1
|
Chowdhury R, Bhuia MS, Al Hasan MS, Hossain Snigdha S, Afrin S, Büsselberg D, Habtemariam S, Sönmez Gürer E, Sharifi‐Rad J, Ahmed Aldahish A, Аkhtayeva N, Islam MT. Anticancer potential of phytochemicals derived from mangrove plants: Comprehensive mechanistic insights. Food Sci Nutr 2024; 12:6174-6205. [PMID: 39554337 PMCID: PMC11561795 DOI: 10.1002/fsn3.4318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 11/19/2024] Open
Abstract
Cancer is a collection of illnesses characterized by aberrant cellular proliferation that can infiltrate or metastasize to distant anatomical sites, posing a notable threat to human well-being due to its substantial morbidity and death rates worldwide. The potential of plant-derived natural compounds as anticancer medicines has been assessed owing to their favorable attributes of few side effects and significant antitumor activity. Mangrove plants and their derived compounds have been scientifically shown to exhibit many significant beneficial biological activities, such as anti-inflammatory, immunomodulatory, antioxidant, neuroprotective, cardioprotective, and hepatoprotective properties. This study summarized mangrove plants and their derived compounds as potential anticancer agents, with an emphasis on the underlying molecular mechanisms. To explore this, we gathered data on the preclinical (in vivo and in vitro) anticancer effects of mangrove plants and their derived compounds from reputable literature spanning 2000 to 2023. We conducted thorough searches in various academic databases, including PubMed, ScienceDirect, Wiley Online, SpringerLink, Google Scholar, Scopus, and the Web of Science. The results demonstrated that mangrove plants and their derived compounds have promising anticancer properties in preclinical pharmacological test systems through various molecular mechanisms, including induction of oxidative stress and mitochondrial dysfunction, cytotoxicity, genotoxicity, cell cycle arrest, apoptosis, autophagy, antiproliferative, antimetastatic, and other miscellaneous actions. Upon thorough observation of the pertinent information, it is suggested that mangrove plants and their derived chemicals may serve as a potential lead in the development of novel drugs for cancer therapy.
Collapse
Affiliation(s)
- Raihan Chowdhury
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
| | - Md. Shimul Bhuia
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
| | - Md. Sakib Al Hasan
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | | | - Sadia Afrin
- Pharmacy DisciplineKhulna UniversityKhulnaBangladesh
| | | | | | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of PharmacognosySivas Cumhuriyet UniversitySivasTurkey
| | - Javad Sharifi‐Rad
- Department of Biomedical SciencesCollege of Medicine, Korea UniversitySeoulRepublic of Korea
| | - Afaf Ahmed Aldahish
- Department of Pharmacology, College of PharmacyKing Khalid UniversityAbhaSaudi Arabia
| | - Nursulu Аkhtayeva
- Department of Biodiversity and Bioresources of Al‐Farabi Kazakh National UniversityAlmatyKazakhstan
| | - Muhammad Torequl Islam
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
- Pharmacy DisciplineKhulna UniversityKhulnaBangladesh
| |
Collapse
|
2
|
Dong Z, Luo Y, Yuan Z, Tian Y, Jin T, Xu F. Cellular senescence and SASP in tumor progression and therapeutic opportunities. Mol Cancer 2024; 23:181. [PMID: 39217404 PMCID: PMC11365203 DOI: 10.1186/s12943-024-02096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Cellular senescence (CS), a permanent and irreversible arrest of the cell cycle and proliferation leading to the degeneration of cellular structure and function, has been implicated in various key physiological and pathological processes, particularly in cancer. Initially, CS was recognized as a barrier to tumorigenesis, serving as an intrinsic defense mechanism to protect cells from malignant transformation. However, increasing evidence suggests that senescent cells can promote tumor progression to overt malignancy, primarily through a set of factors known as senescence-associated secretory phenotypes (SASPs), including chemokines, growth factors, cytokines, and stromal metalloproteinases. These factors significantly reshape the tumor microenvironment (TME), enabling tumors to evade immune destruction. Interestingly, some studies have also suggested that SASPs may impede tumor development by enhancing immunosurveillance. These opposing roles highlight the complexity and heterogeneity of CS and SASPs in diverse cancers. Consequently, there has been growing interest in pharmacological interventions targeting CS or SASPs in cancer therapy, such as senolytics and senomorphics, to either promote the clearance of senescent cells or mitigate the harmful effects of SASPs. In this review, we will interpret the concept of CS, delve into the role of SASPs in reshaping the TME, and summarize recent advances in anti-tumor strategies targeting CS or SASPs.
Collapse
Affiliation(s)
- Zening Dong
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yahan Luo
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
| | - Zhangchen Yuan
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Tian
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tianqiang Jin
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Feng Xu
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Mirzayans R. Changing the Landscape of Solid Tumor Therapy from Apoptosis-Promoting to Apoptosis-Inhibiting Strategies. Curr Issues Mol Biol 2024; 46:5379-5396. [PMID: 38920994 PMCID: PMC11202608 DOI: 10.3390/cimb46060322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
The many limitations of implementing anticancer strategies under the term "precision oncology" have been extensively discussed. While some authors propose promising future directions, others are less optimistic and use phrases such as illusion, hype, and false hypotheses. The reality is revealed by practicing clinicians and cancer patients in various online publications, one of which has stated that "in the quest for the next cancer cure, few researchers bother to look back at the graveyard of failed medicines to figure out what went wrong". The message is clear: Novel therapeutic strategies with catchy names (e.g., synthetic "lethality") have not fulfilled their promises despite decades of extensive research and clinical trials. The main purpose of this review is to discuss key challenges in solid tumor therapy that surprisingly continue to be overlooked by the Nomenclature Committee on Cell Death (NCCD) and numerous other authors. These challenges include: The impact of chemotherapy-induced genome chaos (e.g., multinucleation) on resistance and relapse, oncogenic function of caspase 3, cancer cell anastasis (recovery from late stages of apoptosis), and pitfalls of ubiquitously used preclinical chemosensitivity assays (e.g., cell "viability" and tumor growth delay studies in live animals) that score such pro-survival responses as "lethal" events. The studies outlined herein underscore the need for new directions in the management of solid tumors.
