1
|
Kuno H, Nishioka N, Yamada T, Kunimatsu Y, Yoshimura A, Hirai S, Futamura S, Masui T, Egami M, Chihara Y, Takayama K. The Significance of Longitudinal Psoas Muscle Loss in Predicting the Maintenance Efficacy of Durvalumab Treatment Following Concurrent Chemoradiotherapy in Patients with Non-Small Cell Lung Cancer: A Retrospective Study. Cancers (Basel) 2024; 16:3037. [PMID: 39272894 PMCID: PMC11394210 DOI: 10.3390/cancers16173037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Sarcopenia assessed at a single time point is associated with the efficacy of immunotherapy, and we hypothesized that longitudinal changes in muscle mass may also be important. This retrospective study included patients with non-small cell lung cancer (NSCLC) who received durvalumab treatment after concurrent chemoradiotherapy (CCRT) between January 2017 and April 2023. Muscle loss and sarcopenia were assessed based on the lumbar skeletal muscle area. Patients with a decrease in muscle area of 10% or more during CCRT were categorized into the muscle loss group, while those with a decrease of less than 10% were categorized into the muscle maintenance group. We evaluated the relationship between muscle changes during CCRT and the efficacy of durvalumab treatment. Among the 98 patients, the muscle maintenance group had a significantly longer PFS of durvalumab treatment compared to the muscle loss group (29.2 months [95% confidence interval (CI): 17.2-not reached] versus 11.3 months [95% CI: 7.6-22.3]; p = 0.008). The multivariable analysis confirmed that muscle change was a significant predictor of a superior PFS (HR: 0.47 [95% CI: 0.25-0.90]; the p-value was less than 0.05). In contrast, the OS between the groups did not differ significantly (not reached [95% CI: 21.8 months-not reached] and 36.6 months [95% CI: 26.9-not reached]; p = 0.49). Longitudinal muscle changes during CCRT are a predictor of durvalumab's efficacy in patients with NSCLC after CCRT.
Collapse
Affiliation(s)
- Haruka Kuno
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan
| | - Naoya Nishioka
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan
| | - Yusuke Kunimatsu
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto 602-8026, Japan
| | - Akihiro Yoshimura
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto 602-8026, Japan
| | - Soichi Hirai
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto 602-8026, Japan
| | - Shun Futamura
- Department of Medical Oncology, Fukuchiyama City Hospital, Fukuchiyama 620-8505, Japan
| | - Taiki Masui
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan
| | - Masashi Egami
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan
| | - Yusuke Chihara
- Department of Respiratory Medicine, Uji-Tokushukai Medical Center, Uji 611-0041, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan
| |
Collapse
|
2
|
Lippi L, de Sire A, Aprile V, Calafiore D, Folli A, Refati F, Balduit A, Mangogna A, Ivanova M, Venetis K, Fusco N, Invernizzi M. Rehabilitation for Functioning and Quality of Life in Patients with Malignant Pleural Mesothelioma: A Scoping Review. Curr Oncol 2024; 31:4318-4337. [PMID: 39195305 PMCID: PMC11352897 DOI: 10.3390/curroncol31080322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Malignant pleural mesothelioma (MPM) represents a significant clinical challenge due to limited therapeutic options and poor prognosis. Beyond mere survivorship, setting up an effective framework to improve functioning and quality of life is an urgent need in the comprehensive management of MPM patients. Therefore, this study aims to review the current understanding of MPM sequelae and the effectiveness of rehabilitative interventions in the holistic approach to MPM. A narrative review was conducted to summarize MPM sequelae and their impact on functioning, disability, and quality of life, focusing on rehabilitation interventions in MPM management and highlighting gaps in knowledge and areas for further investigation. Our findings showed that MPM patients experience debilitating symptoms, including fatigue, dyspnea, pain, and reduced exercise tolerance, decreasing quality of life. Supportive and rehabilitative interventions, including pulmonary rehabilitation, physical exercise improvement, psychological support, pain management, and nutritional supplementation, seem promising approaches in relieving symptoms and improving quality of life but require further research. These programs emphasize the pivotal synergy among patient-tailored plans, multidisciplinary team involvement, and disease-specific focus. Despite advancements in therapeutic management, MPM remains a challenging disease with limited effective interventions that should be adapted to disease progressions. Rehabilitative strategies are essential to mitigate symptoms and improve the quality of life in MPM patients. Further research is needed to establish evidence-based guidelines for rehabilitative interventions tailored to the unique needs of MPM patients.
