1
|
Niziołek K, Słota D, Sobczak-Kupiec A. Polysaccharide-Based Composite Systems in Bone Tissue Engineering: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4220. [PMID: 39274610 PMCID: PMC11396420 DOI: 10.3390/ma17174220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/16/2024]
Abstract
In recent years, a growing demand for biomaterials has been observed, particularly for applications in bone regenerative medicine. Bone tissue engineering (BTE) aims to develop innovative materials and strategies for repairing and regenerating bone defects and injuries. Polysaccharides, due to their biocompatibility, biodegradability as well as bioactivity, have emerged as promising candidates for scaffolds or composite systems in BTE. Polymers combined with bioactive ceramics can support osteointegration. Calcium phosphate (CaP) ceramics can be a broad choice as an inorganic phase that stimulates the formation of new apatite layers. This review provides a comprehensive analysis of composite systems based on selected polysaccharides used in bone tissue engineering, highlighting their synthesis, properties and applications. Moreover, the applicability of the produced biocomposites has been analyzed, as well as new trends in modifying biomaterials and endowing them with new functionalizations. The effects of these composites on the mechanical properties, biocompatibility and osteoconductivity were critically analyzed. This article summarizes the latest manufacturing methods as well as new developments in polysaccharide-based biomaterials for bone and cartilage regeneration applications.
Collapse
Affiliation(s)
- Karina Niziołek
- Cracow University of Technology, CUT Doctoral School, Faculty of Materials Engineering and Physics, Department of Materials Science, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Dagmara Słota
- Cracow University of Technology, CUT Doctoral School, Faculty of Materials Engineering and Physics, Department of Materials Science, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Agnieszka Sobczak-Kupiec
- Cracow University of Technology, Faculty of Materials Engineering and Physics, Department of Materials Science, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| |
Collapse
|
2
|
He L, Zhang H, Zhao N, Liao L. A novel approach in biomedical engineering: The use of polyvinyl alcohol hydrogel encapsulating human umbilical cord mesenchymal stem cell-derived exosomes for enhanced osteogenic differentiation and angiogenesis in bone regeneration. Int J Biol Macromol 2024; 270:132116. [PMID: 38723803 DOI: 10.1016/j.ijbiomac.2024.132116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/09/2024] [Accepted: 05/04/2024] [Indexed: 05/19/2024]
Abstract
Developing effective methods for alveolar bone defect regeneration is a significant challenge in orthopedics. Exosomes from human umbilical cord mesenchymal stem cells (HUMSC-Exos) have shown potential in bone repair but face limitations due to undefined application methods and mechanisms. To address this, HUMSC-Exos were encapsulated in polyvinyl alcohol (PVA) hydrogel (Exo@PVA) to create a novel material for alveolar bone repair. This combination enhanced the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and human umbilical vein endothelial cells (HUVECs) more effectively than Exos alone. Additionally, Exo@PVA significantly improved alveolar bone regeneration and defect repair in rats. The microRNA-21-5p (miR-21-5p) in Exo@PVA, identified through the GEO database and analyzed via in silico methods, played a crucial role. miR-21-5p promoted BMSC osteogenic differentiation by inhibiting WWP1-mediated KLF5 ubiquitination and enhanced HUVEC angiogenesis by targeting ATP2B4. These findings underscore the potential of an Exo-based approach with PVA hydrogel scaffolds for bone defect repair, operating through the miR-21-5p/WWP1/ATP2B4 signaling axis.
Collapse
Affiliation(s)
- Longlong He
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, PR China; Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Hengwei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Ningbo Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, PR China; Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Lifan Liao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, PR China; Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, PR China.
| |
Collapse
|
3
|
Sánchez-Téllez DA, Baltierra-Uribe SL, Vidales-Hurtado MA, Valdivia-Flores A, García-Pérez BE, Téllez-Jurado L. Novel PVA-Hyaluronan-Siloxane Hybrid Nanofiber Mats for Bone Tissue Engineering. Polymers (Basel) 2024; 16:497. [PMID: 38399875 PMCID: PMC10892577 DOI: 10.3390/polym16040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Hyaluronan (HA) is a natural biodegradable biopolymer; its biological functions include cell adhesion, cell proliferation, and differentiation as well as decreasing inflammation, angiogenesis, and regeneration of damaged tissue. This makes it a suitable candidate for fabricating nanomaterials with potential use in tissue engineering. However, HA nanofiber production is restricted due to the high viscosity, low evaporation rate, and high surface tension of HA solutions. Here, hybrids in the form of continuous and randomly aligned polyvinyl alcohol (PVA)-(HA)-siloxane nanofibers were obtained using an electrospinning process. PVA-HA fibers were crosslinked by a 3D siloxane organic-inorganic matrix via sol-gel that restricts natural hydrophilicity and stiffens the structure. The hybrid nanofiber mats were characterized by FT-IR, micro-Raman spectroscopy, SEM, and biological properties. The PVA/HA ratio influenced the morphology of the hybrid nanofibers. Nanofibers with high PVA content (10PVA-8 and 10PVA-10) form mats with few beaded nanofibers, while those with high HA content (5PVA-8 and 5PVA-10) exhibit mats with mound patterns formed by "ribbon-like" nanofibers. The hybrid nanofibers were used as mats to support osteoblast growth, and they showed outstanding biological properties supporting cell adhesion, cell proliferation, and cell differentiation. Importantly, the 5PVA-8 mats show 3D spherical osteoblast morphology; this suggests the formation of tissue growth. These novel HA-based nanomaterials represent a relevant advance in designing nanofibers with unique properties for potential tissue regeneration.