Collapse
Affiliation(s)
- Razmik Mirzayans
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
4
|
Conway PJ, Dao J, Kovalskyy D, Mahadevan D, Dray E. Polyploidy in Cancer: Causal Mechanisms, Cancer-Specific Consequences, and Emerging Treatments. Mol Cancer Ther 2024; 23:638-647. [PMID: 38315992 PMCID: PMC11174144 DOI: 10.1158/1535-7163.mct-23-0578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/19/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Drug resistance is the major determinant for metastatic disease and fatalities, across all cancers. Depending on the tissue of origin and the therapeutic course, a variety of biological mechanisms can support and sustain drug resistance. Although genetic mutations and gene silencing through epigenetic mechanisms are major culprits in targeted therapy, drug efflux and polyploidization are more global mechanisms that prevail in a broad range of pathologies, in response to a variety of treatments. There is an unmet need to identify patients at risk for polyploidy, understand the mechanisms underlying polyploidization, and to develop strategies to predict, limit, and reverse polyploidy thus enhancing efficacy of standard-of-care therapy that improve better outcomes. This literature review provides an overview of polyploidy in cancer and offers perspective on patient monitoring and actionable therapy.
Collapse
Affiliation(s)
- Patrick J Conway
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Jonathan Dao
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Dmytro Kovalskyy
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas
| | - Daruka Mahadevan
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| | - Eloise Dray
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
5
|
Mirzayans R, Andrais B, Murray D. Single-Cell MTT: A Simple and Sensitive Assay for Determining the Viability and Metabolic Activity of Polyploid Giant Cancer Cells (PGCCs). Methods Mol Biol 2024; 2825:293-308. [PMID: 38913317 DOI: 10.1007/978-1-0716-3946-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Solid tumors and tumor-derived cell lines commonly contain highly enlarged (giant) cancer cells that enter a state of transient dormancy (active sleep) after they are formed, but retain viability, secrete growth promoting factors, and exhibit the ability to generate rapidly proliferating progeny with stem cell-like properties. Giant cells with a highly enlarged nucleus or multiple nuclei are often called polyploid giant cancer cells (PGCCs). Although PGCCs constitute only a subset of cells within a solid tumor/tumor-derived cell line, their frequency can increase markedly following exposure to ionizing radiation or chemotherapeutic drugs. In this chapter we outline a simple and yet highly sensitive cell-based assay, called single-cell MTT, that we have optimized for determining the viability and metabolic activity of PGCCs before and after exposure to anticancer agents. The assay measures the ability of individual PGCCs to convert the MTT tetrazolium salt to its water insoluble formazan metabolite. In addition to evaluating PGCCs, this assay is also a powerful tool for determining the viability and metabolic activity of cancer cells undergoing premature senescence following treatment with anticancer agents, as well as for distinguishing dead cancer cells and dying cells (e.g., exhibiting features of apoptosis, ferroptosis, etc.) that have the potential to resume proliferation through a process called anastasis.
Collapse
Affiliation(s)
- Razmik Mirzayans
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB, Canada.
| | - Bonnie Andrais
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB, Canada
| | - David Murray
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB, Canada
| |
Collapse
|
6
|
Harris S, Kim K. Apoptotic pathway protein expression variance in metal oxide and quantum dot treated HeLa cells. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000801. [PMID: 37602282 PMCID: PMC10435268 DOI: 10.17912/micropub.biology.000801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/26/2023] [Accepted: 07/16/2023] [Indexed: 08/22/2023]
Abstract
Using the HeLa cell line as a cancerous model, apoptotic protein expression was assessed upon various nanoparticle treatments. Utilizing a known chemotherapeutic agent, cisplatin, as a positive control for induction of apoptosis, several metal oxides (ZnO and CuO) and quantum dots (CdSe/ZnS and InP/ZnS) were investigated for their ability to express apoptotic markers. ZnO, CuO, green CdSe/ZnS, and green InP/ZnS were treated for 24 hours at their IC50 value. Western blot techniques were used to measure protein expression of phosphorylated p53 (ser15), PUMA, and p21 which are involved in signal transduction of apoptosis. CuO, ZnO, and CdSe/ZnS demonstrated considerable p53 activation at 24 hrs compared to the non-treated control. At the IC50 value, CdSe/ZnS quantum dots were the quickest at activating p53 by phosphorylation at the Serine 15 residue. Together, our results provide new insight into the apoptotic mechanism behind these treatments and lead to improved treatments against cancer.
Collapse
Affiliation(s)
- Seth Harris
- Biology, Missouri State University, Springfield, Missouri, United States
| | - Kyoungtae Kim
- Biology, Missouri State University, Springfield, Missouri, United States
| |
Collapse
|
7
|
Mirzayans R, Murray D. Intratumor Heterogeneity and Treatment Resistance of Solid Tumors with a Focus on Polyploid/Senescent Giant Cancer Cells (PGCCs). Int J Mol Sci 2023; 24:11534. [PMID: 37511291 PMCID: PMC10380821 DOI: 10.3390/ijms241411534] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Single cell biology has revealed that solid tumors and tumor-derived cell lines typically contain subpopulations of cancer cells that are readily distinguishable from the bulk of cancer cells by virtue of their enormous size. Such cells with a highly enlarged nucleus, multiple nuclei, and/or multiple micronuclei are often referred to as polyploid giant cancer cells (PGCCs), and may exhibit features of senescence. PGCCs may enter a dormant phase (active sleep) after they are formed, but a subset remain viable, secrete growth promoting factors, and can give rise to therapy resistant and tumor repopulating progeny. Here we will briefly discuss the prevalence and prognostic value of PGCCs across different cancer types, the current understanding of the mechanisms of their formation and fate, and possible reasons why these tumor repopulating "monsters" continue to be ignored in most cancer therapy-related preclinical studies. In addition to PGCCs, other subpopulations of cancer cells within a solid tumor (such as oncogenic caspase 3-activated cancer cells and drug-tolerant persister cancer cells) can also contribute to therapy resistance and pose major challenges to the delivery of cancer therapy.