Collapse
Affiliation(s)
- Lorenzo Lippi
- Department of Scientific Research, Off-Campus Semmelweis University of Budapest, Campus LUdeS Lugano (CH), 1085 Budapest, Hungary;
| | - Alessandro de Sire
- Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
- Research Center on Musculoskeletal Health, MusculoSkeletalHealth@UMG, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy
| | - Vittorio Aprile
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy
| | - Dario Calafiore
- Department of Neurosciences, ASST Carlo Poma, 46100 Mantova, Italy
| | - Arianna Folli
- Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy
| | - Fjorelo Refati
- Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy
| | - Andrea Balduit
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Burlo Garofolo, 34100 Trieste, Italy
| | - Alessandro Mangogna
- Institute of Pathological Anatomy, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Mariia Ivanova
- Division of Pathology, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Konstantinos Venetis
- Division of Pathology, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Nicola Fusco
- Division of Pathology, European Institute of Oncology, IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Marco Invernizzi
- Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| |
Collapse
|
3
|
Wan R, Chen Y, Feng X, Luo Z, Peng Z, Qi B, Qin H, Lin J, Chen S, Xu L, Tang J, Zhang T. Exercise potentially prevents colorectal cancer liver metastases by suppressing tumor epithelial cell stemness via RPS4X downregulation. Heliyon 2024; 10:e26604. [PMID: 38439884 PMCID: PMC10909670 DOI: 10.1016/j.heliyon.2024.e26604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024] Open
Abstract
Background Colorectal cancer (CRC) is the third most prevalent tumor globally. The liver is the most common site for CRC metastasis, and the involvement of the liver is a common cause of death in patients with late-stage CRC. Consequently, mitigating CRC liver metastasis (CRLM) is key to improving CRC prognosis and increasing survival. Exercise has been shown to be an effective method of improving the prognosis of many tumor types. However, the ability of exercise to inhibit CRLM is yet to be thoroughly investigated. Methods The GSE157600 and GSE97084 datasets were used for analysis. A pan-cancer dataset which was uniformly normalized was downloaded and analyzed from the UCSC database: TCGA, TARGET, GTEx (PANCAN, n = 19,131, G = 60,499). Several advanced bioinformatics analyses were conducted, including single-cell sequencing analysis, correlation algorithm, and prognostic screen. CRC tumor microarray (TMA) as well as cell/animal experiments are used to further validate the results of the analysis. Results The greatest variability was found in epithelial cells from the tumor group. RPS4X was generally upregulated in all types of CRC, while exercise downregulated RPS4X expression. A lowered expression of RPS4X may prolong tumor survival and reduce CRC metastasis. RPS4X and tumor stemness marker-CD44 were highly positively correlated and knockdown of RPS4X expression reduced tumor stemness both in vitro and in vivo. Conclusion RPS4X upregulation may enhance CRC stemness and increase the odds of metastasis. Exercise may reduce CRC metastasis through the regulation of RPS4X.
Collapse
Affiliation(s)
- Renwen Wan
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xinting Feng
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhen Peng
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Beijie Qi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Affiliated Pudong Medical Center, Shanghai 201399, China
| | - Haocheng Qin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Liangfeng Xu
- Department of Gastroenterology, Sheyang County People's Hospital, Yancheng 224300, Jiangsu, China
| | - Jiayin Tang
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai 200127, China
| | - Ting Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Lyu DW. Immunomodulatory effects of exercise in cancer prevention and adjuvant therapy: a narrative review. Front Physiol 2024; 14:1292580. [PMID: 38239881 PMCID: PMC10794543 DOI: 10.3389/fphys.2023.1292580] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Successful application of cancer immunotherapy has rekindled hope in cancer patients. However, a number of patients are unresponsive to immunotherapy and related treatments. This unresponsiveness in cancer patients toward different treatment regimens can be mainly attributed to severe immune dysfunction in such patients. Several reports indicate that physical exercise can significantly lead to improved cancer patient outcomes. Since exercise gets immense response from the immune system, it can be utilized to improve immune function. Leukocytes with enhanced functions are substantially mobilized into the circulation by a single bout of intense physical exercise. Chronic physical exercise results in greater muscle endurance and strength and improved cardiorespiratory function. This exercise regime is also useful in improving T-cell abundance and reducing dysfunctional T cells. The current available data strongly justify for future clinical trials to investigate physical exercise use as an adjuvant in cancer therapy; however, optimal parameters using exercise for a defined outcome are yet to be established. The components of the immune system associate with almost every tumorigenesis step. The inter-relationship between inflammation, cancer, and innate immunity has recently gained acceptance; however, the underlying cellular and molecular mechanisms behind this relationship are yet to be solved. Several studies suggest physical exercise-mediated induction of immune cells to elicit anti-tumorigenic effects. This indicates the potential of exercising in modulating the behavior of immune cells to inhibit tumor progression. However, further mechanistic details behind physical exercise-driven immunomodulation and anticancer effects have to be determined. This review aims to summarize and discuss the association between physical exercise and immune function modulation and the potential of exercise as an adjuvant therapy in cancer prevention and treatment.
