1
|
Pan X, Liu Z, Feng L, Wang C, Liu C, Li A, Yao K, Liao W. The response of DNA methyltransferase and demethylase genes to abiotic stresses in tomato seedling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109276. [PMID: 39520904 DOI: 10.1016/j.plaphy.2024.109276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
DNA methylation plays an important role in regulating plant growth, development and gene expression. However, less is known about the response of DNA methyltransferase and demethylase genes to various stresses. In this study, the effects of abiotic stresses on DNA methylation gene expression patterns in tomato seedlings were investigated. Results showed that most tomato DNA methyltransferase and demethylase genes contained stress-related elements. The expression of SlDML1 was significantly induced by cadmium (Cd) and sodium chloride (NaCl) stresses. SlDML2 was more sensitive and reached its maximum value under polyethylene (PEG) stress at 24 h. The expression of SlMET3L was repressed to varying degrees under Cd, NaCl and PEG stresses at 48 h. However, 5-aza-2'-deoxycytidine (5-azadC) treatment decreased the Cd and PEG stress tolerance by down-regulating the expression of DNA methyltransferase except for the SlMET3L, and up-regulating the expression levels of SlDML2, SlDML3 and SlDML4, cadmium transporters (SlHMA5, SlCAX3, and SlACC3) and osmoregulators (SlDREB, SlLEA and SlHSP70). Whereas 5-azadC treatment alleviated the salt stress through up-regulating DNA methyltransferase gene expression, and down-regulating the expression level of SlDML1, SlDML3, and SlDML4, SlHKT1, SlNHX1, and SlSOS1. Collectively, 5-azadC impaired Cd and PEG stress tolerance and enhanced salt stress tolerance by regulating the expression of methylation-related and stress-related genes in tomato seedlings. These results may provide useful information for further analysing function and evolution of DNA methylation methyltransferase and demethylase genes in tomato under stress conditions.
Collapse
Affiliation(s)
- Xuejuan Pan
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zesheng Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Li Feng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Chan Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ailing Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Kangding Yao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
2
|
Labella-Ortega M, Martín C, Valledor L, Castiglione S, Castillejo MÁ, Jorrín-Novo JV, Rey MD. Unravelling DNA methylation dynamics during developmental stages in Quercus ilex subsp. ballota [Desf.] Samp. BMC PLANT BIOLOGY 2024; 24:823. [PMID: 39223458 PMCID: PMC11370289 DOI: 10.1186/s12870-024-05553-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND DNA methylation is a critical factor influencing plant growth, adaptability, and phenotypic plasticity. While extensively studied in model and crop species, it remains relatively unexplored in holm oak and other non-domesticated forest trees. This study conducts a comprehensive in-silico mining of DNA methyltransferase and demethylase genes within the holm oak genome to enhance our understanding of this essential process in these understudied species. The expression levels of these genes in adult and seedling leaves, as well as embryos, were analysed using quantitative real-time PCR (qRT-PCR). Global DNA methylation patterns were assessed through methylation-sensitive amplified polymorphism (MSAP) techniques. Furthermore, specific methylated genomic sequences were identified via MSAP sequencing (MSAP-Seq). RESULT A total of 13 DNA methyltransferase and three demethylase genes were revealed in the holm oak genome. Expression levels of these genes varied significantly between organs and developmental stages. MSAP analyses revealed a predominance of epigenetic over genetic variation among organs and developmental stages, with significantly higher global DNA methylation levels observed in adult leaves. Embryos exhibited frequent demethylation events, while de novo methylation was prevalent in seedling leaves. Approximately 35% of the genomic sequences identified by MSAP-Seq were methylated, predominantly affecting nuclear genes and intergenic regions, as opposed to repetitive sequences and chloroplast genes. Methylation was found to be more pronounced in the exonic regions of nuclear genes compared to their promoter and intronic regions. The methylated genes were predominantly associated with crucial biological processes such as photosynthesis, ATP synthesis-coupled electron transport, and defence response. CONCLUSION This study opens a new research direction in analysing variability in holm oak by evaluating the epigenetic events and mechanisms based on DNA methylation. It sheds light on the enzymatic machinery governing DNA (de)methylation, and the changes in the expression levels of methylases and demethylases in different organs along the developmental stages. The expression level was correlated with the DNA methylation pattern observed, showing the prevalence of de novo methylation and demethylation events in seedlings and embryos, respectively. Several methylated genes involved in the regulation of transposable element silencing, lipid biosynthesis, growth and development, and response to biotic and abiotic stresses are highlighted. MSAP-seq integrated with whole genome bisulphite sequencing and advanced sequencing technologies, such as PacBio or Nanopore, will bring light on epigenetic mechanisms regulating the expression of specific genes and its correlation with the phenotypic variability and the differences in the response to environmental cues, especially those related to climate change.
