1
|
Zhao F, Piao J, Song J, Geng Z, Chen H, Cheng Z, Cui R, Li B. Traditional Chinese herbal formula, Fuzi-Lizhong pill, produces antidepressant-like effects in chronic restraint stress mice through systemic pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119011. [PMID: 39486672 DOI: 10.1016/j.jep.2024.119011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuzi-Lizhong pill (FLP) is a well-validated traditional Chinese medicine (TCM) formula that has long been used in China for gastrointestinal disease and adjunctive therapy for depression. In our previous study, we reported that the principal herb of FLP, Aconitum carmichaelii Debx. (Fuzi), exhibits antidepressant-like effects. However, there have been no reports on whether FLP produces antidepressant-like effects and its potential molecular mechanisms. AIM OF THE STUDY We aim to demonstrate the antidepressant-like effects of FLP in chronic restraint stress (CRS) mice and to explore the associated molecular mechanisms. MATERIALS AND METHODS The active components and probable molecular targets of FLP, as well as the targets related to depression, were identified through network pharmacology. A protein-protein interaction (PPI) network was generated using the overlapping targets, followed by the visualization as well as identification of the core targets associated with the antidepressant-like action of FLP. Subsequently, KEGG and GO enrichment analyses were conducted. UHPLC-MS/MS was employed to further detect the active compounds in FLP. Molecular docking was applied to assess the connections between the active components as well as the core targets. The efficacy of FLP in treating depression and its molecular mechanisms were examined using western blotting, ELISA, 16S rRNA sequencing, HE staining, Nissl staining, and Golgi-Cox staining in a CRS-induced mouse model. RESULTS Network pharmacology and UHPLC-MS/MS analyses indicated that the active compounds of FLP comprised taraxerol, songorine, neokadsuranic acid B, ginkgetin, hispaglabridin B, quercetin, benzoylmesaconine and liquiritin. KEGG pathway analysis implicated that the PI3K/Akt/mTOR as well as MAPK signaling pathways are closely related to the therapeutic effects of FLP on depression. Molecular docking analysis demonstrated that the main components of FLP bind to PI3K, AKT, mTOR, BDNF and MAPK. FLP significantly decreased immobility in mice that were elevated by CRS in the FST and the TST. FLP also significantly increased sucrose preference in mice after CRS in the SPT. FLP upregulated proteins associated with BDNF-TrkB and PI3K/Akt/mTOR signaling and downregulated proteins associated with MAPK signaling. Serum levels of CORT, IL-6, IL-1β, and TNF-α in CRS mice were significantly decreased following treatment with FLP. In addition, FLP ameliorated CRS-induced gut microbiota dysbiosis as demonstrated by 16S rRNA sequencing analysis. FLP ameliorated CRS-induced intestinal inflammation and neuronal damage. Finally, antidepressant-like effects and concomitant increases in dendritic spine density induced by FLP administration were also reduced after rapamycin treatment. CONCLUSION These results demonstrate that FLP has antidepressant-like effects in mice exposed to CRS that involve activation of the PI3K/Akt/mTOR signaling pathway, increase in spinogenesis, inhibition of the MAPK signaling pathway, decrease in inflammation, and amelioration of gut microbiota dysbiosis. These findings provide novel evidence for the clinical application of FLP on depression.
Collapse
Affiliation(s)
- Fangyi Zhao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 130041, PR China; Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China; Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-depressive Effect, Changchun, 130041, PR China
| | - Jingjing Piao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 130041, PR China; Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China; Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-depressive Effect, Changchun, 130041, PR China
| | - Jinfang Song
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 130041, PR China; Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China; Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-depressive Effect, Changchun, 130041, PR China
| | - Zihui Geng
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 130041, PR China; Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China; Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-depressive Effect, Changchun, 130041, PR China
| | - Hongyu Chen
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 130041, PR China; Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China; Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-depressive Effect, Changchun, 130041, PR China
| | - Ziqian Cheng
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 130041, PR China; Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China; Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-depressive Effect, Changchun, 130041, PR China
| | - Ranji Cui
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 130041, PR China; Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China; Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-depressive Effect, Changchun, 130041, PR China.
| | - Bingjin Li
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 130041, PR China; Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China; Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-depressive Effect, Changchun, 130041, PR China.