Collapse
Affiliation(s)
- Da-wei Lyu
- Physical Education and Health School, East China Jiaotong University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Brummer C, Pukrop T, Wiskemann J, Bruss C, Ugele I, Renner K. Can Exercise Enhance the Efficacy of Checkpoint Inhibition by Modulating Anti-Tumor Immunity? Cancers (Basel) 2023; 15:4668. [PMID: 37760634 PMCID: PMC10526963 DOI: 10.3390/cancers15184668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Immune checkpoint inhibition (ICI) has revolutionized cancer therapy. However, response to ICI is often limited to selected subsets of patients or not durable. Tumors that are non-responsive to checkpoint inhibition are characterized by low anti-tumoral immune cell infiltration and a highly immunosuppressive tumor microenvironment. Exercise is known to promote immune cell circulation and improve immunosurveillance. Results of recent studies indicate that physical activity can induce mobilization and redistribution of immune cells towards the tumor microenvironment (TME) and therefore enhance anti-tumor immunity. This suggests a favorable impact of exercise on the efficacy of ICI. Our review delivers insight into possible molecular mechanisms of the crosstalk between muscle, tumor, and immune cells. It summarizes current data on exercise-induced effects on anti-tumor immunity and ICI in mice and men. We consider preclinical and clinical study design challenges and discuss the role of cancer type, exercise frequency, intensity, time, and type (FITT) and immune sensitivity as critical factors for exercise-induced impact on cancer immunosurveillance.
Collapse
Affiliation(s)
- Christina Brummer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, 93053 Regensburg, Germany;
- Comprehensive Cancer Center Ostbayern (CCCO), 93053 Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, 93053 Regensburg, Germany;
- Comprehensive Cancer Center Ostbayern (CCCO), 93053 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Joachim Wiskemann
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Christina Bruss
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany;
| | - Ines Ugele
- Department of Otorhinolaryngology, University Hospital Regensburg, 93053 Regensburg, Germany; (I.U.); (K.R.)
| | - Kathrin Renner
- Comprehensive Cancer Center Ostbayern (CCCO), 93053 Regensburg, Germany
- Department of Otorhinolaryngology, University Hospital Regensburg, 93053 Regensburg, Germany; (I.U.); (K.R.)
| |
Collapse
|
6
|
Lavín-Pérez AM, Collado-Mateo D, Abbasi S, Ferreira-Júnior JB, Hekmatikar AHA. Effects of exercise on immune cells with tumor-specific activity in breast cancer patients and survivors: a systematic review and meta-analysis. Support Care Cancer 2023; 31:507. [PMID: 37542543 DOI: 10.1007/s00520-023-07968-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
Exercise is effective for improving the physical and psychological health of breast cancer patients. However, there is still controversy around its role on the immune system. Therefore, this systematic review and meta-analysis is aimed to evaluate the effect of chronic exercise on the number and activity of the immune cells that can contribute to anti-tumor immune responses, such as natural killers (NK) cells, CD + 4, or CD + 8. The main hypothesis of this study was that exercise could improve the immune system or, at least, there will not be a reduction in the number or activity of immune cells because of exercise. The search was conducted in the PubMed and Web of Science databases. Out of 244 studies reviewed, 10 studies met the inclusion criteria. The studies included in the meta-analyses showed mixed results and no significant (p > 0.05) positive or negative effects of exercise interventions in women with breast cancer. Therefore, the current evidence indicates that exercise does not significantly improve or reduce the immune system; thus, the prescription of exercise must not be discouraged due to the effects on the number and activity of immune system cells, but should be recommended due to the well-known benefits in quality of life, physical function or fatigue, and the absence of negative effects on the immune system. Further studies are needed to evaluate the effects according to the type of exercise, the type of cancer, or the timing of the intervention.
Collapse
Affiliation(s)
- Ana Myriam Lavín-Pérez
- Centre for Sport Studies, Rey Juan Carlos University, 28043 Fuenlabrada, Spain and GO fit LAB, Ingesport, 28003, Madrid, Spain
| | - Daniel Collado-Mateo
- Centre for Sport Studies, Rey Juan Carlos University, Fuenlabrada, 28043, Spain.
| | - Shaghayegh Abbasi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran, 10600, Iran
| | | | - Amir Hossein Ahmadi Hekmatikar
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, 10600, Iran.
| |
Collapse
|
7
|
Tolani D, Wilcox J, Shyam S, Bansal N. Cardio-oncology for Pediatric and Adolescent/Young Adult Patients. Curr Treat Options Oncol 2023:10.1007/s11864-023-01100-4. [PMID: 37296365 DOI: 10.1007/s11864-023-01100-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 06/12/2023]
Abstract
OPINION STATEMENT As chemotherapy continues to improve the lives of patients with cancer, understanding the effects of these drugs on other organ systems, and the cardiovascular system in particular, has become increasingly important. The effects of chemotherapy on the cardiovascular system are a major determinant of morbidity and mortality in these survivors. Although echocardiography continues to be the most widely used modality for assessing cardiotoxicity, newer imaging modalities and biomarker concentrations may detect subclinical cardiotoxicity earlier. Dexrazoxane continues to be the most effective therapy for preventing anthracycline-induced cardiomyopathy. Neurohormonal modulating drugs have not prevented cardiotoxicity, so their widespread, long-term use for all patients is currently not recommended. Advanced cardiac therapies, including heart transplant, have been successful in cancer survivors with end-stage HF and should be considered for these patients. Research on new targets, especially genetic associations, may produce treatments that help reduce cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Drishti Tolani
- Division of Pediatric Cardiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Julia Wilcox
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sharvari Shyam
- Division of Pediatrics, St. Barnabas Hospital, Bronx, NY, USA
| | - Neha Bansal
- Division of Pediatric Cardiology, Mount Sinai Kravis Children's Hospital, New York, NY, USA.