Collapse
Affiliation(s)
- Daniela Anahí Sánchez-Téllez
- Department of Engineering in Metalurgy and Materials, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos (UPALM), Av. Instituto Politécnico Nacional S/N, Zacatenco, Mexico City 07738, Mexico
| | - Shantal Lizbeth Baltierra-Uribe
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Mónica Araceli Vidales-Hurtado
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Querétaro, Instituto Politécnico Nacional, Cerro Blanco 141, Colinas del Cimatario, Santiago de Querétaro 76090, Mexico
| | - Alejandra Valdivia-Flores
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Blanca Estela García-Pérez
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Lucía Téllez-Jurado
- Department of Engineering in Metalurgy and Materials, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos (UPALM), Av. Instituto Politécnico Nacional S/N, Zacatenco, Mexico City 07738, Mexico
| |
Collapse
|
4
|
Quinaz T, Freire TF, Olmos A, Martins M, Ferreira FBN, de Moura MFSM, Zille A, Nguyễn Q, Xavier J, Dourado N. The Influence of Hydroxyapatite Crystals on the Viscoelastic Behavior of Poly(vinyl alcohol) Braid Systems. Biomimetics (Basel) 2024; 9:93. [PMID: 38392139 PMCID: PMC10886535 DOI: 10.3390/biomimetics9020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Composites of poly(vinyl alcohol) (PVA) in the shape of braids, in combination with crystals of hydroxyapatite (HAp), were analyzed to perceive the influence of this bioceramic on both the quasi-static and viscoelastic behavior under tensile loading. Analyses involving energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) allowed us to conclude that the production of a homogeneous layer of HAp on the braiding surface and the calcium/phosphate atomic ratio were comparable to those of natural bone. The maximum degradation temperature established by thermogravimetric analysis (TGA) showed a modest decrease with the addition of HAp. By adding HAp to PVA braids, an increase in the glass transition temperature (Tg) is noticed, as demonstrated by dynamic mechanical analysis (DMA) and differential thermal analysis (DTA). The PVA/HAp composite braids' peaks were validated by Fourier transform infrared (FTIR) spectroscopy to be in good agreement with common PVA and HAp patterns. PVA/HAp braids, a solution often used in the textile industry, showed superior overall mechanical characteristics in monotonic tensile tests. Creep and relaxation testing showed that adding HAp to the eight and six-braided yarn architectures was beneficial. By exhibiting good mechanical performance and most likely increased biological qualities that accompany conventional care for bone applications in the fracture healing field, particularly multifragmentary ones, these arrangements can be applied as a fibrous fixation system.
Collapse
Affiliation(s)
- Tiago Quinaz
- CMEMS-UMinho, Departamento de Engenharia Mecânica, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal
| | - Tânia F Freire
- CMEMS-UMinho, Departamento de Engenharia Mecânica, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal
| | - Andrea Olmos
- CMEMS-UMinho, Departamento de Engenharia Mecânica, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal
| | - Marcos Martins
- INESC TEC, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Fernando B N Ferreira
- 2C2T-Centro de Ciência e Tecnologia Têxtil, Departamento de Engenharia Têxtil, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal
| | - Marcelo F S M de Moura
- Departamento de Engenharia Mecânica, Faculdade de Engenharia da Universidade do Porto, 4200-464 Porto, Portugal
| | - Andrea Zille
- 2C2T-Centro de Ciência e Tecnologia Têxtil, Departamento de Engenharia Têxtil, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal
| | - Quyền Nguyễn
- 2C2T-Centro de Ciência e Tecnologia Têxtil, Departamento de Engenharia Têxtil, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal
| | - José Xavier
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- LASI, Intelligent Systems Associate Laboratory, 4800-058 Guimarães, Portugal
| | - Nuno Dourado
- CMEMS-UMinho, Departamento de Engenharia Mecânica, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal
- LABBELS-Laboratório Associado, 4710-057 Braga, Portugal
| |
Collapse
|
5
|
Lv H, Liu Y, Lu D, Wang Y. Kartogenin-loaded polyvinyl alcohol/nano-hydroxyapatite composite hydrogel promotes tendon-bone healing in rabbits after anterior cruciate ligament reconstruction. J Biomed Mater Res A 2024; 112:180-192. [PMID: 37694883 DOI: 10.1002/jbm.a.37605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 06/20/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
Accumulating evidence supports the role of cartilage tissue engineering in cartilage defect repair, but the biological function has yet to be fully explained. In this work, kartogenin (KGN), an emerging chondroinductive nonprotein small molecule, was incorporated into a composite hydrogel of polyvinyl alcohol/nano-hydroxyapatite (PVA/n-HA) to fabricate an appropriate microenvironment for tendon-bone healing after anterior cruciate ligament (ACL) reconstruction. KGN/PVA/n-HA composite hydrogel scaffolds were prepared by in situ synthesis and physical adsorption, followed by characterization under a scanning electron microscope. The scaffolds were transplanted into healthy New Zealand White (NZW) rabbits. It was confirmed that KGN/PVA/n-HA scaffolds were successfully prepared and exhibited good supporting properties and excellent biocompatibility. Unilateral ACL reconstruction was constructed with tendon autograft in NZW rabbits, and the morphology and diameter of collagen fiber were analyzed. The scaffolds were shown to promote ACL growth and collagen fiber formation. Furthermore, microcomputerized tomography analysis and bone formation histology were performed to detect new bone formation. KGN/PVA/n-HA scaffolds effectively alleviated cartilage damage and prevented the occurrence of osteoarthritis. Meanwhile, ligament-bone healing and bone formation were observed in the presence of KGN/PVA/n-HA scaffolds. In conclusion, these results suggest that the KGN/PVA/n-HA scaffolds can facilitate tendon-bone healing after ACL reconstruction and might be considered novel hydrogel biomaterials in cartilage tissue engineering.