Collapse
Affiliation(s)
- Razmik Mirzayans
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - David Murray
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
8
|
Ji X, Wang E, Cui Q. Deciphering gene contributions and etiologies of somatic mutational signatures of cancer. Brief Bioinform 2023; 24:6995381. [PMID: 36682004 DOI: 10.1093/bib/bbad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/23/2023] Open
Abstract
Somatic mutational signatures (MSs) identified by genome sequencing play important roles in exploring the cause and development of cancer. Thus far, many such signatures have been identified, and some of them do imply causes of cancer. However, a major bottleneck is that we do not know the potential meanings (i.e. carcinogenesis or biological functions) and contributing genes for most of them. Here, we presented a computational framework, Gene Somatic Genome Pattern (GSGP), which can decipher the molecular mechanisms of the MSs. More importantly, it is the first time that the GSGP is able to process MSs from ribonucleic acid (RNA) sequencing, which greatly extended the applications of both MS analysis and RNA sequencing (RNAseq). As a result, GSGP analyses match consistently with previous reports and identify the etiologies for a number of novel signatures. Notably, we applied GSGP to RNAseq data and revealed an RNA-derived MS involved in deficient deoxyribonucleic acid mismatch repair and microsatellite instability in colorectal cancer. Researchers can perform customized GSGP analysis using the web tools or scripts we provide.
Collapse
Affiliation(s)
- Xiangwen Ji
- Department of Biomedical Informatics, School of Basic Medical Science, Peking University Health Science Center, Beijing, China
| | - Edwin Wang
- Department of Biochemistry and Molecular Biology, Medical Genetics, and Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Science, Peking University Health Science Center, Beijing, China
| |
Collapse
|
9
|
Souza WA, Ramos LMS, de Almeida AM, Tezuka DY, Lopes CD, Moreira MB, Zanetti RD, Netto AVG, Ferreira FB, de Oliveira RJ, Guedes GP, de Albuquerque S, Silva JRL, Pereira-Maia EC, Resende JALC, de Almeida MV, Guerra W. Preparation, cytotoxic activity and DNA interaction studies of new platinum(II) complexes with 1,10-phenanthroline and 5-alkyl-1,3,4-oxadiazol-2(3H)-thione derivatives. J Inorg Biochem 2022; 237:111993. [PMID: 36108344 DOI: 10.1016/j.jinorgbio.2022.111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 01/18/2023]
Abstract
This work describes the synthesis, characterization and in vitro anticancer activity of two platinum(II) complexes of the type [Pt(L1)2(1,10-phen)] 1 and [Pt(L2)2(1,10-phen)] 2, where L1 = 5-heptyl-1,3,4-oxadiazole-2-(3H)-thione, L2 = 5-nonyl-1,3,4-oxadiazole-2-(3H)-thione and 1,10-phen = 1,10-phenanthroline. As to the structure of these complexes, the X-ray structural analysis of 1 indicates that the geometry around the platinum(II) ion is distorted square-planar, where two 5-alkyl-1,3,4-oxadiazol-2-thione derivatives coordinate a platinum(II) ion through the sulfur atom. A chelating bidentate phenanthroline molecule completes the coordination sphere. We tested these complexes in two breast cancer cell lines, namely, MCF-7 (a hormone responsive cancer cell) and MDA-MB-231 (triple negative breast cancer cell). In both cells, the most lipophilic platinum compound, complex 2, was more active than cisplatin, one of the most widely used anticancer drugs nowadays. DNA binding studies indicated that such complexes are able to bind to ct-DNA with Kb values of 104 M-1. According to data from dichroism circular and fluorescence spectroscopy, these complexes appear to bind to the DNA in a non-intercalative, probably via minor groove. Molecular docking followed by semiempirical simulations indicated that these complexes showed favorable interactions with the minor groove of the double helix of ct-DNA in an A-T rich region. Thereafter, flow cytometry analysis showed that complex 2 induced apoptosis and necrosis in MCF-7 cells.
Collapse
Affiliation(s)
- Wesley A Souza
- Instituto de Química, Universidade Federal de Uberlândia, Campus Santa Mônica, Uberlândia, MG, Brazil; Instituto de Ciências Exatas e da Terra, Campus Universitário do Araguaia, Universidade Federal do Mato Grosso, Pontal do Araguaia, MT, Brazil
| | - Luana M S Ramos
- Instituto de Química, Universidade Federal de Uberlândia, Campus Santa Mônica, Uberlândia, MG, Brazil
| | - Angelina M de Almeida
- Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Daiane Y Tezuka
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Carla D Lopes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Mariete B Moreira
- UNESP - Univ. Estadual Paulista, Institute of Chemistry, Araraquara, SP, Brazil; Departamento de Química, Universidade Estadual de Maringá, PR, Brazil
| | - Renan D Zanetti
- UNESP - Univ. Estadual Paulista, Institute of Chemistry, Araraquara, SP, Brazil
| | - Adelino V G Netto
- UNESP - Univ. Estadual Paulista, Institute of Chemistry, Araraquara, SP, Brazil
| | | | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Guilherme P Guedes
- Instituto de Química, Universidade Federal Fluminense, Campus Valonguinho, Niterói, RJ, Brazil
| | - Sérgio de Albuquerque
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Júlia R L Silva
- Departamento de Química, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - Elene C Pereira-Maia
- Departamento de Química, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - Jackson A L C Resende
- Instituto de Ciências Exatas e da Terra, Campus Universitário do Araguaia, Universidade Federal do Mato Grosso, Pontal do Araguaia, MT, Brazil
| | - Mauro V de Almeida
- Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Wendell Guerra
- Instituto de Química, Universidade Federal de Uberlândia, Campus Santa Mônica, Uberlândia, MG, Brazil.