| |
Collapse
|
2
|
Ősz BE, Jîtcă G, Sălcudean A, Rusz CM, Vari CE. Benzydamine-An Affordable Over-the-Counter Drug with Psychoactive Properties-From Chemical Structure to Possible Pharmacological Properties. Pharmaceuticals (Basel) 2023; 16:ph16040566. [PMID: 37111323 PMCID: PMC10144213 DOI: 10.3390/ph16040566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Benzydamine is a non-steroidal anti-inflammatory drug with distinct pharmacological properties from other compounds in the same therapeutic class. The differences are structural and pharmacological in nature; the anti-inflammatory mechanism is not strictly explained by the ability to interfere with the synthesis of prostaglandins. The compound is used strictly in local inflammatory diseases (inflammation in the oral and vaginal mucosa). In addition to the therapeutic indications found in the summary of product characteristics (SPC), the compound is used, in high doses, as a psychotropic substance for oral administration, having similar properties to lysergic acid diethylamide (LSD). As an over-the-counter (OTC) compound, it is easy to obtain, and the consequences of using it for purposes other than those assumed by the manufacturer raise various concerns. The reasons are related to the pharmacodynamic and pharmaco-toxicological properties, since neither the mechanism of action nor the possible side effects that would result from systemic consumption, in high doses, even occasionally, have been fully elucidated. The present review aims to analyze the pharmacodynamic properties of benzydamine, starting from the chemical structure, by comparison with structurally similar compounds registered in therapy (as an anti-inflammatory or analgesic) or used for recreational purposes.
Collapse
Affiliation(s)
- Bianca-Eugenia Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Andreea Sălcudean
- Department of Ethics and Social Sciences, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Carmen Maria Rusz
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Camil-Eugen Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| |
Collapse
|
3
|
Shen Z, Yu M, Dong Z. Research Progress on the Pharmacodynamic Mechanisms of Sini Powder against Depression from the Perspective of the Central Nervous System. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040741. [PMID: 37109699 PMCID: PMC10141708 DOI: 10.3390/medicina59040741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023]
Abstract
Depression is a highly prevalent emotional disorder characterized by persistent low mood, diminished interest, and loss of pleasure. The pathological causes of depression are associated with neuronal atrophy, synaptic loss, and neurotransmitter activity decline in the central nervous system (CNS) resulting from injuries, such as inflammatory responses. In Traditional Chinese Medicine (TCM) theory, patients with depression often exhibit the liver qi stagnation syndrome type. Sini Powder (SNP) is a classic prescription for treating such depression-related syndrome types in China. This study systematically summarized clinical applications and experimental studies of SNP for treatments of depression. We scrutinized the active components of SNP with blood-brain barrier (BBB) permeability and speculated about the corresponding pharmacodynamic pathways relevant to depression treatment through intervening in the CNS. Therefore, this article can enhance our understanding of SNP's pharmacological mechanisms and formula construction for depression treatment. Moreover, a re-demonstration of this classic TCM prescription in the modern-science language is of great significance for future drug development and research.
Collapse
Affiliation(s)
- Zhongqi Shen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Meng Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhenfei Dong
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
4
|
Wang Y, Yang L, Zhou H, Zhang K, Zhao M. Identification of miRNA-mediated gene regulatory networks in L-methionine exposure counteracts cocaine-conditioned place preference in mice. Front Genet 2023; 13:1076156. [PMID: 36744178 PMCID: PMC9893020 DOI: 10.3389/fgene.2022.1076156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023] Open
Abstract
Background and Aims: Methionine has been proven to inhibit addictive behaviors of cocaine dependence. This study aimed to identify the potential mechanisms of MET relating to its inhibitory effects on cocaine induced cellular and behavioral changes. Methods: MRNA and miRNA high-throughput sequencing of the prefrontal cortex in a mouse model of cocaine conditioned place preference (CPP) combined with L-methionine was performed. Differentially expressed miRNAs (DE-miRNAs) and differentially expressed genes (DEGs) regulated by cocaine and inhibited by L-methionine were identified. DEGs were mapped to STRING database to construct a protein-protein interaction (PPI) network. Then, the identified DEGs were subjected to the DAVID webserver for functional annotation. Finally, miRNA-mRNA regulatory network and miRNA-mRNA-TF regulatory networks were established to screen key DE-miRNAs and coregulation network in Cytoscape. Results: Sequencing data analysis showed that L-methionine reversely regulated genes and miRNAs affected by cocaine. Pathways associated with drug addiction only enriched in CS-down with MC-up genes targeted by DE-miRNAs including GABAergic synapse, Glutamatergic synapse, Circadian entrainment, Axon guidance and Calcium signaling pathway. Drug addiction associated network was formed of 22 DEGs including calcium channel (Cacna1c, Cacna1e, Cacna1g and Cacng8), ephrin receptor genes (Ephb6 and Epha8) and ryanodine receptor genes (Ryr1 and Ryr2). Calcium channel gene network were identified as a core gene network modulated by L-methionine in response to cocaine dependence. Moreover, it was predicted that Grin1 and Fosb presented in TF-miRNA-mRNA coregulation network with a high degree of interaction as hub genes and interacted calcium channels. Conclusion: These identified key genes, miRNA and coregulation network demonstrated the efficacy of L-methionine in counteracting the effects of cocaine CPP. To a certain degree, it may provide some hints to better understand the underlying mechanism on L-methionine in response to cocaine abuse.