Collapse
Affiliation(s)
- Hao Lv
- Jinan Central Hospital, Jinan, People's Republic of China
| | - Yaobo Liu
- Jinan Central Hospital, Jinan, People's Republic of China
| | - Duyi Lu
- Jinan Central Hospital, Jinan, People's Republic of China
| | - Yuanrui Wang
- Jinan Central Hospital, Jinan, People's Republic of China
| |
Collapse
|
6
|
Karmakar PD, Velu K, Vineeth Kumar CM, Pal A. Advances in injectable hydrogel: Design, functional regulation, and biomedical applications. POLYM ADVAN TECHNOL 2024; 35. [DOI: 10.1002/pat.6193] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/13/2023] [Indexed: 01/06/2025]
Abstract
AbstractRecently, injectable hydrogels have been considered smart materials and have been widely researched for their use as scaffolds. They resemble the extracellular matrix of native tissue and have the capability for homogeneous mixing with therapeutic agents. It can be implanted into living bodies with minimal invasiveness and usability for irregularly shaped sites. Such unique features make the injectable hydrogels as promising materials in tissue engineering, drug delivery system, and gene/protein delivery. This review article provides a comprehensive overview of the different mechanisms employed in the preparation of injectable hydrogel, as well as a detailed exploration of its applications in the biomedical field. Furthermore, the article highlights the critical importance of developing injectable hydrogels as market‐viable products, highlighting their potential impact in the field of regenerative medicine.
Collapse
Affiliation(s)
- Puja Das Karmakar
- Research and Services Division of Materials Data and Integrated System (MaDIS) National Institute for Materials Science (NIMS) Tsukuba Japan
| | - Karthick Velu
- Centre for Ocean Research, Sathyabama Institute of Science and Technology Chennai India
| | - C. M. Vineeth Kumar
- Centre for Ocean Research, Sathyabama Institute of Science and Technology Chennai India
| | - Aniruddha Pal
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Japan
| |
Collapse
|
7
|
Li T, Peng Z, Lv Q, Li L, Zhang C, Pang L, Zhang C, Li Y, Chen Y, Tang X. SLS 3D Printing To Fabricate Poly(vinyl alcohol)/Hydroxyapatite Bioactive Composite Porous Scaffolds and Their Bone Defect Repair Property. ACS Biomater Sci Eng 2023; 9:6734-6744. [PMID: 37939039 DOI: 10.1021/acsbiomaterials.3c01014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Poly(vinyl alcohol) (PVA) exhibits a wide range of potential applications in the biomedical field due to its favorable mechanical properties and biocompatibility. However, few studies have been carried out on selective laser sintering (SLS) of PVA due to its poor thermal processability. In this study, in order to impart PVA powder the excellent thermal processability, the molecular complexation technology was performed to destroy the strong hydrogen bonds in PVA and thus significantly reduced the PVA melting point and crystallinity to 190.9 °C and 27.9%, respectively. The modified PVA (MPVA) was then compounded with hydroxyapatite (HA) to prepare PVA/HA composite powders suitable for SLS 3D printing. The final SLS 3D-printed MPVA/HA composite porous scaffolds show high precision and interconnected pores with a porosity as high as 68.3%. The in vitro cell culture experiments revealed that the sintered composite scaffolds could significantly promote the adhesion and proliferation of osteoblasts and facilitate bone regeneration, and the quantitative real-time polymerase chain reaction results further demonstrate that the printed MPVA/20HA scaffold could significantly enhance the expression levels of both early osteogenic-specific marker of alkaline phosphatase stain and runt-related transcription factor 2. Meanwhile, in in vivo experiments, it is encouragingly found that the resultant MPVA/20HA SLS 3D-printed part has an obvious effect on promoting the growth of new bone tissue as well as a better bone regeneration capability. This work could provide a promising strategy for fabrication of PVA scaffolds through SLS 3D printing, exhibiting a great potential for clinical applications in bone tissue engineering.
Collapse
Affiliation(s)
- Tao Li
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu 610065, China
- Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Zilin Peng
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Qinniu Lv
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Li Li
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Chuhong Zhang
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Long Pang
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu 610065, China
- Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Chunsen Zhang
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu 610065, China
- Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yinghao Li
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu 610065, China
- Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yinghong Chen
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Xin Tang
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu 610065, China
- Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Ghafouri Azar M, Wiesnerova L, Dvorakova J, Chocholata P, Moztarzadeh O, Dejmek J, Babuska V. Optimizing PCL/PLGA Scaffold Biocompatibility Using Gelatin from Bovine, Porcine, and Fish Origin. Gels 2023; 9:900. [PMID: 37998990 PMCID: PMC10670940 DOI: 10.3390/gels9110900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
This research introduces a novel approach by incorporating various types of gelatins, including bovine, porcine, and fish skin, into polycaprolactone and poly (lactic-co-glycolic acid) using a solvent casting method. The films are evaluated for morphology, mechanical properties, thermal stability, biodegradability, hemocompatibility, cell adhesion, proliferation, and cytotoxicity. The results show that the incorporation of gelatins into the films alters their mechanical properties, with a decrease in tensile strength but an increase in elongation at break. This indicates that the films become more flexible with the addition of gelatin. Gelatin incorporation has a limited effect on the thermal stability of the films. The composites with the gelatin show higher biodegradability with the highest weight loss in the case of fish gelatin. The films exhibit high hemocompatibility with minimal hemolysis observed. The gelatin has a dynamic effect on cell behavior and promotes long-term cell proliferation. In addition, all composite films reveal exceptionally low levels of cytotoxicity. The combination of the evaluated parameters shows the appropriate level of biocompatibility for gelatin-based samples. These findings provide valuable insights for future studies involving gelatin incorporation in tissue engineering applications.
