1
|
Barozzi D, Scielzo C. Emerging Strategies in 3D Culture Models for Hematological Cancers. Hemasphere 2023; 7:e932. [PMID: 37520775 PMCID: PMC10378728 DOI: 10.1097/hs9.0000000000000932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/16/2023] [Indexed: 08/01/2023] Open
Abstract
In vitro cell cultures are fundamental and necessary tools in cancer research and personalized drug discovery. Currently, most cells are cultured using two-dimensional (2D) methods, and drug testing is mainly performed in animal models. However, new and improved methods that implement three-dimensional (3D) cell-culturing techniques provide compelling evidence that more advanced experiments can be performed, yielding valuable new insights. In 3D cell-culture experiments, the cell environment can be manipulated to mimic the complexity and dynamicity of the human tissue microenvironment, possibly leading to more accurate representations of cell-to-cell interactions, tumor biology, and predictions of drug response. The 3D cell cultures can also potentially provide alternative ways to study hematological cancers and are expected to eventually bridge the gap between 2D cell culture and animal models. The present review provides an overview of the complexity of the lymphoid microenvironment and a summary of the currently used 3D models that aim at recreating it for hematological cancer research. We here dissect the differences and challenges between, and potential advantages of, different culture methods and present our vision of the most promising future strategies in the hematological field.
Collapse
Affiliation(s)
- Dafne Barozzi
- Università degli Studi di Milano-Bicocca, School of Medicine and Surgery, PhD program in Molecular and Translational Medicine (DIMET), Milano, Italy
- Unit of Malignant B cells biology and 3D modelling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Cristina Scielzo
- Unit of Malignant B cells biology and 3D modelling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
2
|
Provision and delivery of survivorship care for adult patients with haematological malignancies: A scoping review protocol. PLoS One 2023; 18:e0282458. [PMID: 36862719 PMCID: PMC9980752 DOI: 10.1371/journal.pone.0282458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
INTRODUCTION Haematological malignancies are a heterogenous group of blood and lymphatic cancers. Survivorship care is a similarly diverse term concerning patients' health and wellbeing from diagnosis to end of life. Survivorship care for patients with haematological malignancies has traditionally been consultant-led and secondary care-based, although shifts away from this model have been occurring, largely via nurse-led clinics and interventions with some remote monitoring. However, there remains a lack of evidence regarding which model is most appropriate. Although previous reviews exist, patient populations, methodologies, and conclusions are varied, and further high-quality research and evaluation has been recommended. AIMS The aim of the scoping review this protocol describes is to summarise current evidence on the provision and delivery of survivorship care for adult patients diagnosed with a haematological malignancy, and to identify existing gaps to inform future research. METHODOLOGY A scoping review will be carried out utilising Arksey and O'Malley's guidelines as its methodological framework. Studies published in the English language from December 2007 to the present will be searched on bibliographic databases, including Medline, CINAHL, PsycInfo, Web of Science, and Scopus. Papers' titles, abstracts, and full text will predominantly be screened by one reviewer with a second reviewer blind screening a proportion. Data will be extracted using a customised table developed in collaboration with the review team, and presented in tabular and narrative format, arranged thematically. Studies included will contain data regarding adult (25+) patients diagnosed with any haematological malignancy in combination with aspects related to survivorship care. The survivorship care elements could be delivered by any provider within any setting, but should be delivered pre- or post-treatment, or to patients on a watchful waiting pathway. REGISTRATION The scoping review protocol has been registered on the Open Science Framework (OSF) repository Registries (https://osf.io/rtfvq; DOI: 10.17605/OSF.IO/RTFVQ).