Collapse
Affiliation(s)
- Yan Wang
- CAS Key Lab of Mental Health, Institute of Psychology, Beijing, China,Department of psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lvyu Yang
- CAS Key Lab of Mental Health, Institute of Psychology, Beijing, China,Department of psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hansheng Zhou
- Department of Pharmacy, Linyi People’s Hospital, Linyi, Shandong Province, China
| | - Kunlin Zhang
- CAS Key Lab of Mental Health, Institute of Psychology, Beijing, China
| | - Mei Zhao
- CAS Key Lab of Mental Health, Institute of Psychology, Beijing, China,Department of psychology, University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Mei Zhao,
| |
Collapse
|
5
|
Kim JH, Ju IG, Kim N, Huh E, Son SR, Hong JP, Choi Y, Jang DS, Oh MS. Yomogin, Isolated from Artemisia iwayomogi, Inhibits Neuroinflammation Stimulated by Lipopolysaccharide via Regulating MAPK Pathway. Antioxidants (Basel) 2022; 12:antiox12010106. [PMID: 36670968 PMCID: PMC9854746 DOI: 10.3390/antiox12010106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
Neuroinflammation causes various neurological disorders, including depression and neurodegenerative diseases. Therefore, regulation of neuroinflammation is a promising therapeutic strategy for inflammation-related neurological disorders. This study aimed to investigate whether yomogin, isolated from Artemisia iwayomogi, has anti-neuroinflammatory effects. First, we evaluated the effects of yomogin by assessing pro-inflammatory mediators and cytokines in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. The results showed that yomogin inhibited the increase in neuroinflammatory factors, including nitric oxide, inducible nitric oxide synthase, cyclooxygenase-2, interleukin-6, and tumor necrosis factor-α, and suppressed phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase and p38, which participate in the mitogen-activated protein kinase (MAPK) pathway. To confirm these effects in vivo, we measured the activation of astrocyte and microglia in LPS-injected mouse brains. Results showed that yomogin treatment decreased astrocyte and microglia activations. Collectively, these results suggest that yomogin suppresses neuroinflammation by regulating the MAPK pathway and it could be a potential candidate for inflammation-mediated neurological diseases.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - In Gyoung Ju
- Department of Oriental Pharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Namkwon Kim
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eugene Huh
- Department of Oriental Pharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - So-Ri Son
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joon Pyo Hong
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yujin Choi
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (D.S.J.); (M.S.O.); Tel.: +82-2-961-0719 (D.S.J.); +82-2-961-9436 (M.S.O.)
| | - Myung Sook Oh
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Oriental Pharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (D.S.J.); (M.S.O.); Tel.: +82-2-961-0719 (D.S.J.); +82-2-961-9436 (M.S.O.)
| |
Collapse
|
6
|
Amaral IM, Scheffauer L, Hofer A, El Rawas R. Protein kinases in natural versus drug reward. Pharmacol Biochem Behav 2022; 221:173472. [PMID: 36244528 DOI: 10.1016/j.pbb.2022.173472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
Natural and drug rewards act on the same neural pathway, the mesolimbic dopaminergic system. In brain regions such as the nucleus accumbens and ventral tegmental area, drugs of abuse-induced stimulation of signaling pathways can lead to synaptic reshaping within this system. This is believed to be underlying the maladaptive alterations in behaviors associated with addiction. In this review, we discuss animal studies disclosing the implication of several protein kinases, namely protein kinase A (PKA), extracellular signal regulated kinase (ERK) mitogen-activated protein kinases (MAPK), p38 MAPK, and calcium/calmodulin-dependent kinase II (CaMKII), in reward-related brain regions in drug and natural reward. Furthermore, we refer to studies that helped pave the way toward a better understanding of the neurobiology underlying non-drug and drug reward through genetic deletion or brain region-specific pharmacological inhibition of these kinases. Whereas the role of kinases in drug reward has been extensively studied, their implication in natural reward, such as positive social interaction, is less investigated. Discovering molecular candidates, recruited specifically by drug versus natural rewards, can promote the identification of novel targets for the pharmacological treatment of addiction with less off-target effects and being effective when used combined with behavioral-based therapies.