Collapse
Affiliation(s)
- Mina Ghafouri Azar
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic; (M.G.A.); (L.W.); (J.D.); (P.C.)
| | - Lucie Wiesnerova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic; (M.G.A.); (L.W.); (J.D.); (P.C.)
| | - Jana Dvorakova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic; (M.G.A.); (L.W.); (J.D.); (P.C.)
| | - Petra Chocholata
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic; (M.G.A.); (L.W.); (J.D.); (P.C.)
| | - Omid Moztarzadeh
- Department of Stomatology, University Hospital Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 80, 304 60 Pilsen, Czech Republic;
| | - Jiri Dejmek
- Department of Biophysics, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic;
| | - Vaclav Babuska
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic; (M.G.A.); (L.W.); (J.D.); (P.C.)
| |
Collapse
|
9
|
Radha G, Manjubaashini N, Balakumar S. Nano-hydroxyapatite/natural polymer composite scaffolds for bone tissue engineering: a brief review of recent trend. IN VITRO MODELS 2023; 2:125-151. [PMID: 39872168 PMCID: PMC11756495 DOI: 10.1007/s44164-023-00049-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 01/29/2025]
Abstract
Nanostructured inorganic biomaterial emerged as the most essential platform to address traumatic and non-traumatic conditions of hard tissues in the current scenario. Synthetic inorganic biomaterials serve as an efficient and pathogen-free choice that overcomes the obstructions associated with autografts and allografts to promote new tissue regeneration, since nano-hydroxyapatite (nHAp) is a biomaterial that mimics the natural mineral composition of bones and teeth of human hard tissues, which is widely employed in orthopedics and dentistry. The nHAp-based materials exhibit bioactive, biocompatible, and osteoconductive features under in vitro and in vivo conditions. The brittle nature of synthetic nHAp leads to weak mechanical properties, which eventually confines the utility of nHAp in load-bearing applications. Hence, this review focuses on the recent trends in the fabrication and investigation of nHAp-based polymer nanocomposite scaffolds for bone regeneration. Employing different polymers and fabrication strategies would efficiently tailor the physicochemical properties, and tailor-made mechanical properties in competence with biodegradation, thereby enhancing their potential in biomedical utility, and exploring their efficacy under in vitro and in vivo conditions to make "HAp-based smart-biomaterials" for bone tissue engineering.
Collapse
Affiliation(s)
- G. Radha
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai, 600 025 Tamilnadu India
| | - N. Manjubaashini
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai, 600 025 Tamilnadu India
| | - S. Balakumar
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai, 600 025 Tamilnadu India
| |
Collapse
|
10
|
Qian X, Mu N, Zhao X, Shi C, Jiang S, Wan M, Yu B. Novel self-healing and recyclable fire-retardant polyvinyl alcohol/borax hydrogel coatings for the fire safety of rigid polyurethane foam. SOFT MATTER 2023; 19:6097-6107. [PMID: 37526969 DOI: 10.1039/d3sm00709j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Rigid polyurethane foam (RPUF) has attracted great attention as an insulation material, but its inherent flammability restricts its practical application. Developing a sustainable fire-retardant strategy that can improve its fire safety is particularly desirable and challenging. Herein, novel fire-retardant hydrogel coatings based on polyvinyl alcohol (PVA) and borax are proposed and applied in RPUF, and the self-healing, recyclability and flame retardant properties of the coatings are investigated. The dynamic and reversible cross-linked networks based on the borate ester bonds and hydrogen bonds endow the hydrogels with excellent repairability, recyclability, and elasticity. Compared with a neat RUPF, the coated RPUF exhibited improved fire-retardant properties without the inherent advantages being influenced and can be reflected by the 8% increase in the limiting oxygen index (LOI), 20% reduction in total heat release (THR), and 25% decrease in total smoke production (TSP) with the coatings, along with a rapid self-quenching behavior. The novel hydrogel coatings provide a new strategy for the development of flame-retardant coatings, demonstrating the potential of the next generation of self-healing hydrogel coatings to reduce the fire risk of the RPUF.
Collapse
Affiliation(s)
- Xiaodong Qian
- Beijing Key Laboratory of Metro Fire and Passenger Transportation Safety, China Academy of Safety Science and Technology, Beijing 100012, China.
| | - Nire Mu
- Institute of Safety Science and Engineering, School of Mechanicaland Automotive Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510641, China.
| | - Xiaojiong Zhao
- Institute of Safety Science and Engineering, School of Mechanicaland Automotive Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510641, China.
| | - Congling Shi
- Beijing Key Laboratory of Metro Fire and Passenger Transportation Safety, China Academy of Safety Science and Technology, Beijing 100012, China.
| | - Saihua Jiang
- Institute of Safety Science and Engineering, School of Mechanicaland Automotive Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510641, China.
| | - Mei Wan
- Beijing Key Laboratory of Metro Fire and Passenger Transportation Safety, China Academy of Safety Science and Technology, Beijing 100012, China.
| | - Bin Yu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Wu IC, Liou JW, Yang CH, Chen JH, Chen KY, Hung CH. Self-assembly of gelatin and collagen in the polyvinyl alcohol substrate and its influence on cell adhesion, proliferation, shape, spreading and differentiation. Front Bioeng Biotechnol 2023; 11:1193849. [PMID: 37520293 PMCID: PMC10375239 DOI: 10.3389/fbioe.2023.1193849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Culture substrates display profound influence on biological and developmental characteristic of cells cultured in vitro. This study investigates the influence of polyvinyl alcohol (PVA) substrates blended with different concentration of collagen or/and gelatin on the cell adhesion, proliferation, shape, spreading, and differentiation of stem cells. The collagen/gelatin blended PVA substrates were prepared by air drying. During drying, blended collagen or/and gelatin can self-assemble into macro-scale nucleated particles or branched fibrils in the PVA substrates that can be observed under the optical microscope. These collagen/gelatin blended substrates revealed different surface topography, z-average, roughness, surface adhesion and Young's modulus as examined by the atomic force microscope (AFM). The results of Fourier transform infrared spectroscopy (FTIR) analysis indicated that the absorption of amide I (1,600-1,700 cm-1) and amide II (1,500-1,600 cm-1) groups increased with increasing collagen and gelatin concentration blended and