Collapse
Affiliation(s)
- Mónica Labella-Ortega
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain.
| | - Carmen Martín
- Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Ciudad Universitaria s/n, Madrid, 28040, Spain
| | - Luis Valledor
- Plant Physiology Lab, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, Cat. Rodrigo Uría s/n, Oviedo, 33006, Spain
| | - Stefano Castiglione
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II 132, Fisciano, Salerno, 84084, Italy
| | - María-Ángeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain
| | - Jesús V Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain
| | - María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain.
| |
Collapse
|
3
|
García-Vázquez JL, Quijada-Rivera M, Hernández-Oñate MÁ, Tiznado-Hernández ME, Lazo-Javalera MF, Martínez-Téllez MÁ, Astorga-Cienfuegos KR, Rivera-Domínguez M. Effect of Vitis vinifera zygotic embryo cryopreservation and post-cryopreservation on the gene expression of DNA demethylases. Cryobiology 2024; 116:104947. [PMID: 39084504 DOI: 10.1016/j.cryobiol.2024.104947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Grapevine (Vitis vinifera L.) crops are continuously exposed to biotic and abiotic stresses, which can cause genetic and epigenetic alterations. To determine the possible effects of grapevine cryopreservation on the regulation of DNA demethylase genes, this work studied the expression of DNA demethylase genes in cryopreserved and post-cryopreserved grapevine tissues. V. vinifera DNA demethylases were characterized by in silico analysis, and gene expression quantification was conducted by RT‒qPCR. Three DNA demethylase sequences were found: VIT_13s0074g00450 (VvDMT), VIT_08s0007g03920 (VvROS1), and VIT_06s0061g01270 (VvDML3). Phylogenetic analysis revealed that the sequences from V. vinifera and A. thaliana had a common ancestry. In the promoters of responsive elements to transcription factors such as AP-2, Myb, bZIP, TBP, and GATA, the conserved domains RRM DME and Perm CXXC were detected. These responsive elements play roles in the response to abiotic stress and the regulation of cell growth. These data helped us characterize the V. vinifera DNA demethylase genes. Gene expression analysis indicated that plant vitrification solution 2 (PVS2) treatment does not alter the expression of DNA demethylase genes. The expression levels of VvDMT and VvROS1 increased in response to cryopreservation by vitrification. Furthermore, in post-cryopreservation, VvROS1 was highly induced, and VvDML3 was repressed in all the treatment groups. Gene expression differences between different treatments and tissues may play roles in controlling methylation patterns during gene regulation in tissues stressed by cryopreservation procedures and in the post-cryopreservation period during plant growth and development.