Collapse
Affiliation(s)
- Inês M Amaral
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Austria.
| | - Laura Scheffauer
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Austria.
| | - Alex Hofer
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Austria.
| | - Rana El Rawas
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Austria.
| |
Collapse
|
7
|
lncRNA DLEU2 Accelerates Oral Cancer Progression via miR-30a-5p/RAP1B Axis to Regulate p38 MAPK Signaling Pathway. DISEASE MARKERS 2022; 2022:9310048. [PMID: 36277988 PMCID: PMC9581637 DOI: 10.1155/2022/9310048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022]
Abstract
Background. Oral cancer (OC) is common cancer in the world. Long noncoding RNAs (lncRNAs) have been shown to be involved in cancer regulation, including oral cancer (OC). The aim of this study was to investigate the role of lncRNA deleted in lymphocytic leukemia 2 (DLEU2) in oral cancer. Method. The Gene Expression Omnibus database was used to analyze differentially expressed lncRNA/microRNA (miRNA, miR)/mRNA. The expression levels of DLEU2, miR-30a-5p, and RAP1B in OC cells were detected by RT-qPCR. Dual-luciferase was used to analyze the binding of lncRNA/miRNA/mRNA. Cell Counting Kit-8 was used to measure cell proliferation. Transwell assay was used to inspect cell migration and invasion abilities. Western blot was used to detect MAPK pathway-related protein levels. Result. Our research shows that, in contrast to miR-30a-5p, DLEU2 or RAP1B was upregulated in OC cells, and high expression of DLEU2 or RAP1B was associated with poorer overall survival. Inhibiting the expression of DLEU2 slowed the proliferation and reduced the ability of migration and invasion of Tca8113 and CAL-27 cells. miR-30a-5p was predicted to interact with DLEU2 or RAP1B by bioinformatics, and dual-luciferase analysis confirmed this interaction. Notably, si-DLEU2 suppressed RAP1B expression and protein level, and after overexpression of RAP1B in OC cells, reversal of suppressed DLEU2 expression was observed. Furthermore, the inhibitory effect of si-DLEU2 on MAPK signaling was reversed by overexpression of RAP1B. Therefore, si-DLEU2 regulates MAPK signaling through the miR-30a-5p/RAP1B axis and inhibits OC development. Conclusion. DLEU2 contributed to proliferation, migration and invasion via miR-30a-5p/RAP1B axis to regulate MAPK signaling pathway in OC cells.
Collapse
|
8
|
Mukherjee N, Banerjee S, Amin SA, Jha T, Datta S, Das Saha K. Host P2X 7R-p 38MAPK axis mediated intra-macrophage leishmanicidal activity of Spergulin-A. Exp Parasitol 2022; 241:108365. [PMID: 36007587 DOI: 10.1016/j.exppara.2022.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 11/04/2022]
Abstract
Current drugs are inefficient for the treatment of visceral leishmaniasis an immunosuppressive ailment caused by Leishmania donovani. Regrettably, there is no plant-origin antileishmanial drug present. P2X7R is constitutively present on macrophage surfaces and can be a putative therapeutic target in intra-macrophage pathogens with function attributes towards inflammation, host cell apoptosis, altered redox, and phagolysosomal maturation by activating p38MAPK. Here we demonstrated that the initial interaction of Spergulin-A (Sp A), a triterpenoid saponin with RAW 264.7 macrophages was mediated through P2X7R involving the signaling cascade intermediates Ca++, p38MAPK, and NF-κβ. Phospho (P)-p38MAPK involvement is shown to have specific and firm importance in leishmanial killing with increased NF-κβp65. Phago-lysosomal maturation by Sp A also campaigns for another contribution of P2X7R. In vivo evaluation of the anti-leishmanial activity of Sp A was monitored through expression analyses of P2X7R, P-p38MAPK, and NF-κβp65 in murine spleen and bone-marrow macrophages and supported Sp A being a natural compound of leishmanicidal functions which acted through the P2X7R-p38MAPK axis.
Collapse
Affiliation(s)
- Niladri Mukherjee
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India; Techno India University, EM-4, Sector V, Salt Lake, Kolkata, 700091, West Bengal, India.
| | - Saswati Banerjee
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal & Pharmaceutical Chemistry, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Tarun Jha
- Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal & Pharmaceutical Chemistry, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Sriparna Datta
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
9
|
Huang C, Yi H, Zhou Y, Zhang Q, Yao X. Pan-Cancer Analysis Reveals SH3TC2 as an Oncogene for Colorectal Cancer and Promotes Tumorigenesis via the MAPK Pathway. Cancers (Basel) 2022; 14:3735. [PMID: 35954399 PMCID: PMC9367385 DOI: 10.3390/cancers14153735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 12/11/2022] Open
Abstract
SH3 domain and tetrapeptide repeat 2 (SH3TC2) is a protein-encoding gene and has previously been described as a critical signaling hub for neurological disorders. Although increasing evidence supports a vital role of SH3TC2 in the tumorigenesis of various kinds of cancer, no systematic analysis of SH3TC2 is available. The function and mechanism of SH3TC2 in other cancers remain unknown. Thus, this study aimed to analyze SH3TC2 in various kinds of cancer to find its tumorigenic role in one or more specific cancers. In the current study, we analyzed the expression level and prognostic value of SH3TC2 in different tumors in the TCGA-GTEx pan-cancer dataset. Subsequently, the prognostic role and mechanism of SH3TC2 in colorectal cancer (CRC) were further explored via clinical samples and in vitro and in vivo experiments. We observed differential expression of SH3TC2 in colon adenocarcinoma (COAD), acute myeloid leukemia (LAML), READ (rectum adenocarcinoma), SKCM (skin cutaneous melanoma), and TGCT (testicular germ cell tumors). Subsequently, SH3TC2 showed a significant effect on the clinical stage and prognostic value in CRC, LAML, and SKCM. Moreover, we found in the TCGA database and seven GEO datasets that SH3TC2 was significantly highly expressed in tumor tissue. Through enrichment analysis of SH3TC2 and its co-expressed genes, we found that SH3TC2 may play a role in the MAPK signaling pathway. Correlation analysis indicated that SH3TC2 was significantly associated with multiple key factors in the MAPK signaling pathway. Additionally, higher expression of SH3TC2 was found in tumor tissue in our cohort including 40 CRC patients. Overexpression of SH3TC2 may imply poor prognosis. Knockdown of SH3TC2 significantly inhibited tumor invasion, migration, and proliferation. More importantly, knockdown of SH3TC2 inhibited tumor growth in a CRC mouse model. The study preliminarily conducted a pan-cancer study of SH3TC2 and further explored the mechanism of SH3TC2 in CRC. Our research revealed that higher expression of SH3TC2 may promote CRC progression and invasion via the MAPK signaling pathway.