| |
Collapse
|
8
|
Arana Echarri A, Struszczak L, Beresford M, Campbell JP, Thompson D, Turner JE. The effects of exercise training for eight weeks on immune cell characteristics among breast cancer survivors. Front Sports Act Living 2023; 5:1163182. [PMID: 37252426 PMCID: PMC10211347 DOI: 10.3389/fspor.2023.1163182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Methods This study examined the effects of exercise training for 8 weeks on blood immune cell characteristics among 20 breast cancer survivors (age 56 ± 6 years, Body Mass Index 25.4 ± 3.0 kg m2) within two years of treatment. Participants were randomly allocated to a partly-supervised or a remotely-supported exercise group (n = 10 each). The partly supervised group undertook 2 supervised (laboratory-based treadmill walking and cycling) and 1 unsupervised session per week (outdoor walking) progressing from 35 to 50 min and 55% to 70% V˙O2max. The remotely-supported group received weekly exercise/outdoor walking targets (progressing from 105 to 150 min per week 55% to 70% V˙O2max) via weekly telephone calls discussing data from a fitness tracker. Immune cell counts were assessed using flow cytometry: CD4+ and CD8+ T cells (Naïve, NA; Central memory, CM; and Effector cells, EM and EMRA; using CD27/CD45RA), Stem cell-like memory T cells (TSCMs; using CD95/CD127), B cells (plasmablasts, memory, immature and naïve cells using CD19/CD27/CD38/CD10) and Natural Killer cells (effector and regulatory cells, using CD56/CD16). T cell function was assessed by unstimulated HLA-DR expression or interferon gamma (IFN-γ) production with Enzyme-linked ImmunoSpot assays following stimulation with virus or tumour-associated antigens. Results Total leukocyte counts, lymphocytes, monocytes and neutrophils did not change with training (p > 0.425). Most CD4+ and CD8+ T cell subtypes, including TSCMs, and B cell and NK cell subtypes did not change (p > 0.127). However, across groups combined, the CD4+ EMRA T cell count was lower after training (cells/µl: 18 ± 33 vs. 12 ± 22, p = 0.028) and these cells were less activated on a per cell basis (HLA-DR median fluorescence intensity: 463 ± 138 vs. 420 ± 77, p = 0.018). Furthermore, the partly-supervised group showed a significant decrease in the CD4+/CD8+ ratio (3.90 ± 2.98 vs. 2.54 ± 1.29, p = 0.006) and a significant increase of regulatory NK cells (cells/µl: 16 ± 8 vs. 21 ± 10, p = 0.011). T cell IFN-γ production did not change with exercise training (p > 0.515). Discussion In summary, most immune cell characteristics are relatively stable with 8 weeks of exercise training among breast cancer survivors. The lower counts and activation of CD4+ EMRA T cells, might reflect an anti-immunosenescence effect of exercise.
Collapse
Affiliation(s)
| | | | - Mark Beresford
- Department for Oncology and Haematology, Royal United Hospitals Bath NHS Trust, Bath, United Kingdom
| | | | - Dylan Thompson
- Department for Health, University of Bath, Bath, United Kingdom
| | - James E. Turner
- Department for Health, University of Bath, Bath, United Kingdom
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
9
|
Restoring Epigenetic Reprogramming with Diet and Exercise to Improve Health-Related Metabolic Diseases. Biomolecules 2023; 13:biom13020318. [PMID: 36830687 PMCID: PMC9953584 DOI: 10.3390/biom13020318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Epigenetic reprogramming predicts the long-term functional health effects of health-related metabolic disease. This epigenetic reprogramming is activated by exogenous or endogenous insults, leading to altered healthy and different disease states. The epigenetic and environmental changes involve a roadmap of epigenetic networking, such as dietary components and exercise on epigenetic imprinting and restoring epigenome patterns laid down during embryonic development, which are paramount to establishing youthful cell type and health. Nutrition and exercise are among the most well-known environmental epigenetic factors influencing the proper developmental and functional lifestyle, with potential beneficial or detrimental effects on health status. The diet and exercise strategies applied from conception could represent an innovative epigenetic target for preventing and treating human diseases. Here, we describe the potential role of diet and exercise as therapeutic epigenetic strategies for health and diseases, highlighting putative future perspectives in this field.