| |
Collapse
|
10
|
Peng SY, Yen CY, Lan TH, Jeng JH, Tang JY, Chang HW. Combined Treatment (Ultraviolet-C/Physapruin A) Enhances Antiproliferation and Oxidative-Stress-Associated Mechanism in Oral Cancer Cells. Antioxidants (Basel) 2022; 11:2227. [PMID: 36421413 PMCID: PMC9686797 DOI: 10.3390/antiox11112227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
Physapruin A (PHA), a Physalis peruviana-derived withanolide, exhibits antiproliferation activity against oral and breast cancer cells. However, its potential antitumor effects in combined treatments remain unclear. This investigation focused on evaluating the impact of the combined treatment of ultraviolet-C with PHA (UVC/PHA) on the proliferation of oral cancer cells. The UVC-caused antiproliferation was enhanced by combination with PHA in oral cancer (Ca9-22 and CAL 27) but not normal cells (SG), as evidenced by ATP detection, compared with UVC or PHA alone. UVC/PHA showed a greater extent of subG1 increase, G2/M arrest, annexin-V-assessed apoptosis, caspase 3/7 activation, and reactive oxygen species (ROS) in the UVC or PHA treatment of oral cancer compared to normal cells. Moreover, the mitochondrial functions, such as mitochondrial superoxide bursts and mitochondrial membrane potential destruction, of oral cancer cells were also enhanced by UVC/PHA compared to UVC or PHA alone. These oxidative stresses triggered γH2AX and 8-hydroxyl-2'-deoxyguanosine-assessed DNA damage to a greater extent under UVC/PHA treatment than under UVC or PHA treatment alone. The ROS inhibitor N-acetylcysteine reversed all these UVC/PHA-promoted changes. In conclusion, UVC/PHA is a promising strategy for decreasing the proliferation of oral cancer cells but shows no inhibitory effect on normal cells.
Collapse
Affiliation(s)
- Sheng-Yao Peng
- Department of Biomedical Science and Environmental Biology, Ph.D Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Ting-Hsun Lan
- Division of Prosthodontics, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Ph.D Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
11
|
Mirzayans R, Murray D. What Are the Reasons for Continuing Failures in Cancer Therapy? Are Misleading/Inappropriate Preclinical Assays to Be Blamed? Might Some Modern Therapies Cause More Harm than Benefit? Int J Mol Sci 2022; 23:13217. [PMID: 36362004 PMCID: PMC9655591 DOI: 10.3390/ijms232113217] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Over 50 years of cancer research has resulted in the generation of massive amounts of information, but relatively little progress has been made in the treatment of patients with solid tumors, except for extending their survival for a few months at best. Here, we will briefly discuss some of the reasons for this failure, focusing on the limitations and sometimes misunderstanding of the clinical relevance of preclinical assays that are widely used to identify novel anticancer drugs and treatment strategies (e.g., "synthetic lethality"). These include colony formation, apoptosis (e.g., caspase-3 activation), immunoblotting, and high-content multiwell plate cell-based assays, as well as tumor growth studies in animal models. A major limitation is that such assays are rarely designed to recapitulate the tumor repopulating properties associated with therapy-induced cancer cell dormancy (durable proliferation arrest) reflecting, for example, premature senescence, polyploidy and/or multinucleation. Furthermore, pro-survival properties of apoptotic cancer cells through phoenix rising, failed apoptosis, and/or anastasis (return from the brink of death), as well as cancer immunoediting and the impact of therapeutic agents on interactions between cancer and immune cells are often overlooked in preclinical studies. A brief review of the history of cancer research makes one wonder if modern strategies for treating patients with solid tumors may sometimes cause more harm than benefit.
Collapse
|
12
|
Fucoidan/UVC Combined Treatment Exerts Preferential Antiproliferation in Oral Cancer Cells but Not Normal Cells. Antioxidants (Basel) 2022; 11:antiox11091797. [PMID: 36139871 PMCID: PMC9495684 DOI: 10.3390/antiox11091797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 12/29/2022] Open
Abstract
Combined treatment is a promising anticancer strategy for improving antiproliferation compared with a single treatment but is limited by adverse side effects on normal cells. Fucoidan (FN), a brown-algae-derived polysaccharide safe food ingredient, exhibits preferential function for antiproliferation to oral cancer but not normal cells. Utilizing the preferential antiproliferation, the impacts of FN in regulating ultraviolet C (UVC) irradiation were assessed in oral cancer cells. A combined treatment (UVC/FN) reduced cell viability of oral cancer cells (Ca9-22 and CAL 27) more than single treatments (FN or UVC), i.e., 53.7%/54.6% vs. 71.2%/91.6%, and 89.2%/79.4%, respectively, while the cell viability of UVC/FN treating on non-malignant oral (S–G) was higher than oral cancer cells, ranging from 106.0 to 108.5%. Mechanistically, UVC/FN preferentially generated higher subG1 accumulation and apoptosis-related inductions (annexin V, caspases 3, 8, and 9) in oral cancer cells than single treatments. UVC/FN preferentially generated higher oxidative stress than single treatments, as evidenced by flow cytometry-detecting reactive oxygen species, mitochondrial superoxide, and glutathione. Moreover, UVC/FN preferentially caused more DNA damage (γH2AX and 8-hydroxy-2’-deoxyguanosine) in oral cancer cells than in single treatments. N-acetylcysteine pretreatment validated the oxidative stress effects in these UVC/FN-induced changes. Taken together, FN effectively enhances UVC-triggered antiproliferation to oral cancer cells. UVC/FN provides a promising potential for preferential and synergistic antiproliferation in antioral cancer therapy.