Collapse
Affiliation(s)
- Chengzhi Huang
- School of Medicine, South China University of Technology, Guangzhou 510006, China;
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; (H.Y.); (Y.Z.)
- Department of General Surgery, Guangdong Provincial People’s Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou 341000, China
| | - Hui Yi
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; (H.Y.); (Y.Z.)
- Department of General Surgery, Guangdong Provincial People’s Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou 341000, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Department of Pharmacology, The First People’s Hospital of Zhaoqing, Zhaoqing 526000, China
| | - Yue Zhou
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; (H.Y.); (Y.Z.)
- Department of General Surgery, Guangdong Provincial People’s Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou 341000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qing Zhang
- Department of General Surgery, Guangdong Provincial People’s Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou 341000, China
- Department of Gastrointestinal and Anorectal Surgery, The First People’s Hospital of Zhaoqing, Zhaoqing 526000, China
| | - Xueqing Yao
- School of Medicine, South China University of Technology, Guangzhou 510006, China;
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; (H.Y.); (Y.Z.)
- Department of General Surgery, Guangdong Provincial People’s Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou 341000, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
10
|
Association of C5a/C5aR pathway to activate ERK1/2 and p38 MAPK in acute kidney injury – a mouse model. REV ROMANA MED LAB 2022. [DOI: 10.2478/rrlm-2022-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Acute inflammation is accompanied by complement system activation and inflammatory cell accumulation. Acute kidney injury (AKI) is one of the common clinical symptoms, it is not clear whether complement system-mediated signaling pathway is involved. This study demonstrated that the expressions of complement C5a and C5a receptor (C5aR) protein in a mouse model with glycerol induced AKI were significantly increased, and the expression of inflammatory cytokines, such as IL-1β, IL-6 and TNF-α, were significantly higher than those in the blank control group. While C5aR antagonist (C5aRa) was added, western analyses for C5a and C5aR were reduced, meanwhile, qPCR and ELISA data showed that inflammatory cytokines also decreased significantly. In addition, preliminarily explored, the Mitogen-activated protein kinases (MAPKs) can be activated by the C5a/C5aR pathway in an AKI mouse model which showed that the C5a/C5aR pathway in a mouse model group activated ERK1/2 and p38, and the protein expression decreased when C5aRa was added. In conclusion, these results indicate that the C5a/C5aR pathway promotes renal pathogenesis by activating ERK1/2 and p38 expression and then affects the disease process, which has certain guiding significance for the subsequent clinical trial.
Collapse
|
11
|
Calpe-López C, Martínez-Caballero MA, García-Pardo MP, Aguilar MA. Resilience to the effects of social stress on vulnerability to developing drug addiction. World J Psychiatry 2022; 12:24-58. [PMID: 35111578 PMCID: PMC8783163 DOI: 10.5498/wjp.v12.i1.24] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/01/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
We review the still scarce but growing literature on resilience to the effects of social stress on the rewarding properties of drugs of abuse. We define the concept of resilience and how it is applied to the field of drug addiction research. We also describe the internal and external protective factors associated with resilience, such as individual behavioral traits and social support. We then explain the physiological response to stress and how it is modulated by resilience factors. In the subsequent section, we describe the animal models commonly used in the study of resilience to social stress, and we focus on the effects of chronic social defeat (SD), a kind of stress induced by repeated experience of defeat in an agonistic encounter, on different animal behaviors (depression- and anxiety-like behavior, cognitive impairment and addiction-like symptoms). We then summarize the current knowledge on the neurobiological substrates of resilience derived from studies of resilience to the effects of chronic SD stress on depression- and anxiety-related behaviors in rodents. Finally, we focus on the limited studies carried out to explore resilience to the effects of SD stress on the rewarding properties of drugs of abuse, describing the current state of knowledge and suggesting future research directions.