Collapse
|
10
|
The Influence of Physical Training on the Immune System of Rats during N-methyl-N-nitrosourea-Induced Carcinogenesis. J Clin Med 2022; 11:jcm11216371. [PMID: 36362598 PMCID: PMC9653829 DOI: 10.3390/jcm11216371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 12/03/2022] Open
Abstract
Aim: To assess the effect of physical training on the selected parameters of the immune system regarding CD3, CD4, CD8, CD11, CD161, CD45A cell counts in rats treated with N-methyl-N-nitrosourea (MNU). Material and Methods: Thirty-eight female Sprague-Dawley rats were injected intraperitoneally with MNU and were divided into three groups, i.e., sedentary control (SC), the group of moderate-intensity training (MIT) and the group of high-intensity training (HIT). Physical training was supervised immediately after MNU administration and was conducted 5 days per week for 12 weeks on a three-position treadmill. Results: A significant difference was found between SC and training groups in terms of the number of induced tumors per rat (1.57 vs. 0.4, p = 0.05) and in the following lymphocyte subpopulations: CD4+/CD8+ (p = 0.01), CD3−/CD11b+ (p = 0.02), CD3−/CD161+ (p = 0.002), CD3−/CD161− (p = 0.002), CD3+/CD45RA+ (p = 0.003) and CD3−/CD45RA+ (p = 0.005). In terms of the intensity of physical training, the highest efficacy was found for MIT and the following lymphocyte subpopulations: CD3−/CD11b+ (SC vs. MIT, p < 0.001), CD3−/CD161+ (SC vs. MIT, p = 0.002), CD3−/CD161− (SC vs. MIT, p = 0.002), CD3+/CD45RA+ (SC vs. MIT, p = 0.02) and CD3−/CD45RA+ (SC vs. MIT, p < 0.001, MIT vs. HIT, p = 0.02). Furthermore, negative correlations were found between the number of apoptotic cells and CD3−/CD11b (r = −0.76, p = 0.01) in SC and between the number of induced tumors and CD3+/CD8+ (r = −0.61, p = 0.02) and between their volume and CD+/CD8+ (r = −0.56, p = 0.03) in the group of rats undergoing training. Conclusions: Physical training, particularly MIT, affected immune cell function and an altered immune response can be considered a mechanism underlying the effect of exercise on breast cancer development.
Collapse
|
11
|
Bracero-Malagón J, Juárez-Ruiz de Mier R, Reigal RE, Caballero-Cerbán M, Hernández-Mendo A, Morales-Sánchez V. Logical Intelligence and Mathematical Competence Are Determined by Physical Fitness in a Sample of School Children. Front Psychol 2022; 13:833844. [PMID: 35645885 PMCID: PMC9135127 DOI: 10.3389/fpsyg.2022.833844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Previous research has shown positive relationships between fitness level and different cognitive abilities and academic performance. The purpose of this study was to explore the relationships between logical–mathematical intelligence and mathematical competence with physical fitness in a group of pre-adolescents. Sixty-three children (50.79% girls; 49.21% boys) from Castro del Río (Córdoba, Spain), aged between 11 and 12 years (M = 11.44, SD = 0.64), participated in this research. The Superior Logical Intelligence Test (SLIT) and the EVAMAT 1.0–5 battery were used. Physical fitness was evaluated by the horizontal jump test, the 4×10 meter speed–agility test, and the Course Navette test. The analyses showed positive relationships between physical fitness with logical–mathematical intelligence and mathematical competence. Specifically, linear regression analyzes indicated that the 4×10 speed–agility test significantly predicted mathematical competence (R2 = 0.16; β = −0.41) and the horizontal jump test significantly predicted logical–mathematical intelligence (R2 = 0.24; β = 0.50). These results are in agreement with previous research, highlighting the importance of improving physical fitness from an early age due to its benefits for intellectual and academic development.
Collapse
Affiliation(s)
| | | | - Rafael E. Reigal
- Department of Social Psychology, Social Work, Anthropology and East Asian Studies, University of Málaga, Málaga, Spain
| | | | - Antonio Hernández-Mendo
- Department of Social Psychology, Social Work, Anthropology and East Asian Studies, University of Málaga, Málaga, Spain
| | - Verónica Morales-Sánchez
- Department of Social Psychology, Social Work, Anthropology and East Asian Studies, University of Málaga, Málaga, Spain
- *Correspondence: Verónica Morales-Sánchez,
| |
Collapse
|
12
|
Exercise suppresses tumor growth independent of high fat food intake and associated immune dysfunction. Sci Rep 2022; 12:5476. [PMID: 35361802 PMCID: PMC8971502 DOI: 10.1038/s41598-022-08850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 03/11/2022] [Indexed: 11/24/2022] Open
Abstract
Epidemiological data suggest that exercise training protects from cancer independent of BMI. Here, we aimed to elucidate mechanisms involved in voluntary wheel running-dependent control of tumor growth across chow and high-fat diets. Access to running wheels decreased tumor growth in B16F10 tumor-bearing on chow (− 50%) or high-fat diets (− 75%, p < 0.001), however, tumor growth was augmented in high-fat fed mice (+ 53%, p < 0.001). Tumor growth correlated with serum glucose (p < 0.01), leptin (p < 0.01), and ghrelin levels (p < 0.01), but not with serum insulin levels. Voluntary wheel running increased immune recognition of tumors as determined by microarray analysis and gene expression analysis of markers of macrophages, NK and T cells, but the induction of markers of macrophages and NK cells was attenuated with high-fat feeding. Moreover, we found that the regulator of innate immunity, ZBP1, was induced by wheel running, attenuated by high-fat feeding and associated with innate immune recognition in the B16F10 tumors. We observed no effects of ZBP1 on cell cycle arrest, or exercise-regulated necrosis in the tumors of running mice. Taken together, our data support epidemiological findings showing that exercise suppresses tumor growth independent of BMI, however, our data suggest that high-fat feeding attenuates exercise-mediated immune recognition of tumors.