Collapse
|
3
|
James JR, Curd J, Ashworth JC, Abuhantash M, Grundy M, Seedhouse CH, Arkill KP, Wright AJ, Merry CLR, Thompson A. Hydrogel-Based Pre-Clinical Evaluation of Repurposed FDA-Approved Drugs for AML. Int J Mol Sci 2023; 24:ijms24044235. [PMID: 36835644 PMCID: PMC9966469 DOI: 10.3390/ijms24044235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
In vivo models of acute myeloid leukemia (AML) are low throughput, and standard liquid culture models fail to recapitulate the mechanical and biochemical properties of the extracellular matrix-rich protective bone marrow niche that contributes to drug resistance. Candidate drug discovery in AML requires advanced synthetic platforms to improve our understanding of the impact of mechanical cues on drug sensitivity in AML. By use of a synthetic, self-assembling peptide hydrogel (SAPH) of modifiable stiffness and composition, a 3D model of the bone marrow niche to screen repurposed FDA-approved drugs has been developed and utilized. AML cell proliferation was dependent on SAPH stiffness, which was optimized to facilitate colony growth. Three candidate FDA-approved drugs were initially screened against the THP-1 cell line and mAF9 primary cells in liquid culture, and EC50 values were used to inform drug sensitivity assays in the peptide hydrogel models. Salinomycin demonstrated efficacy in both an 'early-stage' model in which treatment was added shortly after initiation of AML cell encapsulation, and an 'established' model in which time-encapsulated cells had started to form colonies. Sensitivity to Vidofludimus treatment was not observed in the hydrogel models, and Atorvastatin demonstrated increased sensitivity in the 'established' compared to the 'early-stage' model. AML patient samples were equally sensitive to Salinomycin in the 3D hydrogels and partially sensitive to Atorvastatin. Together, this confirms that AML cell sensitivity is drug- and context-specific and that advanced synthetic platforms for higher throughput are valuable tools for pre-clinical evaluation of candidate anti-AML drugs.
Collapse
Affiliation(s)
- Jenna R. James
- Blood Cancer and Stem Cell Group, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Johnathan Curd
- Stem Cell Glycobiology Group, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jennifer C. Ashworth
- Stem Cell Glycobiology Group, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
- School of Veterinary Medicine & Science, University of Nottingham, Nottingham NG7 2RD, UK
| | - Mays Abuhantash
- Blood Cancer and Stem Cell Group, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Martin Grundy
- Blood Cancer and Stem Cell Group, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Claire H. Seedhouse
- Blood Cancer and Stem Cell Group, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Kenton P. Arkill
- Endothelial and Vascular Imaging Laboratories, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Amanda J. Wright
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Catherine L. R. Merry
- Stem Cell Glycobiology Group, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alexander Thompson
- Blood Cancer and Stem Cell Group, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
- Correspondence:
| |
Collapse
|
4
|
Urdeitx P, Mousavi SJ, Avril S, Doweidar MH. Computational modeling of multiple myeloma interactions with resident bone marrow cells. Comput Biol Med 2023; 153:106458. [PMID: 36599211 DOI: 10.1016/j.compbiomed.2022.106458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022]
Abstract
The interaction of multiple myeloma with bone marrow resident cells plays a key role in tumor progression and the development of drug resistance. The tumor cell response involves contact-mediated and paracrine interactions. The heterogeneity of myeloma cells and bone marrow cells makes it difficult to reproduce this environment in in-vitro experiments. The use of in-silico established tools can help to understand these complex problems. In this article, we present a computational model based on the finite element method to define the interactions of multiple myeloma cells with resident bone marrow cells. This model includes cell migration, which is controlled by stress-strain equilibrium, and cell processes such as proliferation, differentiation, and apoptosis. A series of computational experiments were performed to validate the proposed model. Cell proliferation by the growth factor IGF-1 is studied for different concentrations ranging from 0-10 ng/mL. Cell motility is studied for different concentrations of VEGF and fibronectin in the range of 0-100 ng/mL. Finally, cells were simulated under a combination of IGF-1 and VEGF stimuli whose concentrations are considered to be dependent on the cancer-associated fibroblasts in the extracellular matrix. Results show a good agreement with previous in-vitro results. Multiple myeloma growth and migration are shown to correlate linearly to the IGF-1 stimuli. These stimuli are coupled with the mechanical environment, which also improves cell growth. Moreover, cell migration depends on the fiber and VEGF concentration in the extracellular matrix. Finally, our computational model shows myeloma cells trigger mesenchymal stem cells to differentiate into cancer-associated fibroblasts, in a dose-dependent manner.
Collapse
Affiliation(s)
- Pau Urdeitx
- School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, 50018, Spain; Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, 50018, Spain
| | - S Jamaleddin Mousavi
- Mines Saint-Étienne, University of Lyon, University of Jean Monnet, INSERM, Saint-Etienne, 42023, France
| | - Stephane Avril
- Mines Saint-Étienne, University of Lyon, University of Jean Monnet, INSERM, Saint-Etienne, 42023, France; Institute for Mechanics of Materials and Structures, TU Wien-Vienna University of Technology, Vienna, 1040, Austria
| | - Mohamed H Doweidar
- School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, 50018, Spain; Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, 50018, Spain.