Collapse
|
13
|
Keshavarz-Rahaghi F, Pleasance E, Kolisnik T, Jones SJM. A p53 transcriptional signature in primary and metastatic cancers derived using machine learning. Front Genet 2022; 13:987238. [PMID: 36134028 PMCID: PMC9483853 DOI: 10.3389/fgene.2022.987238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor suppressor gene, TP53, has the highest rate of mutation among all genes in human cancer. This transcription factor plays an essential role in the regulation of many cellular processes. Mutations in TP53 result in loss of wild-type p53 function in a dominant negative manner. Although TP53 is a well-studied gene, the transcriptome modifications caused by the mutations in this gene have not yet been explored in a pan-cancer study using both primary and metastatic samples. In this work, we used a random forest model to stratify tumor samples based on TP53 mutational status and detected a p53 transcriptional signature. We hypothesize that the existence of this transcriptional signature is due to the loss of wild-type p53 function and is universal across primary and metastatic tumors as well as different tumor types. Additionally, we showed that the algorithm successfully detected this signature in samples with apparent silent mutations that affect correct mRNA splicing. Furthermore, we observed that most of the highly ranked genes contributing to the classification extracted from the random forest have known associations with p53 within the literature. We suggest that other genes found in this list including GPSM2, OR4N2, CTSL2, SPERT, and RPE65 protein coding genes have yet undiscovered linkages to p53 function. Our analysis of time on different therapies also revealed that this signature is more effective than the recorded TP53 status in detecting patients who can benefit from platinum therapies and taxanes. Our findings delineate a p53 transcriptional signature, expand the knowledge of p53 biology and further identify genes important in p53 related pathways.
Collapse
Affiliation(s)
- Faeze Keshavarz-Rahaghi
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Bioinformatics, University of British Columbia, Vancouver, BC, Canada
| | - Erin Pleasance
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Tyler Kolisnik
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Steven J. M. Jones
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Vancouver, BC, Canada
- *Correspondence: Steven J. M. Jones,
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Testicular germ cell tumours (TGCTs) are the most common solid malignant cancer diagnosed in young males and the incidence is increasing. Understanding the genetic basis of this disease will help us to navigate the challenges of early detection, diagnosis, treatment, surveillance, and long-term outcomes for patients. RECENT FINDINGS TGCTs are highly heritable. Current understanding of germline risk includes the identification of one moderate-penetrance predisposition gene, checkpoint kinase 2 (CHEK2), and 78 low-to-moderate-risk single nucleotide polymorphisms identified in genome-wide-associated studies, which account for 44% of familial risk. Biomarker research in TGCTs has been challenging for multiple reasons: oncogenesis is complex, actionable mutations are uncommon, clonal evolution unpredictable and tumours can be histologically and molecularly heterogeneous. Three somatic mutations have thus far been identified by DNA exome sequencing, exclusively in seminomas: KIT, KRAS and NRAS. Several genetic markers appear to be associated with risk of TGCT and treatment resistance. TP53 mutations appear to be associated with platinum resistance. MicroRNA expression may be a useful biomarker of residual disease and relapse in future. SUMMARY The biology of testicular germ cells tumours is complex, and further research is needed to fully explain the high heritability of these cancers, as well as the molecular signatures which may drive their biological behaviour.
Collapse
|
15
|
Wang SC, Yen CY, Shiau JP, Chang MY, Hou MF, Tang JY, Chang HW. Combined Treatment of Nitrated [6,6,6]Tricycles Derivative (SK2)/Ultraviolet C Highly Inhibits Proliferation in Oral Cancer Cells In Vitro. Biomedicines 2022; 10:biomedicines10051196. [PMID: 35625933 PMCID: PMC9138449 DOI: 10.3390/biomedicines10051196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Combined treatment is an effective strategy to improve anticancer therapy, but severe side effects frequently limit this application. Drugs inhibiting the proliferation of cancer cells, but not normal cells, display preferential antiproliferation to cancer cells. It shows the benefits of avoiding side effects and enhancing antiproliferation for combined treatment. Nitrated [6,6,6]tricycles derivative (SK2), a novel chemical exhibiting benzo-fused dioxabicyclo[3.3.1]nonane core with an n-butyloxy substituent, exhibiting preferential antiproliferation, was chosen to evaluate its potential antioral cancer effect in vitro by combining it with ultraviolet C (UVC) irradiation. Combination treatment (UVC/SK2) caused lower viability in oral cancer cells (Ca9-22 and OC-2) than single treatment (20 J/m2 UVC or 10 μg/mL SK2), i.e., 42.3%/41.1% vs. 81.6%/69.2%, and 89.5%/79.6%, respectively. In contrast, it showed a minor effect on cell viability of normal oral cells (HGF-1), ranging from 82.2 to 90.6%. Moreover, UVC/SK2 caused higher oxidative stress in oral cancer cells than normal cells through the examination of reactive oxygen species, mitochondrial superoxide, and mitochondrial membrane potential. UVC/SK2 also caused subG1 increment associated with apoptosis detections by assessing annexin V; panaspase; and caspases 3, 8, and 9. The antiproliferation and oxidative stress were reverted by N-acetylcysteine, validating the involvement of oxidative stress in antioral cancer cells. UVC/SK2 also caused DNA damage by detecting γH2AX and 8-hydroxy-2′-deoxyguanosine in oral cancer cells. In conclusion, SK2 is an effective enhancer for improving the UVC-caused antiproliferation against oral cancer cells in vitro. UVC/SK2 demonstrated a preferential and synergistic antiproliferation ability towards oral cancer cells with little adverse effects on normal cells.
Collapse
Affiliation(s)
- Sheng-Chieh Wang
- Department of Biomedical Science and Environmental Biology, Ph.D. Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (M.-F.H.)
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery Chi-Mei Medical Center, Tainan 71004, Taiwan;
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Jun-Ping Shiau
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan;
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ming-Feng Hou
- Department of Biomedical Science and Environmental Biology, Ph.D. Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (M.-F.H.)