Collapse
|
13
|
Holmen Olofsson G, Mikkelsen MK, Ragle AM, Christiansen AB, Olsen AP, Heide-Ottosen L, Horsted CB, Pedersen CMS, Engell-Noerregaard L, Lorentzen T, Persson GF, Vinther A, Nielsen DL, thor Straten P. High Intensity Aerobic exercise training and Immune cell Mobilization in patients with lung cancer (HI AIM)—a randomized controlled trial. BMC Cancer 2022; 22:246. [PMID: 35247994 PMCID: PMC8897734 DOI: 10.1186/s12885-022-09349-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/28/2022] [Indexed: 12/30/2022] Open
Abstract
Background The increasing role of exercise training in cancer care is built on evidence that exercise can reduce side effects of treatment, improve physical functioning and quality of life. We and others have shown in mouse tumor models, that exercise leads to an adrenalin-mediated increased influx of T and NK cells into the tumor, altering the tumor microenvironment (TME) and leading to reduced tumor growth. These data suggest that exercise could improve immune responses against cancer cells by increase immune cell infiltration to the tumor and potentially having an impact on disease progression. Additionally, there are data to suggest that infiltration of T and NK cells into the TME is correlates with response to immune checkpoint inhibitors in patients. We have therefore initiated the clinical trial HI AIM, to investigate if high intensity exercise can mobilize and increase infiltration of immune cells in the TME in patients with lung cancer. Methods HI AIM (NCT04263467) is a randomized controlled trial (70 patients, 1:1) for patients with non-small cell lung cancer. Patients in the treatment arm, receive an exercise-intervention consisting of supervised and group-based exercise training, comprising primarily intermediate to high intensity interval training three times per week over 6 weeks. All patients will also receive standard oncological treatments; checkpoint inhibitors, checkpoint inhibitors combined with chemotherapy or oncological surveillance. Blood samples and biopsies (ultrasound guided), harvested before, during and after the 6-week training program, will form basis for immunological measurements of an array of immune cells and markers. Primary outcome is circulating NK cells. Secondary outcome is other circulating immune cells, infiltration of immune cells in tumor, inflammatory markers, aerobic capacity measured by VO2 max test, physical activity levels and quality of life measured by questionnaires, and clinical outcomes. Discussion To our knowledge, HI AIM is the first project to combine supervised and monitored exercise in patients with lung cancer, with rigorous analyses of immune and cancer cell markers over the course of the trial. Data from the trial can potentially support exercise as a tool to mobilize cells of the immune system, which in turn could potentiate the effect of immunotherapy. Trial registration The study was prospectively registered at ClinicalTrials.gov on February 10th 2020, ID: NCT04263467. https://clinicaltrials.gov/ct2/show/NCT04263467
Collapse
|
14
|
Zhou L, Zhang Z, Nice E, Huang C, Zhang W, Tang Y. Circadian rhythms and cancers: the intrinsic links and therapeutic potentials. J Hematol Oncol 2022; 15:21. [PMID: 35246220 PMCID: PMC8896306 DOI: 10.1186/s13045-022-01238-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The circadian rhythm is an evolutionarily conserved time-keeping system that comprises a wide variety of processes including sleep-wake cycles, eating-fasting cycles, and activity-rest cycles, coordinating the behavior and physiology of all organs for whole-body homeostasis. Acute disruption of circadian rhythm may lead to transient discomfort, whereas long-term irregular circadian rhythm will result in the dysfunction of the organism, therefore increasing the risks of numerous diseases especially cancers. Indeed, both epidemiological and experimental evidence has demonstrated the intrinsic link between dysregulated circadian rhythm and cancer. Accordingly, a rapidly increasing understanding of the molecular mechanisms of circadian rhythms is opening new options for cancer therapy, possibly by modulating the circadian clock. In this review, we first describe the general regulators of circadian rhythms and their functions on cancer. In addition, we provide insights into the mechanisms underlying how several types of disruption of the circadian rhythm (including sleep-wake, eating-fasting, and activity-rest) can drive cancer progression, which may expand our understanding of cancer development from the clock perspective. Moreover, we also summarize the potential applications of modulating circadian rhythms for cancer treatment, which may provide an optional therapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Acupuncture and Chronobiology Laboratory of Sichuan Province, Chengdu, 610075, China.
