‐Thermostable Ancestral L‐Amino Acid Oxidase to Perform Deracemization to D‐Amino Acids. ChemCatChem 2021. [DOI: 10.1002/cctc.202101296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chiharu Ishida
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences University of Shizuoka Shizuoka 422-8526 Japan
| | - Ryo Miyata
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences University of Shizuoka Shizuoka 422-8526 Japan
| | - Fumihito Hasebe
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences University of Shizuoka Shizuoka 422-8526 Japan
| | - Azusa Miyata
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences University of Shizuoka Shizuoka 422-8526 Japan
| | - Shigenori Kumazawa
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences University of Shizuoka Shizuoka 422-8526 Japan
| | - Sohei Ito
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences University of Shizuoka Shizuoka 422-8526 Japan
| | - Shogo Nakano
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences University of Shizuoka Shizuoka 422-8526 Japan
- PREST, Japan Science and Technology Agency Saitama 332-0012 Japan
| |
Collapse
|
19
|
Lu C, Zhang S, Song W, Liu J, Chen X, Liu L, Wu J. Efficient Synthesis of D‐Phenylalanine from L‐Phenylalanine via a Tri‐Enzymatic Cascade Pathway. ChemCatChem 2021. [DOI: 10.1002/cctc.202100237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cui Lu
- School of Pharmaceutical Science Jiangnan University Wuxi 214122 (P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 (P. R. China
| | - Sheng Zhang
- Tianrui Chemical Co.,Ltd Department of Chemistry Quzhou 324400 (P. R. China
| | - Wei Song
- School of Pharmaceutical Science Jiangnan University Wuxi 214122 (P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 (P. R. China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 (P. R. China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 (P. R. China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 (P. R. China
| | - Jing Wu
- School of Pharmaceutical Science Jiangnan University Wuxi 214122 (P. R. China
| |
Collapse
|
20
|
Tan X, Zhang S, Song W, Liu J, Gao C, Chen X, Liu L, Wu J. A multi-enzyme cascade for efficient production of D-p-hydroxyphenylglycine from L-tyrosine. BIORESOUR BIOPROCESS 2021; 8:41. [PMID: 38650231 PMCID: PMC10991500 DOI: 10.1186/s40643-021-00394-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/10/2021] [Indexed: 11/10/2022] Open
Abstract
In this study, a four-enzyme cascade pathway was developed and reconstructed in vivo for the production of D-p-hydroxyphenylglycine (D-HPG), a valuable intermediate used to produce β-lactam antibiotics and in fine-chemical synthesis, from L-tyrosine. In this pathway, catalytic conversion of the intermediate 4-hydroxyphenylglyoxalate by meso-diaminopimelate dehydrogenase from Corynebacterium glutamicum (CgDAPDH) was identified as the rate-limiting step, followed by application of a mechanism-guided "conformation rotation" strategy to decrease the hydride-transfer distance d(C6HDAP-C4NNADP) and increase CgDAPDH activity. Introduction of the best variant generated by protein engineering (CgDAPDHBC621/D120S/W144S/I169P with 5.32 ± 0.85 U·mg-1 specific activity) into the designed pathway resulted in a D-HPG titer of 42.69 g/L from 50-g/L L-tyrosine in 24 h, with 92.5% conversion, 71.5% isolated yield, and > 99% enantiomeric excess in a 3-L fermenter. This four-enzyme cascade provides an efficient enzymatic approach for the industrial production of D-HPG from cheap amino acids.
Collapse
Affiliation(s)
- Xu Tan
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Sheng Zhang
- Zhejiang Tianrui Chemical Co., Ltd, Quzhou, 324400, China
| | - Wei Song
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| |
Collapse
|
21
|
Zhang DP, Jing XR, Wu LJ, Fan AW, Nie Y, Xu Y. Highly selective synthesis of D-amino acids via stereoinversion of corresponding counterpart by an in vivo cascade cell factory. Microb Cell Fact 2021; 20:11. [PMID: 33422055 PMCID: PMC7797136 DOI: 10.1186/s12934-020-01506-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND D-Amino acids are increasingly used as building blocks to produce pharmaceuticals and fine chemicals. However, establishing a universal biocatalyst for the general synthesis of D-amino acids from cheap and readily available precursors with few by-products is challenging. In this study, we developed an efficient in vivo biocatalysis system for the synthesis of D-amino acids from L-amino acids by the co-expression of membrane-associated L-amino acid deaminase obtained from Proteus mirabilis (LAAD), meso-diaminopimelate dehydrogenases obtained from Symbiobacterium thermophilum (DAPDH), and formate dehydrogenase obtained from Burkholderia stabilis (FDH), in recombinant Escherichia coli. RESULTS To generate the in vivo cascade system, three strategies were evaluated to regulate enzyme expression levels, including single-plasmid co-expression, double-plasmid co-expression, and double-plasmid MBP-fused co-expression. The double-plasmid MBP-fused co-expression strain Escherichia coli pET-21b-MBP-laad/pET-28a-dapdh-fdh, exhibiting high catalytic efficiency, was selected. Under optimal conditions, 75 mg/mL of E. coli pET-21b-MBP-laad/pET-28a-dapdh-fdh whole-cell biocatalyst asymmetrically catalyzed the stereoinversion of 150 mM L-Phe to D-Phe, with quantitative yields of over 99% ee in 24 h, by the addition of 15 mM NADP+ and 300 mM ammonium formate. In addition, the whole-cell biocatalyst was used to successfully stereoinvert a variety of aromatic and aliphatic L-amino acids to their corresponding D-amino acids. CONCLUSIONS The newly constructed in vivo cascade biocatalysis system was effective for the highly selective synthesis of D-amino acids via stereoinversion.