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan;
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +7-886-7-312-1101 (ext. 7158) (J.-Y.T.); +7-886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Ph.D. Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (M.-F.H.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +7-886-7-312-1101 (ext. 7158) (J.-Y.T.); +7-886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
16
|
Ertekin Ö, Monavari M, Krüger R, Fuentes-Chandía M, Parma B, Letort G, Tripal P, Boccaccini AR, Bosserhoff AK, Ceppi P, Kappelmann-Fenzl M, Leal-Egaña A. 3D hydrogel-based microcapsules as an in vitro model to study tumorigenicity, cell migration and drug resistance. Acta Biomater 2022; 142:208-220. [PMID: 35167953 DOI: 10.1016/j.actbio.2022.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 02/06/2023]
Abstract
In this work, we analyzed the reliability of alginate-gelatin microcapsules as artificial tumor model. These tumor-like scaffolds are characterized by their composition and stiffness (∼25 kPa), and their capability to restrict -but not hinder- cell migration, proliferation and release from confinement. Hydrogel-based microcapsules were initially utilized to detect differences in mechano-sensitivity between MCF7 and MDA-MB-231 breast cancer cells, and the endothelial cell line EA.hy926. Additionally, we used RNA-seq and transcriptomic methods to determine how the culture strategy (i.e. 2D v/s 3D) may pre-set the expression of genes involved in multidrug resistance, being then validated by performing cytotoxicological tests and assays of cell morphology. Our results show that both breast cancer cells can generate elongated multicellular spheroids inside the microcapsules, prior being released (mimicking intravasation stages), a behavior which was not observed in endothelial cells. Further, we demonstrate that cells isolated from 3D scaffolds show resistance to cisplatin, a process which seems to be strongly influenced by mechanical stress, instead of hypoxia. We finally discuss the role played by aneuploidy in malignancy and resistance to anticancer drugs, based on the increased number of polynucleated cells found within these microcapsules. Overall, our outcomes demonstrate that alginate-gelatin microcapsules represent a simple, yet very accurate tumor-like model, enabling us to mimic the most relevant malignant hints described in vivo, suggesting that confinement and mechanical stress need to be considered when studying pathogenicity and drug resistance of cancer cells in vitro. STATEMENT OF SIGNIFICANCE: In this work, we analyzed the reliability of alginate-gelatin microcapsules as an artificial tumor model. These scaffolds are characterized by their composition, elastic properties, and their ability to restrict cell migration, proliferation, and release from confinement. Our results demonstrate four novel outcomes: (i) studying cell migration and proliferation in 3D enabled discrimination between malignant and non-pathogenic cells, (ii) studying the cell morphology of cancer aggregates entrapped in alginate-gelatin microcapsules enabled determination of malignancy degree in vitro, (iii) determination that confinement and mechanical stress, instead of hypoxia, are required to generate clones resistant to anticancer drugs (i.e. cisplatin), and (iv) evidence that resistance to anticancer drugs could be due to the presence of polynucleated cells localized inside polymer-based artificial tumors.
Collapse
Affiliation(s)
- Özlem Ertekin
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany; Diagno Biotechnology, Marmara Technopark, Gebze, Kocaeli, Turkey
| | - Mahshid Monavari
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - René Krüger
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, and University Clinics Erlangen, Erlangen 91054, Germany
| | - Miguel Fuentes-Chandía
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany; Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, OH, USA
| | - Beatrice Parma
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander Universität Erlangen-Nürnberg Glueckstrasse 6, Erlangen 91054, Germany
| | - Gaelle Letort
- Center for Interdisciplinary Research in Biology, Collège de France UMR7241/U1050, 11, Place Marcelin Berthelot, Paris 75231 CEDEX 05, France
| | - Philipp Tripal
- Optical Imaging Centre Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 3, Erlangen 91058, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Anja K Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Fahrstraße 17, Erlangen 91054, Germany
| | - Paolo Ceppi
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander Universität Erlangen-Nürnberg Glueckstrasse 6, Erlangen 91054, Germany; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense DK-5230, Denmark
| | - Melanie Kappelmann-Fenzl
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Fahrstraße 17, Erlangen 91054, Germany; Faculty of Applied Informatics, University of Applied Science Deggendorf, Deggendorf 94469, Germany
| | - Aldo Leal-Egaña
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany; Institute for Molecular Systems Engineering, University of Heidelberg. INF 253, Heidelberg 69120, Germany.
| |
Collapse
|
17
|
Chaturvedi P, George V, Shrestha N, Wang M, Dee MJ, Zhu X, Liu B, Egan J, D'Eramo F, Spanoudis C, Gallo V, Echeverri C, You L, Kong L, Fang B, Jeng EK, Rhode PR, Wong HC. Immunotherapeutic HCW9218 augments anti-tumor activity of chemotherapy via NK cell-mediated reduction of therapy-induced senescent cells. Mol Ther 2022; 30:1171-1187. [PMID: 35051615 PMCID: PMC8899672 DOI: 10.1016/j.ymthe.2022.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 11/26/2022] Open
Abstract
Therapy induced senescence (TIS) in tumors and TIS cancer cells secrete proinflammatory senescence-associated secretory phenotype (SASP) factors. SASP factors promote TIS cancer cells to re-enter the growth cycle with stemness characteristics, resulting in chemo-resistance and disease relapse. Herein, we show that the immunotherapeutic HCW9218, comprising transforming growth factor-β (TGF-β) receptor II and interleukin (IL)-15/IL-15 receptor α domains, enhances metabolic and cytotoxic activities of immune cells and reduces TIS tumor cells in vivo to improve the efficacy of docetaxel and gemcitabine plus nab-paclitaxel against B16F10 melanoma and SW1990 pancreatic tumors, respectively. Mechanistically, HCW9218 treatment reduces the immunosuppressive tumor microenvironment and enhances immune cell infiltration and cytotoxicity in the tumors to eliminate TIS cancer cells. Immuno-depletion analysis suggests that HCW9218-activated natural killer cells play a pivotal role in TIS cancer cell removal. HCW9218 treatment following docetaxel chemotherapy further enhances efficacy of tumor antigen-specific and anti-programmed death-ligand 1 (PD-L1) antibodies in B16F10 tumor-bearing mice. We also show that HCW9218 treatment decreases TIS cells and lowers SASP factors in off-target tissues caused by chemotherapy of tumor-bearing mice. Collectively, HCW9218 has the potential to significantly enhance anti-tumor efficacy of chemotherapy, therapeutic antibodies, and checkpoint blockade by eliminating TIS cancer cells while reducing TIS-mediated proinflammatory side effects in normal tissues.