| |
Collapse
|
15
|
Watson G, Coyne Z, Houlihan E, Leonard G. Exercise oncology: an emerging discipline in the cancer care continuum. Postgrad Med 2021; 134:26-36. [PMID: 34854802 DOI: 10.1080/00325481.2021.2009683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Exercise is an essential component of healthy living and well-being. While there is a global acceptance of the benefits of exercise for the general population, there exists hesitancy and confusion among health-care professionals, particularly oncologists, as to whether these benefits translate to cancer patients. Patient referrals to accessible, structured exercise programs in this setting are often overlooked by physicians when formulating a cancer management plan. There is however increasing awareness and acceptance of cancer survivorship as a part of the cancer care continuum, identifying multiple factors that contribute to well-being beyond just cancer outcomes. Efforts to optimize cancer survivorship have stimulated further academic interest in the benefits of healthy living and particularly exercise oncology. There is now compelling evidence that exercise, which includes daily activities such as walking, as well as structured programs, improves multiple-cancer outcomes such as fatigue, quality of life and likely survival, and warrants consideration in the multidisciplinary care of cancer patients. International guidelines have been established that recommend counseling cancer patients with regard to healthy lifestyle changes including exercise. However, there still remains a reluctance from oncology physicians to prescribe exercise for these patients, largely due to uncertainty with regard to their patients' ability to tolerate such an intervention, coupled with insufficient understanding of the potential benefits of these programs. There also exist patient barriers and attitudes that must be overcome. Exercise strategies and bespoke programs that are tailored to the unique abilities and goals of the patients will enhance participation. To move the field forward and integrate exercise oncology into standard practice, it is imperative to raise awareness of the benefits of exercise to cancer patients and their health-care providers. This will facilitate the prescription of exercise as part of the multimodal treatment plan with the ultimate aim of promoting an active lifestyle to optimize patient care and well-being.
Collapse
Affiliation(s)
- Ga Watson
- Department of Medical Oncology, University Hospital Galway, Galway, Ireland
| | - Zl Coyne
- Department of Medical Oncology, University Hospital Galway, Galway, Ireland
| | - E Houlihan
- Department of Physiotherapy, Cancer Care West, Galway, Ireland
| | - Gd Leonard
- Department of Medical Oncology, University Hospital Galway, Galway, Ireland
| |
Collapse
|
16
|
Zemlin C, Stuhlert C, Schleicher JT, Wörmann C, Altmayer L, Lang M, Scherer LS, Thul IC, Müller C, Kaiser E, Stutz R, Goedicke-Fritz S, Ketter L, Zemlin M, Wagenpfeil G, Steffgen G, Solomayer EF. Longitudinal Assessment of Physical Activity, Fitness, Body Composition, Immunological Biomarkers, and Psychological Parameters During the First Year After Diagnosis in Women With Non-Metastatic Breast Cancer: The BEGYN Study Protocol. Front Oncol 2021; 11:762709. [PMID: 34737966 PMCID: PMC8560964 DOI: 10.3389/fonc.2021.762709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/01/2021] [Indexed: 12/24/2022] Open
Abstract
Background Moderate physical activity is associated with an improved prognosis and psychosocial outcome in breast cancer patients. Although exercise and physical activity are associated with multiple physiological and psychological effects, many of the underlying mechanisms remain obscure. The BEGYN study (Influence of physical activity in breast cancer patients on physiological and psychological parameters and on biomarkers) aims at identifying potential associations between the extent of physical activity, fitness, body composition, immunological biomarkers, psycho-emotional parameters, and the course of treatment during the first year after diagnosis of breast cancer. Methods The prospective observational BEGYN study will include 110 non-metastatic breast cancer patients. The patients will be assessed during a base line visit prior to the initiation of the antineoplastic therapy and after 3, 6, 9 and 12 months. The physical activity will be measured using a fitness tracker and a self-assessment diary during the entire study. Each visit will include the assessment of (i) cardiorespiratory fitness measured by spiroergometry, (ii) body composition, (iii) psycho-emotional parameters (quality of life, mental health, fatigue, depression, distress, anxiety, well-being), and (iv) extensive blood tests including routine laboratory, vitamin D, selenium and immunologically relevant biomarkers (e.g., leukocyte subpopulations and cytokine profiles). Discussion Whereas most studies investigating the influence of physical activity in breast cancer patients focus on specific activities for three months or less, the BEGYN study will quantify the daily physical activity and cardiorespiratory fitness of breast cancer patients based on objective measurements in the context of the oncological therapy for 12 months after diagnosis. The study will reveal potential associations between exercise, immune status and physical as well as psycho-emotional outcome and the clinical course of the disease. Moreover, complementary therapies such as Vit D and Selenium supplementation and parameters investigating the motivation of the patients are part of the study. Due to this holistic approach, the BEGYN study will guide towards confirmatory studies on the role of physical activity in breast cancer patients to develop individualized counselling regarding the recommended type and extent of exercise. Trial Registration This study has been registered at the German Clinical Trials Register DRKS00024829.