Collapse
Affiliation(s)
| | | | - Maria P García-Pardo
- Faculty of Social and Human Sciences, University of Zaragoza, Teruel 44003, Spain
| | - Maria A Aguilar
- Department of Psychobiology, University of Valencia, Valencia 46010, Spain
| |
Collapse
|
12
|
Ali EMH, Mersal KI, Ammar UM, Zaraei SO, Abdel-Maksoud MS, El-Gamal MI, Haque MM, Das T, Kim EE, Lee JS, Lee KH, Kim HK, Oh CH. Structural optimization of 4-(imidazol-5-yl)pyridine derivatives affords broad-spectrum anticancer agents with selective B-RAF V600E/p38α kinase inhibitory activity: Synthesis, in vitro assays and in silico study. Eur J Pharm Sci 2022; 171:106115. [PMID: 34995782 DOI: 10.1016/j.ejps.2022.106115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/26/2021] [Accepted: 12/17/2021] [Indexed: 01/10/2023]
Abstract
In the current article, we introduce design of a new series of 4-(imidazol-5-yl)pyridines with improved anticancer activity and selective B-RAFV600E/p38α kinase inhibitory activity. Based on a previous work, a group of structural modifications were applied affording the new potential antiproliferative agents. Towards extensive biological assessment of the target compounds, an in vitro anticancer assay was conducted over NCI 60-cancer cell lines panel representing blood, lung, colon, CNS, skin, ovary, renal, prostate, and breast cancers. Compounds 7c, 7d, 8b, 9b, 9c, 10c, 10d, and 11b exhibited the highest potency among the tested compounds and demonstrated sub-micromolar or one-digit micromolar GI50 values against the majority of the employed cell lines. Compound 10c emerged as the most potent agent with nano-molar activity over most of the cells and incredible activity against melanoma (MDA-MB-435) cell line (GI50 70 nM). It is much more potent than sorafenib, the clinically used anticancer drug, against almost all the NCI-60 cell lines. Further cell-based mechanistic assays showed that compound 10c induced cell cycle arrest and promoted apoptosis in K562, MCF-7 and HT29 cancer cell lines. In addition, compound 10c induced autophagy in the three cancer cell lines. Kinase profiling of 10c showed its inhibitory effects and selectivity towards B-RAFV600E and p38α kinases with IC50 values of 1.84 and 0.726 µM, respectively. Docking of compound 10c disclosed its high affinity in the kinases pockets. Compound 10c represent a promising anticancer agent, that could be optimized in order to improve its kinase activity aiming at developing potential anticancer agents. The conformational stability of compound 10c in the active site of B-RAFV600E and p38α kinases was studied by applying molecular dynamic simulation of the compound in the two kinases for 600 ns in comparison to the native ligands.
Collapse
Affiliation(s)
- Eslam M H Ali
- Center of Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Seongbuk-gu, 02792, Republic of Korea; University of Science & Technology (UST), Daejeon, Yuseong-gu, 34113, Republic of Korea; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, 12055, Egypt
| | - Karim I Mersal
- Center of Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Seongbuk-gu, 02792, Republic of Korea; University of Science & Technology (UST), Daejeon, Yuseong-gu, 34113, Republic of Korea; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, 12055, Egypt
| | - Usama M Ammar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0NR, Scotland, United Kingdom
| | - Seyed-Omar Zaraei
- Center of Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Seongbuk-gu, 02792, Republic of Korea; University of Science & Technology (UST), Daejeon, Yuseong-gu, 34113, Republic of Korea
| | - Mohammed S Abdel-Maksoud
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre NRC (ID: 60014618)), Dokki, Giza, 12622, Egypt
| | - Mohammed I El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Md Mamunul Haque
- Department of Pharmacology, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Tanuza Das
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jun-Seok Lee
- Department of Pharmacology, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Kwan Hyi Lee
- Center of Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Seongbuk-gu, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Republic of Korea.
| | - Chang-Hyun Oh
- Center of Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Seongbuk-gu, 02792, Republic of Korea; University of Science & Technology (UST), Daejeon, Yuseong-gu, 34113, Republic of Korea.