the potential of fibril formation. These collagen or/and gelatin blended PVA substrates showed enhanced NIH-3T3 fibroblast adhesion as comparing with the pure PVA, control tissue culture polystyrene, conventional collagen-coated and gelatin-coated wells. These highly adhesive PVA substrates also exhibit inhibited cell spreading and proliferation. It is also found that the shape of NIH-3T3 fibroblasts can be switched between oval, spindle and flattened shapes depending on the concentration of collagen or/and gelatin blended. For inductive differentiation of stem cells, it is found that number and ration of neural differentiation of rat cerebral cortical neural stem cells increase with the decreasing collagen concentration in the collagen-blended PVA substrates. Moreover, the PVA substrates blended with collagen or collagen and gelatin can efficiently support and conduct human pluripotent stem cells to differentiate into Oil-Red-O- and UCP-1-positive brown-adipocyte-like cells via ectodermal lineage without the addition of mitogenic factors. These results provide a useful and alternative platform for controlling cell behavior in vitro and may be helpful for future application in the field of regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- I-Chi Wu
- Institute of Medical Sciences, Tzu Chi University, Hualien City, Taiwan
- Plastic Surgery Division, Surgical Department, Hualien Armed Forces General Hospital, Hualien City, Taiwan
| | - Je-Wen Liou
- Institute of Medical Sciences, Tzu Chi University, Hualien City, Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Chin-Hao Yang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Jia-Hui Chen
- Institute of Medical Sciences, Tzu Chi University, Hualien City, Taiwan
- Department of Surgery, Taipei Tzu Chi Hospital, New Taipei City, Taiwan
| | - Kuan-Yu Chen
- Institute of Medical Sciences, Tzu Chi University, Hualien City, Taiwan
- Department of Surgery, New Taipei City Hospital, New Taipei City, Taiwan
| | - Chih-Huang Hung
- Institute of Medical Sciences, Tzu Chi University, Hualien City, Taiwan
| |
Collapse
|
12
|
Kasi PB, Azar MG, Dodda JM, Bělský P, Kovářík T, Šlouf M, Dobrá JK, Babuška V. Chitosan and cellulose-based composite hydrogels with embedded titanium dioxide nanoparticles as candidates for biomedical applications. Int J Biol Macromol 2023:125334. [PMID: 37307974 DOI: 10.1016/j.ijbiomac.2023.125334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Hydrogel based matrices and titanium dioxide (TiO2) nanoparticles (NPs) are well established materials in bone tissue engineering. Nevertheless, there is still a challenge to design appropriate composites with enhanced mechanical properties and improved cell growth. Progressing in this direction, we synthesized nanocomposite hydrogels by impregnating TiO2 NPs in a chitosan and cellulose-based hydrogel matrix containing polyvinyl alcohol (PVA), to enhance the mechanical stability and swelling capacity. Although, TiO2 has been incorporated into single and double component matrix systems, it has rarely been combined with a tri-component hydrogel matrix system. The doping of NPs was confirmed by Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy and small- and wide-angle X-ray scattering. Our results showed that incorporation of TiO2 NPs improved the tensile properties of the hydrogels significantly. Furthermore, we performed biological evaluation of scaffolds, swelling degree, bioactivity assessment, and hemolytic tests to prove that all types of hydrogels were safe for use in the human body. The culturing of human osteoblast-like cells MG-63 on hydrogels showed better adhesion of cells in the presence of TiO2 and showed increasing proliferation with increasing amount of TiO2. Our results showed that the sample with the highest TiO2 concentration, CS/MC/PVA/TiO2 (1 %) had the best biological properties.
Collapse
Affiliation(s)
- Phanindra Babu Kasi
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarská 48, 301 66 Pilsen, Czech Republic
| | - Mina Ghafouri Azar
- New Technologies - Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic
| | - Jagan Mohan Dodda
- New Technologies - Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic.
| | - Petr Bělský
- New Technologies - Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic
| | - Tomáš Kovářík
- New Technologies - Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Jana Kolaja Dobrá
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarská 48, 301 66 Pilsen, Czech Republic
| | - Václav Babuška
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarská 48, 301 66 Pilsen, Czech Republic
| |
Collapse
|
13
|
Dvorakova J, Wiesnerova L, Chocholata P, Kulda V, Landsmann L, Cedikova M, Kripnerova M, Eberlova L, Babuska V. Human cells with osteogenic potential in bone tissue research. Biomed Eng Online 2023; 22:33. [PMID: 37013601 PMCID: PMC10069154 DOI: 10.1186/s12938-023-01096-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Bone regeneration after injury or after surgical bone removal due to disease is a serious medical challenge. A variety of materials are being tested to replace a missing bone or tooth. Regeneration requires cells capable of proliferation and differentiation in bone tissue. Although there are many possible human cell types available for use as a model for each phase of this process, no cell type is ideal for each phase. Osteosarcoma cells are preferred for initial adhesion assays due to their easy cultivation and fast proliferation, but they are not suitable for subsequent differentiation testing due to their cancer origin and genetic differences from normal bone tissue. Mesenchymal stem cells are more suitable for biocompatibility testing, because they mimic natural conditions in healthy bone, but they proliferate more slowly, soon undergo senescence, and some subpopulations may exhibit weak osteodifferentiation. Primary human osteoblasts provide relevant results in evaluating the effect of biomaterials on cellular activity; however, their resources are limited for the same reasons, like for mesenchymal stem cells. This review article provides an overview of cell models for biocompatibility testing of materials used in bone tissue research.
Collapse
Affiliation(s)
- Jana Dvorakova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Lucie Wiesnerova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Petra Chocholata
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Vlastimil Kulda
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Lukas Landsmann
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Miroslava Cedikova
- Biomedical Center, Laboratory of Tumor Biology and Immunotherapy, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Michaela Kripnerova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Lada Eberlova
- Department of Anatomy, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Vaclav Babuska
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic.