| |
Collapse
|
5
|
Wang R, Zhang C, Li D, Yao Y. Tumor-on-a-chip: Perfusable vascular incorporation brings new approach to tumor metastasis research and drug development. Front Bioeng Biotechnol 2022; 10:1057913. [PMID: 36483772 PMCID: PMC9722735 DOI: 10.3389/fbioe.2022.1057913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/11/2022] [Indexed: 07/21/2023] Open
Abstract
The extracellular matrix interacts with cancer cells and is a key factor in the development of cancer. Traditional two-dimensional models cannot mimic the natural in situ environment of cancer tissues, whereas three-dimensional (3D) models such as spherical culture, bioprinting, and microfluidic approaches can achieve in vitro reproduction of certain structures and components of the tumor microenvironment, including simulation of the hypoxic environment of tumor tissue. However, the lack of a perfusable vascular network is a limitation of most 3D models. Solid tumor growth and metastasis require angiogenesis, and tumor models with microvascular networks have been developed to better understand underlying mechanisms. Tumor-on-a-chip technology combines the advantages of microfluidics and 3D cell culture technology for the simulation of tumor tissue complexity and characteristics. In this review, we summarize progress in constructing tumor-on-a-chip models with efficiently perfused vascular networks. We also discuss the applications of tumor-on-a-chip technology to studying the tumor microenvironment and drug development. Finally, we describe the creation of several common tumor models based on this technology to provide a deeper understanding and new insights into the design of vascularized cancer models. We believe that the tumor-on-a-chip approach is an important development that will provide further contributions to the field.
Collapse
Affiliation(s)
| | | | - Danxue Li
- *Correspondence: Danxue Li, ; Yang Yao,
| | - Yang Yao
- *Correspondence: Danxue Li, ; Yang Yao,
| |
Collapse
|
6
|
García-Briega MI, Ródenas-Rochina J, Martins LA, Lanceros-Méndez S, Gallego Ferrer G, Sempere A, Gómez Ribelles JL. Stability of Biomimetically Functionalised Alginate Microspheres as 3D Support in Cell Cultures. Polymers (Basel) 2022; 14:4282. [PMID: 36297867 PMCID: PMC9611185 DOI: 10.3390/polym14204282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022] Open
Abstract
Alginate hydrogels can be used to develop a three-dimensional environment in which various cell types can be grown. Cross-linking the alginate chains using reversible ionic bonds opens up great possibilities for the encapsulation and subsequent release of cells or drugs. However, alginate also has a drawback in that its structure is not very stable in a culture medium with cellular activity. This work explored the stability of alginate microspheres functionalised by grafting specific biomolecules onto their surface to form microgels in which biomimetic microspheres surrounded the cells in the culture, reproducing the natural microenvironment. A study was made of the stability of the microgel in different typical culture media and the formation of polyelectrolyte multilayers containing polylysine and heparin. Multiple myeloma cell proliferation in the culture was tested in a bioreactor under gentle agitation.
Collapse
Affiliation(s)
- María Inmaculada García-Briega
- Centre for Biomaterials and Tissue Engineering (CBIT) Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| | - Joaquín Ródenas-Rochina
- Centre for Biomaterials and Tissue Engineering (CBIT) Universitat Politècnica de València, 46022 Valencia, Spain
| | - Luis Amaro Martins
- Centre for Biomaterials and Tissue Engineering (CBIT) Universitat Politècnica de València, 46022 Valencia, Spain
| | - Senentxu Lanceros-Méndez
- Centre of Physics, Universidade Do Minho, 4710-057 Braga, Portugal
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Gloria Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering (CBIT) Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| | - Amparo Sempere
- Grupo de Investigación en Hematología, Instituto de Investigación Sanitaria La Fe (IISLAFE), 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain
| | - José Luís Gómez Ribelles
- Centre for Biomaterials and Tissue Engineering (CBIT) Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| |
Collapse
|
7
|
Staros R, Michalak A, Rusinek K, Mucha K, Pojda Z, Zagożdżon R. Perspectives for 3D-Bioprinting in Modeling of Tumor Immune Evasion. Cancers (Basel) 2022; 14:cancers14133126. [PMID: 35804898 PMCID: PMC9265021 DOI: 10.3390/cancers14133126] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/31/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
In a living organism, cancer cells function in a specific microenvironment, where they exchange numerous physical and biochemical cues with other cells and the surrounding extracellular matrix (ECM). Immune evasion is a clinically relevant phenomenon, in which cancer cells are able to direct this interchange of signals against the immune effector cells and to generate an immunosuppressive environment favoring their own survival. A proper understanding of this phenomenon is substantial for generating more successful anticancer therapies. However, classical cell culture systems are unable to sufficiently recapture the dynamic nature and complexity of the tumor microenvironment (TME) to be of satisfactory use for comprehensive studies on mechanisms of tumor immune evasion. In turn, 3D-bioprinting is a rapidly evolving manufacture technique, in which it is possible to generate finely detailed structures comprised of multiple cell types and biomaterials serving as ECM-analogues. In this review, we focus on currently used 3D-bioprinting techniques, their applications in the TME research, and potential uses of 3D-bioprinting in modeling of tumor immune evasion and response to immunotherapies.