Collapse
Affiliation(s)
- Dan-Ping Zhang
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Xiao-Ran Jing
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Lun-Jie Wu
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - An-Wen Fan
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Yao Nie
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
- Suqian Industrial Technology Research Institute of Jiangnan University, Suqian, 223814, China.
| | - Yan Xu
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
22
|
Ancestral L-amino acid oxidases for deracemization and stereoinversion of amino acids. Commun Chem 2020; 3:181. [PMID: 36703379 PMCID: PMC9814856 DOI: 10.1038/s42004-020-00432-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/10/2020] [Indexed: 01/29/2023] Open
Abstract
L-amino acid oxidases (LAAOs) can be applied to convert racemic amino acids to D-isomers, which are potential precursors of pharmaceuticals. However, this application is hampered by the lack of available stable and structure-determined LAAOs. In this study, we attempt to address this limitation by utilizing two ancestral LAAOs: AncLAAO-N4 and AncLAAO-N5. AncLAAO-N4 has the highest thermal and temporal stabilities among the designed LAAOs that can be used for deracemization and stereoinversion. AncLAAO-N5 can provide X-ray crystal structures, which are helpful to reveal substrate recognition and reaction mechanisms of LAAOs at the molecular level. Next, we attempted to improve activity of AncLAAO-N4 toward L-Val through a semi-rational protein engineering method. Three variants with enhanced activity toward L-Val were obtained. Taken together, we believe that the activity and substrate selectivity of AncLAAOs give them the potential to be key enzymes in various chemoenzymatic reactions.
Collapse
|
23
|
Martínez-Rodríguez S, Torres JM, Sánchez P, Ortega E. Overview on Multienzymatic Cascades for the Production of Non-canonical α-Amino Acids. Front Bioeng Biotechnol 2020; 8:887. [PMID: 32850740 PMCID: PMC7431475 DOI: 10.3389/fbioe.2020.00887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
The 22 genetically encoded amino acids (AAs) present in proteins (the 20 standard AAs together with selenocysteine and pyrrolysine), are commonly referred as proteinogenic AAs in the literature due to their appearance in ribosome-synthetized polypeptides. Beyond the borders of this key set of compounds, the rest of AAs are generally named imprecisely as non-proteinogenic AAs, even when they can also appear in polypeptide chains as a result of post-transductional machinery. Besides their importance as metabolites in life, many of D-α- and L-α-"non-canonical" amino acids (NcAAs) are of interest in the biotechnological and biomedical fields. They have found numerous applications in the discovery of new medicines and antibiotics, drug synthesis, cosmetic, and nutritional compounds, or in the improvement of protein and peptide pharmaceuticals. In addition to the numerous studies dealing with the asymmetric synthesis of NcAAs, many different enzymatic pathways have been reported in the literature allowing for the biosynthesis of NcAAs. Due to the huge heterogeneity of this group of molecules, this review is devoted to provide an overview on different established multienzymatic cascades for the production of non-canonical D-α- and L-α-AAs, supplying neophyte and experienced professionals in this field with different illustrative examples in the literature. Whereas the discovery of new or newly designed enzymes is of great interest, dusting off previous enzymatic methodologies by a "back and to the future" strategy might accelerate the implementation of new or improved multienzymatic cascades.
Collapse
|
24
|
Carenzi G, Sacchi S, Abbondi M, Pollegioni L. Direct chromatographic methods for enantioresolution of amino acids: recent developments. Amino Acids 2020; 52:849-862. [DOI: 10.1007/s00726-020-02873-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/05/2020] [Indexed: 12/24/2022]
|
25
|
Rosini E, D’Antona P, Pollegioni L. Biosensors for D-Amino Acids: Detection Methods and Applications. Int J Mol Sci 2020; 21:E4574. [PMID: 32605078 PMCID: PMC7369756 DOI: 10.3390/ijms21134574] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022] Open
Abstract
D-enantiomers of amino acids (D-AAs) are only present in low amounts in nature, frequently at trace levels, and for this reason, their biological function was undervalued for a long time. In the past 25 years, the improvements in analytical methods, such as gas chromatography, HPLC, and capillary electrophoresis, allowed to detect D-AAs in foodstuffs and biological samples and to attribute them specific biological functions in mammals. These methods are time-consuming, expensive, and not suitable for online application; however, life science investigations and industrial applications require rapid and selective determination of D-AAs, as only biosensors can offer. In the present review, we provide a status update concerning biosensors for detecting and quantifying D-AAs and their applications for safety and quality of foods, human health, and neurological research. The review reports the main challenges in the field, such as selectivity, in order to distinguish the different D-AAs present in a solution, the simultaneous assay of both L- and D-AAs, the production of implantable devices, and surface-scanning biosensors. These innovative tools will push future research aimed at investigating the neurological role of D-AAs, a vibrant field that is growing at an accelerating pace.
Collapse
Affiliation(s)
- Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (P.D.); (L.P.)
| | | | | |
Collapse
|