Collapse
Affiliation(s)
| | | | | | - Meng Wang
- HCW Biologics Inc., Miramar, FL 33025, USA
| | | | | | - Bai Liu
- HCW Biologics Inc., Miramar, FL 33025, USA
| | - Jack Egan
- HCW Biologics Inc., Miramar, FL 33025, USA
| | | | | | | | | | - Lijing You
- HCW Biologics Inc., Miramar, FL 33025, USA
| | - Lin Kong
- HCW Biologics Inc., Miramar, FL 33025, USA
| | - Byron Fang
- HCW Biologics Inc., Miramar, FL 33025, USA
| | | | | | - Hing C. Wong
- HCW Biologics Inc., Miramar, FL 33025, USA,Corresponding author: Hing C. Wong, PhD, HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL 33025, USA.
| |
Collapse
|
18
|
Zuccolo M, Arrighetti N, Perego P, Colombo D. Recent Progresses in Conjugation with Bioactive Ligands to Improve the Anticancer Activity of Platinum Compounds. Curr Med Chem 2021; 29:2566-2601. [PMID: 34365939 DOI: 10.2174/0929867328666210806110857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Platinum (Pt) drugs, including cisplatin, are widely used for the treatment of solid tumors. Despite the clinical success, side effects and occurrence of resistance represent major limitations to the use of clinically available Pt drugs. To overcome these problems, a variety of derivatives have been designed and synthetized. Here, we summarize the recent progress in the development of Pt(II) and Pt(IV) complexes with bioactive ligands. The development of Pt(II) and Pt(IV) complexes with targeting molecules, clinically available agents, and other bioactive molecules is an active field of research. Even if none of the reported Pt derivatives has been yet approved for clinical use, many of these compounds exhibit promising anticancer activities with an improved pharmacological profile. Thus, planning hybrid compounds can be considered as a promising approach to improve the available Pt-based anticancer agents and to obtain new molecular tools to deepen the knowledge of cancer progression and drug resistance mechanisms.
Collapse
Affiliation(s)
- Marco Zuccolo
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan. Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan. Italy
| | - Paola Perego
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan. Italy
| | - Diego Colombo
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan. Italy
| |
Collapse
|
19
|
Sun X, Liu Q, Huang J, Diao G, Liang Z. Transcriptome-based stemness indices analysis reveals platinum-based chemo-theraputic response indicators in advanced-stage serous ovarian cancer. Bioengineered 2021; 12:3753-3771. [PMID: 34266348 PMCID: PMC8806806 DOI: 10.1080/21655979.2021.1939514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Serous ovarian cancer (SOC) is a main histological subtype of ovarian cancer, in which cancer stem cells (CSC) are responsible for its chemoresistance. However, the underlying modulation mechanisms of chemoresistance led by cancer stemness are still undefined. We aimed to investigate potential drug-response indicators among stemness-associated biomarkers in advanced SOC samples. The mRNA expression-based stemness index (mRNAsi) of The Cancer Genome Atlas (TCGA) was evaluated and corrected by tumor purity. Weighted gene co-expression network analysis (WGCNA) was utilized to explore the gene modules and key genes involved in stemness characteristics. We found that mRNAsi and corrected mRNAsi scores were both greater in tumors of Grade 3 and 4 than that of Grade 1 and 2. Forty-two key genes were obtained from the most significant mRNAsi-related gene module. Functional annotation revealed that these key genes were mainly involved in the mitotic division. Thirteen potential platinum-response indicators were selected from the genes enriched to platinum-response associated pathways. Among them, we identified 11 genes with prognostic value of progression-free survival (PFS) in advanced SOC patients treated with platinum and 7 prognostic genes in patients treated with a combination of platinum and taxol. The expressions of the 13 key genes were also validated between platinum-resistant and -sensitive SOC samples of advanced stages in two Gene Expression Omnibus (GEO) datasets. The results revealed that CDC20 was a potential platinum-sensitivity indicator in advanced SOC. These findings may provide a new insight for chemotherapies in advanced SOC patients clinically.
Collapse
Affiliation(s)
- Xinwei Sun
- Department of Gynecology and Obstetrics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qingyu Liu
- Orthopedic Department, The 964th Hospital of Chinese People's Liberation Army Joint Logistics Support Force, Changchun, China
| | - Jie Huang
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University, Chongqing, China
| | - Ge Diao
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhiqing Liang
- Department of Gynecology and Obstetrics, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
20
|
Yang J, Gong C, Ke Q, Fang Z, Chen X, Ye M, Xu X. Insights Into the Function and Clinical Application of HDAC5 in Cancer Management. Front Oncol 2021; 11:661620. [PMID: 34178647 PMCID: PMC8222663 DOI: 10.3389/fonc.2021.661620] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022] Open
Abstract
Histone deacetylase 5 (HDAC5) is a class II HDAC. Aberrant expression of HDAC5 has been observed in multiple cancer types, and its functions in cell proliferation and invasion, the immune response, and maintenance of stemness have been widely studied. HDAC5 is considered as a reliable therapeutic target for anticancer drugs. In light of recent findings regarding the role of epigenetic reprogramming in tumorigenesis, in this review, we provide an overview of the expression, biological functions, regulatory mechanisms, and clinical significance of HDAC5 in cancer.
Collapse
Affiliation(s)
- Jun Yang
- Department of Orthopedic Surgery, Sanmen People's Hospital of Zhejiang Province, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, China
| | - Chaoju Gong
- Central Laboratory, The Municipal Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qinjian Ke
- Central Laboratory, Sanmen People's Hospital of Zhejiang Province, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, China
| | - Zejun Fang
- Central Laboratory, Sanmen People's Hospital of Zhejiang Province, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, China
| | - Xiaowen Chen
- Department of Pathophysiology, Zunyi Medical University, Zunyi, China
| | - Ming Ye
- Department of General Surgery, Sanmen People's Hospital of Zhejiang Province, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, China
| | - Xi Xu
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Richards JS, Candelaria NR, Lanz RB. Polyploid giant cancer cells and ovarian cancer: new insights into mitotic regulators and polyploidy†. Biol Reprod 2021; 105:305-316. [PMID: 34037700 DOI: 10.1093/biolre/ioab102] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/12/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022] Open
Abstract
Current first-line treatment of patients with high-grade serous ovarian cancer (HGSOC) involves the use of cytotoxic drugs that frequently lead to recurrent tumors exhibiting increased resistance to the drugs and poor patient survival. Strong evidence is accumulating to show that HGSOC tumors and cell lines contain a subset of cells called polyploidy giant cancer cells (PGCCs) that act as stem-like, self-renewing cells. These PGCCs appear to play a key role in tumor progression by generating drug-resistant progeny produced, in part, as a consequence of utilizing a modified form of mitosis known as endoreplication. Thus, developing drugs to target PGCCs and endoreplication may be an important approach for reducing the appearance of drug-resistant progeny. In the review, we discuss newly identified regulatory factors that impact mitosis and which may be altered or repurposed during endoreplication in PGCCs. We also review recent papers showing that a single PGCC can give rise to tumors in vivo and spheroids in culture. To illustrate some of the specific features of PGCCs and factors that may impact their function and endoreplication compared to mitosis, we have included immunofluorescent images co-localizing p53 and specific mitotic regulatory, phosphoproteins in xenografts derived from commonly used HGSOC cell lines.