Collapse
Affiliation(s)
- Juan Luis García-Vázquez
- Food Science Coordination, Center for Food Research and Development A.C, Hermosillo, Sonora, 83000, Mexico
| | - Mariana Quijada-Rivera
- Food Science Coordination, Center for Food Research and Development A.C, Hermosillo, Sonora, 83000, Mexico
| | - Miguel Ángel Hernández-Oñate
- Vegetal Food Origin Coordination, Center for Food Research and Development A.C, Hermosillo, Sonora, 83000, Mexico
| | | | | | - Miguel Ángel Martínez-Téllez
- Vegetal Food Origin Coordination, Center for Food Research and Development A.C, Hermosillo, Sonora, 83000, Mexico
| | | | - Marisela Rivera-Domínguez
- Food Science Coordination, Center for Food Research and Development A.C, Hermosillo, Sonora, 83000, Mexico.
| |
Collapse
|
4
|
Teixeira RT. Cork Development: What Lies Within. PLANTS (BASEL, SWITZERLAND) 2022; 11:2671. [PMID: 36297695 PMCID: PMC9611905 DOI: 10.3390/plants11202671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The cork layer present in all dicotyledonous plant species with radial growth is the result of the phellogen activity, a secondary meristem that produces phellem (cork) to the outside and phelloderm inwards. These three different tissues form the periderm, an efficient protective tissue working as a barrier against external factors such as environmental aggressions and pathogen attacks. The protective function offered by cork cells is mainly due to the abundance of suberin in their cell walls. Chemically, suberin is a complex aliphatic network of long chain fatty acids and alcohols with glycerol together with aromatic units. In most woody species growing in temperate climates, the first periderm is replaced by a new functional periderm upon a few years after being formed. One exception to this bark development can be found in cork oak (Quercus suber) which display a single periderm that grows continuously. Quercus suber stands by its thick cork layer development with continuous seasonal growth. Cork raw material has been exploited by man for centuries, especially in Portugal and Spain. Nowadays, its applications have widened vastly, from the most known product, stoppers, to purses or insulating materials used in so many industries, such as construction and car production. Research on how cork develops, and the effect environmental factors on cork oak trees is extremely important to maintain production of good-quality cork, and, by maintaining cork oak stands wealthy, we are preserving a very important ecosystem both by its biodiversity and its vital social and economic role in areas already showing a population declination.
Collapse
Affiliation(s)
- Rita Teresa Teixeira
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
5
|
Alves S, Braga Â, Parreira D, Alhinho AT, Silva H, Ramos MJN, Costa MMR, Morais‐Cecílio L. Genome-wide identification, phylogeny, and gene duplication of the epigenetic regulators in Fagaceae. PHYSIOLOGIA PLANTARUM 2022; 174:e13788. [PMID: 36169620 PMCID: PMC9828519 DOI: 10.1111/ppl.13788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 05/04/2023]
Abstract
Epigenetic regulators are proteins involved in controlling gene expression. Information about the epigenetic regulators within the Fagaceae, a relevant family of trees and shrubs of the northern hemisphere ecosystems, is scarce. With the intent to characterize these proteins in Fagaceae, we searched for orthologs of DNA methyltransferases (DNMTs) and demethylases (DDMEs) and Histone modifiers involved in acetylation (HATs), deacetylation (HDACs), methylation (HMTs), and demethylation (HDMTs) in Fagus, Quercus, and Castanea genera. Blast searches were performed in the available genomes, and freely available RNA-seq data were used to de novo assemble transcriptomes. We identified homologs of seven DNMTs, three DDMEs, six HATs, 11 HDACs, 32 HMTs, and 21 HDMTs proteins. Protein analysis showed that most of them have the putative characteristic domains found in these protein families, which suggests their conserved function. Additionally, to elucidate the evolutionary history of these genes within Fagaceae, paralogs were identified, and phylogenetic analyses were performed with DNA and histone modifiers. We detected duplication events in all species analyzed with higher frequency in Quercus and Castanea and discuss the evidence of transposable elements adjacent to paralogs and their involvement in gene duplication. The knowledge gathered from this work is a steppingstone to upcoming studies concerning epigenetic regulation in this economically important family of Fagaceae.