| |
Collapse
|
14
|
Li S, Xiaowen Y, Yang Y, Liu L, Sun Y, Liu Y, Yin L, Chen Z. Osteogenic and anti-inflammatory effect of the multifunctional bionic hydrogel scaffold loaded with aspirin and nano-hydroxyapatite. Front Bioeng Biotechnol 2023; 11:1105248. [PMID: 36761294 PMCID: PMC9902883 DOI: 10.3389/fbioe.2023.1105248] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Although tissue engineering offered new approaches to repair bone defects, it remains a great challenge to create a bone-friendly microenvironment and rebuild bone tissue rapidly by a scaffold with a bionic structure. In this study, a multifunctional structurally optimized hydrogel scaffold was designed by integrating polyvinyl alcohol (PVA), gelatin (Gel), and sodium alginate (SA) with aspirin (ASA) and nano-hydroxyapatite (nHAP). The fabrication procedure is through a dual-crosslinking process. The chemical constitution, crystal structure, microstructure, porosity, mechanical strength, swelling and degradation property, and drug-release behavior of the hydrogel scaffold were analyzed. Multi-hydrogen bonds, electrostatic interactions, and strong "egg-shell" structure contributed to the multi-network microstructure, bone tissue-matched properties, and desirable drug-release function of the hydrogel scaffold. The excellent performance in improving cell viability, promoting cell osteogenic differentiation, and regulating the inflammatory microenvironment of the prepared hydrogel scaffold was verified using mouse pre-osteoblasts (MC3T3-E1) cells. And the synergistic osteogenic and anti-inflammatory functions of aspirin and nano-hydroxyapatite were also verified. This study provided valuable insights into the design, fabrication, and biological potential of multifunctional bone tissue engineering materials with the premise of constructing a bone-friendly microenvironment.
Collapse
Affiliation(s)
- Shaoping Li
- Key Laboratory of Stomatology in Hebei Province, Hospital of Stomatology Hebei Medical University, Shijiazhuang, China
| | - Yundeng Xiaowen
- Key Laboratory of Stomatology in Hebei Province, Hospital of Stomatology Hebei Medical University, Shijiazhuang, China
| | - Yuqing Yang
- Key Laboratory of Stomatology in Hebei Province, Hospital of Stomatology Hebei Medical University, Shijiazhuang, China
| | - Libo Liu
- College of Dentistry, Hebei Medical University, Shijiazhuang, China
| | - Yifan Sun
- College of Dentistry, Hebei Medical University, Shijiazhuang, China
| | - Ying Liu
- College of Dentistry, Hebei Medical University, Shijiazhuang, China
| | - Lulu Yin
- College of Dentistry, Hebei Medical University, Shijiazhuang, China
| | - Zhiyu Chen
- Key Laboratory of Stomatology in Hebei Province, Hospital of Stomatology Hebei Medical University, Shijiazhuang, China,*Correspondence: Zhiyu Chen,
| |
Collapse
|
15
|
Kodavaty J. Poly (vinyl alcohol) and hyaluronic acid hydrogels as potential biomaterial systems - A comprehensive review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Oliveira AS, Silva JC, Figueiredo L, Ferreira FC, Kotov NA, Colaço R, Serro AP. High-performance bilayer composites for the replacement of osteochondral defects. Biomater Sci 2022; 10:5856-5875. [DOI: 10.1039/d2bm00716a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Two novel bilayer constructs for the repair of osteochondral defects were developed from nanofibers and ceramic particles embedded into PVA matrices, exhibiting multiple promising properties similar to those of corresponding natural tissues.
Collapse
Affiliation(s)
- A. S. Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Instituto de Engenharia Mecânica and Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| | - J. C. Silva
- Centre for Rapid and Sustainable Product Development, Politécnico de Leiria, Rua de Portugal – Zona Industrial, 2430-028 Marinha Grande, Portugal
- Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - L. Figueiredo
- Bioceramed S.A., Rua José Gomes Ferreira 1 Arm. D, 2660-360 São Julião do Tojal, Portugal
| | - F. C. Ferreira
- Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - N. A. Kotov
- Biointerfaces Institute and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - R. Colaço
- Instituto de Engenharia Mecânica and Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - A. P. Serro
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| |
Collapse
|
17
|
Freire TF, Quinaz T, Fertuzinhos A, Quyền NT, de Moura MFSM, Martins M, Zille A, Dourado N. Thermal, Mechanical and Chemical Analysis of Poly(vinyl alcohol) Multifilament and Braided Yarns. Polymers (Basel) 2021; 13:polym13213644. [PMID: 34771201 PMCID: PMC8588446 DOI: 10.3390/polym13213644] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 02/03/2023] Open
Abstract
Poly(vinyl alcohol) (PVA) in multifilament and braided yarns (BY) forms presents great potential for the design of numerous applications. However, such solutions fail to accomplish their requirements if the chemical and thermomechanical behaviour is not sufficiently known. Hence, a comprehensive characterisation of PVA multifilament and three BY architectures (6, 8, and 10 yarns) was performed involving the application of several techniques to evaluate the morphological, chemical, thermal, and mechanical features of those structures. Scanning electron microscopy (SEM) was used to reveal structural and morphological information. Differential thermal analysis (DTA) pointed out the glass transition temperature of PVA at 76 °C and the corresponding crystalline melting point at 210 °C. PVA BY exhibited higher tensile strength under monotonic quasi-static loading in comparison to their multifilament forms. Creep tests demonstrated that 6BY structures present the most deformable behaviour, while 8BY structures are the least deformable. Relaxation tests showed that 8BY architecture presents a more expressive variation of tensile stress, while 10BY offered the least. Dynamic mechanical analysis (DMA) revealed storage and loss moduli curves with similar transition peaks for the tested structures, except for the 10BY. Storage modulus is always four to six times higher than the loss modulus.
Collapse
Affiliation(s)
- Tania F. Freire
- CMEMS-UMinho, Departamento de Engenharia Mecânica, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal; (T.F.F.); (T.Q.); (A.F.); (M.M.)
| | - Tiago Quinaz
- CMEMS-UMinho, Departamento de Engenharia Mecânica, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal; (T.F.F.); (T.Q.); (A.F.); (M.M.)
| | - Aureliano Fertuzinhos
- CMEMS-UMinho, Departamento de Engenharia Mecânica, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal; (T.F.F.); (T.Q.); (A.F.); (M.M.)
| | - Nguyễn T. Quyền
- 2C2T-Centro de Ciência e Tecnologia Têxtil, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal; (N.T.Q.); (A.Z.)
| | - Marcelo F. S. M. de Moura
- Departamento de Engenharia Mecânica, Faculdade de Engenharia da Universidade do Porto, 4200-464 Porto, Portugal;
| | - Marcos Martins
- CMEMS-UMinho, Departamento de Engenharia Mecânica, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal; (T.F.F.); (T.Q.); (A.F.); (M.M.)
| | - Andrea Zille
- 2C2T-Centro de Ciência e Tecnologia Têxtil, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal; (N.T.Q.); (A.Z.)
| | - Nuno Dourado
- CMEMS-UMinho, Departamento de Engenharia Mecânica, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal; (T.F.F.); (T.Q.); (A.F.); (M.M.)