Collapse
Affiliation(s)
- Rafał Staros
- Department of Immunology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-006 Warsaw, Poland; (R.S.); (K.M.)
| | - Agata Michalak
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Institute of Oncology, 02-781 Warsaw, Poland; (A.M.); (K.R.); (Z.P.)
| | - Kinga Rusinek
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Institute of Oncology, 02-781 Warsaw, Poland; (A.M.); (K.R.); (Z.P.)
| | - Krzysztof Mucha
- Department of Immunology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-006 Warsaw, Poland; (R.S.); (K.M.)
| | - Zygmunt Pojda
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Institute of Oncology, 02-781 Warsaw, Poland; (A.M.); (K.R.); (Z.P.)
| | - Radosław Zagożdżon
- Department of Immunology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-006 Warsaw, Poland; (R.S.); (K.M.)
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Institute of Oncology, 02-781 Warsaw, Poland; (A.M.); (K.R.); (Z.P.)
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-502-14-72; Fax: +48-22-502-21-59
| |
Collapse
|
8
|
Simsek H, Klotzsch E. The solid tumor microenvironment-Breaking the barrier for T cells: How the solid tumor microenvironment influences T cells: How the solid tumor microenvironment influences T cells. Bioessays 2022; 44:e2100285. [PMID: 35393714 DOI: 10.1002/bies.202100285] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/20/2022]
Abstract
The tumor microenvironment (TME) plays a pivotal role in the behavior and development of solid tumors as well as shaping the immune response against them. As the tumor cells proliferate, the space they occupy and their physical interactions with the surrounding tissue increases. The growing tumor tissue becomes a complex dynamic structure, containing connective tissue, vascular structures, and extracellular matrix (ECM) that facilitates stimulation, oxygenation, and nutrition, necessary for its fast growth. Mechanical cues such as stiffness, solid stress, interstitial fluid pressure (IFP), matrix density, and microarchitecture influence cellular functions and ultimately tumor progression and metastasis. In this fight, our body is equipped with T cells as its spearhead against tumors. However, the altered biochemical and mechanical environment of the tumor niche affects T cell efficacy and leads to their exhaustion. Understanding the mechanobiological properties of the TME and their effects on T cells is key for developing novel adoptive tumor immunotherapies.
Collapse
Affiliation(s)
- Hasan Simsek
- Institute for Biology, Experimental Biophysics/Mechanobiology, Humboldt University of Berlin, Berlin, Germany
| | - Enrico Klotzsch
- Institute for Biology, Experimental Biophysics/Mechanobiology, Humboldt University of Berlin, Berlin, Germany.,Laboratory of Applied Mechanobiology, Department for Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
9
|
Clara-Trujillo S, Tolosa L, Cordón L, Sempere A, Gallego Ferrer G, Gómez Ribelles JL. Novel microgel culture system as semi-solid three-dimensional in vitro model for the study of multiple myeloma proliferation and drug resistance. BIOMATERIALS ADVANCES 2022; 135:212749. [PMID: 35929221 DOI: 10.1016/j.bioadv.2022.212749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 12/28/2022]
Abstract
Multiple myeloma (MM) is a hematological malignancy in which the patient's drug resistance is one of the main clinical problems. As 2D cultures do not recapitulate the cellular microenvironment, which has a key role in drug resistance, there is an urgent need for better biomimetic models. Here, a novel 3D platform is used to model MM. The semi-solid culture consists of a dynamic suspension of microspheres and MM cells, termed as microgel. Microspheres are synthesized with acrylic polymers of different sizes, compositions, and functionalities (fibronectin or hyaluronic acid). Optimal conditions for the platform in terms of agitation speed and microsphere size have been determined. With these parameters the system allows good proliferation of the MM cell lines RPMI8226, U226, and MM1.S. Interestingly, when used for drug resistance studies, culture of the three MM cell lines in microgels showed close agreement in revealing the role of acrylic acid in resistance to anti-MM drugs such as dexamethasone and bortezomib. This work presents a unique platform for the in vitro modeling of non-solid tumors since it allows keeping non-adherent cells in suspension conditions but in a 3D context that can be easily tuned with different functionalizations.