Collapse
Affiliation(s)
- Sofia Alves
- LEAF—Linking Landscape, Environment, Agriculture and FoodInstituto Superior de Agronomia, University of LisbonLisboaPortugal
| | - Ângelo Braga
- Instituto Superior de Agronomia, University of LisbonLisboaPortugal
| | - Denise Parreira
- Instituto Superior de Agronomia, University of LisbonLisboaPortugal
| | - Ana Teresa Alhinho
- Centre of Molecular and Environmental Biology (CBMA)University of MinhoBragaPortugal
| | - Helena Silva
- Centre of Molecular and Environmental Biology (CBMA)University of MinhoBragaPortugal
| | - Miguel Jesus Nunes Ramos
- LEAF—Linking Landscape, Environment, Agriculture and FoodInstituto Superior de Agronomia, University of LisbonLisboaPortugal
- Present address:
GenoMed, Diagnósticos de Medicina MolecularLisboaPortugal
| | | | - Leonor Morais‐Cecílio
- LEAF—Linking Landscape, Environment, Agriculture and FoodInstituto Superior de Agronomia, University of LisbonLisboaPortugal
| |
Collapse
|
6
|
Ma X, Wang X, Zheng G, Tan G, Zhou F, Wei W, Tian D, Yu H. Critical Role of Gut Microbiota and Epigenetic Factors in the Pathogenesis of Behçet's Disease. Front Cell Dev Biol 2021; 9:719235. [PMID: 34676209 PMCID: PMC8525702 DOI: 10.3389/fcell.2021.719235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/16/2021] [Indexed: 01/08/2023] Open
Abstract
Behçet’s disease (BD) is a chronic refractory multisystem autoinflammatory disease, characterized by typical clinical features of non-specific vasculitis, oral and genital ulcers, uveitis, as well as skin lesions. The exact etiopathogenesis of BD remains unknown, existing studies have indicated that genetics and environmental factors contribute to the increased development of BD. Recently, several studies have shown that external environmental factors can affect the process of epigenetic modification, and abnormalities of epigenetic factors have been confirmed to be involved in the occurrence of BD. At the same time, abnormalities of gut microbiota (GM) in the body, have also been confirmed to participate in the pathogenesis of BD by regulating the balance of Th17/Tregs. This article reviews the pathogenesis of BD and summarizes numerous clinical studies, focusing on the mechanism of GM and epigenetic factors impacting on BD, and providing new ideas for further elucidating the pathogenesis of BD.
Collapse
Affiliation(s)
- Xiaomin Ma
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Xin Wang
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Guangbing Zheng
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Guiqin Tan
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Fangyu Zhou
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Wenwen Wei
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Dan Tian
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, China
| | - Hongsong Yu
- School of Basic Medical Sciences, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Guizhou, China
| |
Collapse
|
7
|
Abstract
Quercus species (oaks) have been an integral part of the landscape in the northern hemisphere for millions of years. Their ability to adapt and spread across different environments and their contributions to many ecosystem services is well documented. Human activity has placed many oak species in peril by eliminating or adversely modifying habitats through exploitative land usage and by practices that have exacerbated climate change. The goal of this review is to compile a list of oak species of conservation concern, evaluate the genetic data that is available for these species, and to highlight the gaps that exist. We compiled a list of 124 Oaks of Concern based on the Red List of Oaks 2020 and the Conservation Gap Analysis for Native U.S. Oaks and their evaluations of each species. Of these, 57% have been the subject of some genetic analysis, but for most threatened species (72%), the only genetic analysis was done as part of a phylogenetic study. While nearly half (49%) of published genetic studies involved population genetic analysis, only 16 species of concern (13%) have been the subject of these studies. This is a critical gap considering that analysis of intraspecific genetic variability and genetic structure are essential for designing conservation management strategies. We review the published population genetic studies to highlight their application to conservation. Finally, we discuss future directions in Quercus conservation genetics and genomics.
Collapse
|