| |
Collapse
|
13
|
Amaral IM, Scheffauer L, Langeder AB, Hofer A, El Rawas R. Rewarding Social Interaction in Rats Increases CaMKII in the Nucleus Accumbens. Biomedicines 2021; 9:1886. [PMID: 34944702 PMCID: PMC8698734 DOI: 10.3390/biomedicines9121886] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/04/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is known to be involved in the sensitized locomotor responses and drug-seeking behavior to psychostimulants. However, little is known about the contribution of CaMKII signaling in the nucleus accumbens (NAc) in natural rewards such as social interaction. The present experiments explored the implication of CaMKII signaling in drug versus natural reward. In the NAc of rats expressing cocaine or social interaction conditioned place preference (CPP), αCaMKII activation was induced in those expressing social interaction but not cocaine CPP. In order to investigate the role of NAc CaMKII in the expression of reward-related learning of drug versus non-drug stimuli, we inhibited CaMKII through an infusion of KN-93, a CaMKII inhibitor, directly into the NAc shell or core, before the CPP test in a concurrent paradigm in which social interaction was made available in the compartment alternative to the one associated with cocaine during conditioning. Whereas vehicle infusions led to equal preference to both stimuli, inhibition of CaMKII by a KN-93 infusion before the CPP test in the shell but not the core of the NAc shifted the rats' preference toward the cocaine-associated compartment. Altogether, these results suggest that social interaction reward engages CaMKII in the NAc.
Collapse
Affiliation(s)
| | | | | | | | - Rana El Rawas
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.M.A.); (L.S.); (A.B.L.); (A.H.)
| |
Collapse
|
14
|
Stefanucci A, Iobbi V, Della Valle A, Scioli G, Pieretti S, Minosi P, Mirzaie S, Novellino E, Mollica A. In Silico Identification of Tripeptides as Lead Compounds for the Design of KOR Ligands. Molecules 2021; 26:4767. [PMID: 34443366 PMCID: PMC8399634 DOI: 10.3390/molecules26164767] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
The kappa opioid receptor (KOR) represents an attractive target for the development of drugs as potential antidepressants, anxiolytics and analgesics. A robust computational approach may guarantee a reduction in costs in the initial stages of drug discovery, novelty and accurate results. In this work, a virtual screening workflow of a library consisting of ~6 million molecules was set up, with the aim to find potential lead compounds that could manifest activity on the KOR. This in silico study provides a significant contribution in the identification of compounds capable of interacting with a specific molecular target. The main computational techniques adopted in this experimental work include: (i) virtual screening; (ii) drug design and leads optimization; (iii) molecular dynamics. The best hits are tripeptides prepared via solution phase peptide synthesis. These were tested in vivo, revealing a good antinociceptive effect after subcutaneous administration. However, further work is due to delineate their full pharmacological profile, in order to verify the features predicted by the in silico outcomes.
Collapse
Affiliation(s)
- Azzurra Stefanucci
- Department of Pharmacy, University G. d’Annunzio Chieti, Via dei Vestini 31, 66100 Chieti, Italy; (A.S.); (A.D.V.); (G.S.)
| | - Valeria Iobbi
- Department of Pharmacy (DIFAR), University of Genova, 16128 Genova, Italy;
| | - Alice Della Valle
- Department of Pharmacy, University G. d’Annunzio Chieti, Via dei Vestini 31, 66100 Chieti, Italy; (A.S.); (A.D.V.); (G.S.)
| | - Giuseppe Scioli
- Department of Pharmacy, University G. d’Annunzio Chieti, Via dei Vestini 31, 66100 Chieti, Italy; (A.S.); (A.D.V.); (G.S.)
| | - Stefano Pieretti
- Centro Nazionale Ricerca e Valutazione Preclinica e Clinica dei Farmaci, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.P.); (P.M.)
| | - Paola Minosi
- Centro Nazionale Ricerca e Valutazione Preclinica e Clinica dei Farmaci, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.P.); (P.M.)
| | - Sako Mirzaie
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, 27 King’s College Circle, Toronto, ON M5S 1A1, Canada;
| | - Ettore Novellino
- NGN Healthcare, Via Nazionale Torrette, 207, 83013 Mercogliano, Italy;
| | - Adriano Mollica
- Department of Pharmacy, University G. d’Annunzio Chieti, Via dei Vestini 31, 66100 Chieti, Italy; (A.S.); (A.D.V.); (G.S.)