- Correspondence:
| |
Collapse
|
18
|
Calcium-Based Biomineralization: A Smart Approach for the Design of Novel Multifunctional Hybrid Materials. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5100278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Biomineralization consists of a complex cascade of phenomena generating hybrid nano-structured materials based on organic (e.g., polymer) and inorganic (e.g., hydroxyapatite) components. Biomineralization is a biomimetic process useful to produce highly biomimetic and biocompatible materials resembling natural hard tissues such as bones and teeth. In detail, biomimetic materials, composed of hydroxyapatite nanoparticles (HA) nucleated on an organic matrix, show extremely versatile chemical compositions and physical properties, which can be controlled to address specific challenges. Indeed, different parameters, including (i) the partial substitution of mimetic doping ions within the HA lattice, (ii) the use of different organic matrices, and (iii) the choice of cross-linking processes, can be finely tuned. In the present review, we mainly focused on calcium biomineralization. Besides regenerative medicine, these multifunctional materials have been largely exploited for other applications including 3D printable materials and in vitro three-dimensional (3D) models for cancer studies and for drug testing. Additionally, biomineralized multifunctional nano-particles can be involved in applications ranging from nanomedicine as fully bioresorbable drug delivery systems to the development of innovative and eco-sustainable UV physical filters for skin protection from solar radiations.
Collapse
|
19
|
Sikkema R, Keohan B, Zhitomirsky I. Hyaluronic-Acid-Based Organic-Inorganic Composites for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4982. [PMID: 34501070 PMCID: PMC8434239 DOI: 10.3390/ma14174982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 01/22/2023]
Abstract
Applications of natural hyaluronic acid (HYH) for the fabrication of organic-inorganic composites for biomedical applications are described. Such composites combine unique functional properties of HYH with functional properties of hydroxyapatite, various bioceramics, bioglass, biocements, metal nanoparticles, and quantum dots. Functional properties of advanced composite gels, scaffold materials, cements, particles, films, and coatings are described. Benefiting from the synergy of properties of HYH and inorganic components, advanced composites provide a platform for the development of new drug delivery materials. Many advanced properties of composites are attributed to the ability of HYH to promote biomineralization. Properties of HYH are a key factor for the development of colloidal and electrochemical methods for the fabrication of films and protective coatings for surface modification of biomedical implants and the development of advanced biosensors. Overcoming limitations of traditional materials, HYH is used as a biocompatible capping, dispersing, and structure-directing agent for the synthesis of functional inorganic materials and composites. Gel-forming properties of HYH enable a facile and straightforward approach to the fabrication of antimicrobial materials in different forms. Of particular interest are applications of HYH for the fabrication of biosensors. This review summarizes manufacturing strategies and mechanisms and outlines future trends in the development of functional biocomposites.
Collapse
Affiliation(s)
| | | | - Igor Zhitomirsky
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S4L7, Canada; (R.S.); (B.K.)
| |
Collapse
|
20
|
Chocholata P, Kulda V, Dvorakova J, Supova M, Zaloudkova M, Babuska V. In Situ Hydroxyapatite Synthesis Enhances Biocompatibility of PVA/HA Hydrogels. Int J Mol Sci 2021; 22:ijms22179335. [PMID: 34502243 PMCID: PMC8431644 DOI: 10.3390/ijms22179335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/17/2023] Open
Abstract
Bone tissue engineering tries to simulate natural behavior of hard tissues. This study aimed to produce scaffolds based on polyvinyl alcohol (PVA) and hyaluronic acid (HA) with hydroxyapatite (HAp) incorporated in two different ways, by in situ synthesis and physical mixing of pre-prepared HAp. In situ synthesis resulted in calcium deficient form of HAp with lower crystallinity. The proliferation of human osteoblast-like cells MG-63 proved to be better in the scaffolds with in situ synthesized HAp compared to those with physically mixed pre-prepared HAp. For scaffolds with PVA/HA/HAp ratio 3:1:2, there was significantly higher initial adhesion (p = 0.0440), as well as the proliferation in the following days (p < 0.001). It seemed to be advantageous improve the properties of the scaffold by in situ synthesizing of HAp directly in the organic matrix.
Collapse
Affiliation(s)
- Petra Chocholata
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Plzen, Czech Republic; (P.C.); (V.K.); (J.D.)
| | - Vlastimil Kulda
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Plzen, Czech Republic; (P.C.); (V.K.); (J.D.)
| | - Jana Dvorakova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Plzen, Czech Republic; (P.C.); (V.K.); (J.D.)
| | - Monika Supova
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, V Holesovickach 41, 182 09 Prague, Czech Republic; (M.S.); (M.Z.)
| | - Margit Zaloudkova
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, V Holesovickach 41, 182 09 Prague, Czech Republic; (M.S.); (M.Z.)
| | - Vaclav Babuska
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Plzen, Czech Republic; (P.C.); (V.K.); (J.D.)