Collapse
Affiliation(s)
- Sandra Clara-Trujillo
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia 46022, Spain.
| | - Laia Tolosa
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia 46022, Spain; Experimental Hepatology Unit, Health Research Institute La Fe (IIS La Fe), Valencia 46026, Spain
| | - Lourdes Cordón
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain; Hematology Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Amparo Sempere
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain; Hematology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Gloria Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia 46022, Spain
| | - José Luis Gómez Ribelles
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia 46022, Spain
| |
Collapse
|
10
|
ABSTRACTS (BY NUMBER). Tissue Eng Part A 2022. [DOI: 10.1089/ten.tea.2022.29025.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
11
|
Lu J, Ding J, Liu Z, Chen T. Retrospective analysis of the preparation and application of immunotherapy in cancer treatment (Review). Int J Oncol 2022; 60:12. [PMID: 34981814 PMCID: PMC8759346 DOI: 10.3892/ijo.2022.5302] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Monoclonal antibody technology plays a vital role in biomedical and immunotherapy, which greatly promotes the study of the structure and function of genes and proteins. To date, monoclonal antibodies have gone through four stages: murine monoclonal antibody, chimeric monoclonal antibody, humanised monoclonal antibody and fully human monoclonal antibody; thousands of monoclonal antibodies have been used in the fields of biology and medicine, playing a special role in the pathogenesis, diagnosis and treatment of disease. In this review, we compare the advantages and disadvantages of hybridoma technology, phage display technology, ribosome display technology, transgenic mouse technology, single B cell monoclonal antibody generation technologies, and forecast the promising applications of these technologies in clinical medicine, disease diagnosis and tumour treatment.
Collapse
Affiliation(s)
- Jiachen Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianing Ding
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
12
|
Calcium Phosphate Coating Prepared by Microarc Oxidation Affects hTERT Expression, Molecular Presentation, and Cytokine Secretion in Tumor-Derived Jurkat T Cells. MATERIALS 2020; 13:ma13194307. [PMID: 32992463 PMCID: PMC7579201 DOI: 10.3390/ma13194307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/16/2023]
Abstract
Calcium phosphate (CaP) materials are among the best bone graft substitutes, but their use in the repair of damaged bone in tumor patients is still unclear. The human Jurkat T lymphoblast leukemia-derived cell line (Jurkat T cells) was exposed in vitro to a titanium (Ti) substrate (10 × 10 × 1 mm3) with a bilateral rough (average roughness index (Ra) = 2–5 μm) CaP coating applied via the microarc oxidation (MAO) technique, and the morphofunctional response of the cells was studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscope (EDX) analyses showed voltage-dependent (150–300 V) growth of structural (Ra index, mass, and thickness) and morphological surface and volume elements, a low Ca/PaT ratio (0.3–0.6), and the appearance of crystalline phases of CaHPO4 (monetite) and β-Ca2P2O7 (calcium pyrophosphate). Cell and molecular reactions in 2-day and 14-day cultures differed strongly and correlated with the Ra values. There was significant upregulation of hTERT expression (1.7-fold), IL-17 secretion, the presentation of the activation antigens CD25 (by 2.7%) and CD95 (by 5.15%) on CD4+ cells, and 1.5–2-fold increased cell apoptosis and necrosis after two days of culture. Hyperactivation-dependent death of CD4+ cells triggered by the surface roughness of the CaP coating was proposed. Conversely, a 3.2-fold downregulation in hTERT expression increased the percentages of CD4+ cells and their CD95+ subset (by 15.5% and 22.9%, respectively) and inhibited the secretion of 17 of 27 test cytokines/chemokines without a reduction in Jurkat T cell survival after 14 days of coculture. Thereafter, cell hypoergy and the selection of an hTERT-independent viable CD4+ subset of tumor cells were proposed. The possible role of negative zeta potentials and Ca2+ as effectors of CaP roughness was discussed. The continuous (2–14 days) 1.5–6-fold reductions in the secretion of vascular endothelial growth factor (VEGF) by tumor cells correlated with the Ra values of microarc CaP-coated Ti substrates seems to limit surgical stress-induced metastasis of lymphoid malignancies.
Collapse
|