| |
Collapse
|
15
|
Jung S, Kim Y, Kim M, Seo M, Kim S, Kim S, Lee S. Exercise Pills for Drug Addiction: Forced Moderate Endurance Exercise Inhibits Methamphetamine-Induced Hyperactivity through the Striatal Glutamatergic Signaling Pathway in Male Sprague Dawley Rats. Int J Mol Sci 2021; 22:ijms22158203. [PMID: 34360969 PMCID: PMC8348279 DOI: 10.3390/ijms22158203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023] Open
Abstract
Physical exercise reduces the extent, duration, and frequency of drug use in drug addicts during the drug initiation phase, as well as during prolonged addiction, withdrawal, and recurrence. However, information about exercise-induced neurobiological changes is limited. This study aimed to investigate the effects of forced moderate endurance exercise training on methamphetamine (METH)-induced behavior and the associated neurobiological changes. Male Sprague Dawley rats were subjected to the administration of METH (1 mg/kg/day, i.p.) and/or forced moderate endurance exercise (treadmill running, 21 m/min, 60 min/day) for 2 weeks. Over the two weeks, endurance exercise training significantly reduced METH-induced hyperactivity. METH and/or exercise treatment increased striatal dopamine (DA) levels, decreased p(Thr308)-Akt expression, and increased p(Tyr216)-GSK-3β expression. However, the phosphorylation levels of Ser9-GSK-3β were significantly increased in the exercise group. METH administration significantly increased the expression of NMDAr1, CaMKK2, MAPKs, and PP1 in the striatum, and exercise treatment significantly decreased the expression of these molecules. Therefore, it is apparent that endurance exercise inhibited the METH-induced hyperactivity due to the decrease in GSK-3β activation by the regulation of the striatal glutamate signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sooyeun Lee
- Correspondence: ; Tel.: +82-53-580-6651; Fax: +82-53-580-5164
| |
Collapse
|
16
|
Zhou K, Sun M, Xia Y, Xie Y, Shu R. LPS stimulates gingival fibroblasts to express PD-L1 via the p38 pathway under periodontal inflammatory conditions. Arch Oral Biol 2021; 129:105161. [PMID: 34090065 DOI: 10.1016/j.archoralbio.2021.105161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The overall aim of this research was to investigate the differences in the expression of programmed death ligand 1 (PD-L1) in human gingival fibroblasts (HGFs) between a periodontal healthy group and a periodontal inflammatory group. and explore the possible mechanism involved. METHODS Differences in PD-L1 mRNA and protein expression in HGFs from a periodontal healthy group and a periodontal inflammatory group were examined by qPCR and western blotting, respectively, and were further tested after lipopolysaccharide (LPS) stimulation in both groups. The effects of a p38 pathway inhibitor on the changes in p38 phosphorylation levels and PD-L1 expression after LPS stimulation were investigated in both groups. RESULTS PD-L1 mRNA and protein levels in HGFs in the periodontal inflammatory group were significantly higher than those in the periodontal healthy group (p < 0.05). After 10 μg/mL LPS stimulation, PD-L1 mRNA levels in HGFs from both groups increased significantly (p < 0.05), peaking at 4 h, and the peak was significantly higher in the periodontal inflammatory group than in the periodontal healthy group (p < 0.05). However, PD-L1 protein expression was upregulated only in the inflammatory group (p < 0.05). Inhibition of the p38 pathway in HGFs decreased p38 phosphorylation in both groups (p < 0.05) but this treatment reversed the LPS-induced increase in PD-L1 mRNA and protein levels only in the inflammatory group (p < 0.05). CONCLUSION In the periodontal inflammatory state, the expression of PD-L1 in HGFs is more easily activated, and may be influenced by the p38 pathway.
Collapse
Affiliation(s)
- Kecong Zhou
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China; Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Mengjun Sun
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China; Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yiru Xia
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China; Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yufeng Xie
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China; Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital Research Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Rong Shu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China; Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
17
|
Gowen AM, Odegaard KE, Hernandez J, Chand S, Koul S, Pendyala G, Yelamanchili SV. Role of microRNAs in the pathophysiology of addiction. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1637. [PMID: 33336550 PMCID: PMC8026578 DOI: 10.1002/wrna.1637] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
Addiction is a chronic and relapsing brain disorder characterized by compulsive seeking despite adverse consequences. There are both heritable and epigenetic mechanisms underlying drug addiction. Emerging evidence suggests that non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long non-coding RNAs, and circular RNAs regulate synaptic plasticity and related behaviors caused by substances of abuse. These ncRNAs modify gene expression and may contribute to the behavioral phenotypes of addiction. Among the ncRNAs, the most widely researched and impactful are miRNAs. The goal in this systematic review is to provide a detailed account of recent research involving the role of miRNAs in addiction. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Austin M Gowen
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Katherine E Odegaard
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jordan Hernandez
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Subhash Chand
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sneh Koul
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sowmya V Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
18
|
Sanz-Ezquerro JJ, Cuenda A. p38 Signalling Pathway. Int J Mol Sci 2021; 22:ijms22031003. [PMID: 33498296 PMCID: PMC7863928 DOI: 10.3390/ijms22031003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 01/12/2023] Open
Affiliation(s)
- Juan José Sanz-Ezquerro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Campus-UAM, 28049 Madrid, Spain
- Correspondence: (J.J.S.-E.); (A.C.); Tel.: +34-91-5855-395 (J.J.S.-E.); +34-91-5855-451 (A.C.)
| | - Ana Cuenda
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Campus-UAM, 28049 Madrid, Spain
- Correspondence: (J.J.S.-E.); (A.C.); Tel.: +34-91-5855-395 (J.J.S.-E.); +34-91-5855-451 (A.C.)
| |
Collapse
|