- Correspondence: ; Tel.: +420-377-593-281
| |
Collapse
|
21
|
Özbaş Z, Özkahraman B, Bayrak G, Kılıç Süloğlu A, Perçin I, Boran F, Tamahkar E. Poly(vinyl alcohol)/(hyaluronic acid-g-kappa-carrageenan) hydrogel as antibiotic-releasing wound dressing. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01824-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Mulazzi M, Campodoni E, Bassi G, Montesi M, Panseri S, Bonvicini F, Gentilomi GA, Tampieri A, Sandri M. Medicated Hydroxyapatite/Collagen Hybrid Scaffolds for Bone Regeneration and Local Antimicrobial Therapy to Prevent Bone Infections. Pharmaceutics 2021; 13:pharmaceutics13071090. [PMID: 34371782 PMCID: PMC8309148 DOI: 10.3390/pharmaceutics13071090] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
Microbial infections occurring during bone surgical treatment, the cause of osteomyelitis and implant failures, are still an open challenge in orthopedics. Conventional therapies are often ineffective and associated with serious side effects due to the amount of drugs administered by systemic routes. In this study, a medicated osteoinductive and bioresorbable bone graft was designed and investigated for its ability to control antibiotic drug release in situ. This represents an ideal solution for the eradication or prevention of infection, while simultaneously repairing bone defects. Vancomycin hydrochloride and gentamicin sulfate, here considered for testing, were loaded into a previously developed and largely investigated hybrid bone-mimetic scaffold made of collagen fibers biomineralized with magnesium doped-hydroxyapatite (MgHA/Coll), which in the last ten years has widely demonstrated its effective potential in bone tissue regeneration. Here, we have explored whether it can be used as a controlled local delivery system for antibiotic drugs. An easy loading method was selected in order to be reproducible, quickly, in the operating room. The maintenance of the antibacterial efficiency of the released drugs and the biosafety of medicated scaffolds were assessed with microbiological and in vitro tests, which demonstrated that the MgHA/Coll scaffolds were safe and effective as a local delivery system for an extended duration therapy—promising results for the prevention of bone defect-related infections in orthopedic surgeries.
Collapse
Affiliation(s)
- Manuela Mulazzi
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
| | - Elisabetta Campodoni
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
- Correspondence: (E.C.); (M.S.); Tel.: +39-0546-699761 (E.C. & M.S.)
| | - Giada Bassi
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
| | - Monica Montesi
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
| | - Silvia Panseri
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (F.B.); (G.A.G.)
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (F.B.); (G.A.G.)
- Operative Unit of Microbiology, IRCCS St. Orsola Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
| | - Monica Sandri
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
- Correspondence: (E.C.); (M.S.); Tel.: +39-0546-699761 (E.C. & M.S.)
| |
Collapse
|
23
|
Polymeric Scaffolds: Design, Processing, and Biomedical Application. Int J Mol Sci 2021; 22:ijms22094552. [PMID: 33925314 PMCID: PMC8123599 DOI: 10.3390/ijms22094552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/25/2021] [Indexed: 11/30/2022] Open
|
24
|
Enhanced Biomechanical Properties of Polyvinyl Alcohol-Based Hybrid Scaffolds for Cartilage Tissue Engineering. Processes (Basel) 2021. [DOI: 10.3390/pr9050730] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Articular cartilage damage is a primary feature of osteoarthritis and other inflammatory joint diseases (i.e., rheumatoid arthritis). Repairing articular cartilage is highly challenging due to its avascular/aneural nature and low cellularity. To induce functional neocartilage formation, the tissue substitute must have mechanical properties which can adapt well to the loading conditions of the joint. Among the various biomaterials which may function as cartilage replacements, polyvinyl alcohol (PVA) hydrogels stand out for their high biocompatibility and tunable mechanical features. This review article describes and discusses the enrichment of PVA with natural materials (i.e., collagen, hyaluronic acid, hydroxyapatite, chitosan, alginate, extracellular matrix) ± synthetic additives (i.e., polyacrylic acid, poly-lactic-co-glycolic acid, poly(ethylene glycol) diacrylate, graphene oxide, bioactive glass) to produce cartilage substitutes with enhanced mechanical performance. PVA-based hybrid scaffolds have been investigated mainly by compression, tensile, friction, stress relaxation and creep tests, demonstrating increased stiffness and friction properties, and with cartilage-like viscoelastic behavior. In vitro and in vivo biocompatibility studies revealed positive outcomes but also many gaps yet to be addressed. Thus, recommendations for future research are proposed in order to prompt further progress in the fabrication of PVA-based hybrid scaffolds which increasingly match the biological and mechanical properties of native cartilage.
Collapse
|
25
|
The biomedical significance of multifunctional nanobiomaterials: The key components for site-specific delivery of therapeutics. Life Sci 2021; 277:119400. [PMID: 33794255 DOI: 10.1016/j.lfs.2021.119400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 01/07/2023]
Abstract
The emergence of nanotechnology has provided the possibilities to overcome the potential problems associated with the development of pharmaceuticals including the low solubility, non-specific cellular uptake or action, and rapid clearance. Regarding the biomaterials (BMs), huge efforts have been made for improving their multi-functionalities via incorporation of various nanomaterials (NMs). Nanocomposite hydrogels with suitable properties could exhibit a variety of beneficial effects in biomedicine particularly in the delivery of therapeutics or tissue engineering. NMs including the silica- or carbon-based ones are capable of integration into various BMs that might be due to their special compositions or properties such as the hydrophilicity, hydrophobicity, magnetic or electrical characteristics, and responsiveness to various stimuli. This might provide multi-functional nanobiomaterials against a wide variety of disorders. Meanwhile, inappropriate distribution or penetration into the cells or tissues, bio-nano interface complexity, targeting ability loss, or any other unpredicted phenomena are the serious challenging issues. Computational simulations and models enable development of NMs with optimal characteristics and provide a deeper knowledge of NM interaction with biosystems. This review highlights the biomedical significance of the multifunctional NMs particularly those applied for the development of 2-D or 3-D BMs for a variety of applications including the site-specific delivery of therapeutics. The powerful impacts of the computational techniques on the design process of NMs, quantitation and prediction of protein corona formation, risk assessment, and individualized therapy for improved therapeutic outcomes have also been discussed.
Collapse
|
26
|
Gao DY, Liu Z, Cheng ZL. 2D Ni-Fe MOF nanosheets reinforced poly(vinyl alcohol) hydrogels with enhanced mechanical and tribological performance. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125934] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|