Collapse
Affiliation(s)
- Cosima Zemlin
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Caroline Stuhlert
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Julia Theresa Schleicher
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Carolin Wörmann
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Laura Altmayer
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Marina Lang
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Laura-Sophie Scherer
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Ida Clara Thul
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Carolin Müller
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Elisabeth Kaiser
- Department for General Pediatrics, Saarland University Medical Center, Homburg, Germany
| | - Regine Stutz
- Department for General Pediatrics, Saarland University Medical Center, Homburg, Germany
| | | | - Laura Ketter
- Department of Behavioural and Cognitive Sciences, Institute for Health and Behaviour, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michael Zemlin
- Department for General Pediatrics, Saarland University Medical Center, Homburg, Germany
| | - Gudrun Wagenpfeil
- Institute for Medical Biometry, Epidemiology and Medical Informatics (IMBEI), Saarland University, Homburg, Germany
| | - Georges Steffgen
- Department of Behavioural and Cognitive Sciences, Institute for Health and Behaviour, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Erich-Franz Solomayer
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
17
|
Mokhtari RB, Sambi M, Qorri B, Baluch N, Ashayeri N, Kumar S, Cheng HLM, Yeger H, Das B, Szewczuk MR. The Next-Generation of Combination Cancer Immunotherapy: Epigenetic Immunomodulators Transmogrify Immune Training to Enhance Immunotherapy. Cancers (Basel) 2021; 13:3596. [PMID: 34298809 PMCID: PMC8305317 DOI: 10.3390/cancers13143596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy harnesses the immune system by targeting tumor cells that express antigens recognized by immune system cells, thus leading to tumor rejection. These tumor-associated antigens include tumor-specific shared antigens, differentiation antigens, protein products of mutated genes and rearrangements unique to tumor cells, overexpressed tissue-specific antigens, and exogenous viral proteins. However, the development of effective therapeutic approaches has proven difficult, mainly because these tumor antigens are shielded, and cells primarily express self-derived antigens. Despite innovative and notable advances in immunotherapy, challenges associated with variable patient response rates and efficacy on select tumors minimize the overall effectiveness of immunotherapy. Variations observed in response rates to immunotherapy are due to multiple factors, including adaptative resistance, competency, and a diversity of individual immune systems, including cancer stem cells in the tumor microenvironment, composition of the gut microbiota, and broad limitations of current immunotherapeutic approaches. New approaches are positioned to improve the immune response and increase the efficacy of immunotherapies, highlighting the challenges that the current global COVID-19 pandemic places on the present state of immunotherapy.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA 01852, USA;
| | - Manpreet Sambi
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| | - Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| | - Narges Baluch
- Department of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Neda Ashayeri
- Division of Hematology & Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran;
| | - Sushil Kumar
- QPS, Holdings LLC, Pencader Corporate Center, 110 Executive Drive, Newark, DE 19702, USA;
| | - Hai-Ling Margaret Cheng
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5G 1M1, Canada;
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Herman Yeger
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Bikul Das
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA 01852, USA;
- KaviKrishna Laboratory, Department of Cancer and Stem Cell Biology, GBP, Indian Institute of Technology, Guwahati 781039, India
| | - Myron R. Szewczuk
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| |
Collapse
|
18
|
Gustafson MP, Wheatley-Guy CM, Rosenthal AC, Gastineau DA, Katsanis E, Johnson BD, Simpson RJ. Exercise and the immune system: taking steps to improve responses to cancer immunotherapy. J Immunother Cancer 2021; 9:e001872. [PMID: 34215686 PMCID: PMC8256759 DOI: 10.1136/jitc-2020-001872] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2021] [Indexed: 12/18/2022] Open
Abstract
The remarkable success of cancer immunotherapies has provided new hope to cancer patients. Unfortunately, a significant proportion of patients remain unable to respond to immunotherapy or maintain durable clinical responses. The lack of objective responses likely results from profound immune dysfunction often observed in patients with cancer. There is substantial evidence that exercise and physical activity can reduce incidence and improve outcomes in cancer patients. As the immune system is highly responsive to exercise, one potential avenue to improve immune function is through exercise and physical activity. A single event of dynamic exercise results in the substantial mobilization of leukocytes with increased functional capacities into the circulation. Chronic, or long-term, exercise leads to higher physical fitness in terms of greater cardiorespiratory function and/or muscle strength and endurance. High aerobic capacity, as measured by maximal oxygen uptake, has been associated with the reduction of dysfunctional T cells and improvements in the abundance of some T cell populations. To be sure, however, the mechanisms of exercise-mediated immune changes are both extensive and diverse. Here, we examine the evidence and theorize how acute and chronic exercise could be used to improve responses to cancer immunotherapies including immune checkpoint inhibitors, dendritic cell vaccines, natural killer cell therapies, and adoptive T cell therapies such as chimeric antigen receptor (CAR) T cells. Although the parameters of optimal exercise to yield defined outcomes remain to be determined, the available current data provide a compelling justification for additional human studies and clinical trials investigating the adjuvant use of exercise in immuno-oncology.
Collapse
Affiliation(s)
- Michael P Gustafson
- Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | | | | | - Dennis A Gastineau
- Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Emmanuel Katsanis
- Pediatrics, Immunobiology, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| | - Bruce D Johnson
- Department of Cardiovascular Diseases, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Richard J Simpson
- Pediatrics, Immunobiology, and Nutritional Sciences, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| |
Collapse
|