Collapse
Affiliation(s)
- JoAnne S Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nicholes R Candelaria
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
22
|
Peng SY, Tang JY, Li RN, Huang HW, Wu CY, Chiu CC, Chang FR, Zhang HW, Lee YJ, Sheu JH, Chang HW. Oxidative Stress-Dependent Synergistic Antiproliferation, Apoptosis, and DNA Damage of Ultraviolet-C and Coral-Derived Sinularin Combined Treatment for Oral Cancer Cells. Cancers (Basel) 2021; 13:cancers13102450. [PMID: 34070049 PMCID: PMC8158103 DOI: 10.3390/cancers13102450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 12/19/2022] Open
Abstract
Combined treatment is increasingly used to improve cancer therapy. Non-ionizing radiation ultraviolet-C (UVC) and sinularin, a coral Sinularia flexibilis-derived cembranolide, were separately reported to provide an antiproliferation function to some kinds of cancer cells. However, an antiproliferation function using the combined treatment of UVC/sinularin has not been investigated as yet. This study aimed to examine the combined antiproliferation function and explore the combination of UVC/sinularin in oral cancer cells compared to normal oral cells. Regarding cell viability, UVC/sinularin displays the synergistic and selective killing of two oral cancer cell lines, but remains non-effective for normal oral cell lines compared to treatments in terms of MTS and ATP assays. In tests using the flow cytometry, luminescence, and Western blotting methods, UVC/sinularin-treated oral cancer cells exhibited higher reactive oxygen species production, mitochondrial superoxide generation, mitochondrial membrane potential destruction, annexin V, pan-caspase, caspase 3/7, and cleaved-poly (ADP-ribose) polymerase expressions than that in normal oral cells. Accordingly, oxidative stress and apoptosis are highly induced in a combined UVC/sinularin treatment. Moreover, UVC/sinularin treatment provides higher G2/M arrest and γH2AX/8-hydroxyl-2'deoxyguanosine-detected DNA damages in oral cancer cells than in the separate treatments. A pretreatment can revert all of these changes of UVC/sinularin treatment with the antioxidant N-acetylcysteine. Taken together, UVC/sinularin acting upon oral cancer cells exhibits a synergistic and selective antiproliferation ability involving oxidative stress-dependent apoptosis and cellular DNA damage with low toxic side effects on normal oral cells.
Collapse
Affiliation(s)
- Sheng-Yao Peng
- PhD Program in Life Science, Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.P.); (R.-N.L.)
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ruei-Nian Li
- PhD Program in Life Science, Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.P.); (R.-N.L.)
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-J.L.)
| | - Hong-Wei Zhang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Yun-Jou Lee
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-J.L.)
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence: (J.-H.S.); (H.-W.C.); Tel.: +886-7-525-2000 (ext. 5030) (J.-H.S.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- PhD Program in Life Science, Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.P.); (R.-N.L.)
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: (J.-H.S.); (H.-W.C.); Tel.: +886-7-525-2000 (ext. 5030) (J.-H.S.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
23
|
Tumor Suppressor Protein p53 and Inhibitor of Apoptosis Proteins in Colorectal Cancer-A Promising Signaling Network for Therapeutic Interventions. Cancers (Basel) 2021; 13:cancers13040624. [PMID: 33557398 PMCID: PMC7916307 DOI: 10.3390/cancers13040624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Tumor suppressor 53 (p53) is a multifunctional protein that regulates cell cycle, DNA repair, apoptosis and metabolic pathways. In colorectal cancer (CRC), mutations of the gene occur in 60% of patients and are associated with a more aggressive tumor phenotype and resistance to anti-cancer therapy. In addition, inhibitor of apoptosis (IAP) proteins are distinguished biomarkers overexpressed in CRC that impact on a diverse set of signaling pathways associated with the regulation of apoptosis/autophagy, cell migration, cell cycle and DNA damage response. As these mechanisms are further firmly controlled by p53, a transcriptional and post-translational regulation of IAPs by p53 is expected to occur in cancer cells. Here, we aim to review the molecular regulatory mechanisms between IAPs and p53 and discuss the therapeutic potential of targeting their interrelationship by multimodal treatment options. Abstract Despite recent advances in the treatment of colorectal cancer (CRC), patient’s individual response and clinical follow-up vary considerably with tumor intrinsic factors to contribute to an enhanced malignancy and therapy resistance. Among these markers, upregulation of members of the inhibitor of apoptosis protein (IAP) family effects on tumorigenesis and radiation- and chemo-resistance by multiple pathways, covering a hampered induction of apoptosis/autophagy, regulation of cell cycle progression and DNA damage response. These mechanisms are tightly controlled by the tumor suppressor p53 and thus transcriptional and post-translational regulation of IAPs by p53 is expected to occur in malignant cells. By this, cellular IAP1/2, X-linked IAP, Survivin, BRUCE and LIVIN expression/activity, as well as their intracellular localization is controlled by p53 in a direct or indirect manner via modulating a multitude of mechanisms. These cover, among others, transcriptional repression and the signal transducer and activator of transcription (STAT)3 pathway. In addition, p53 mutations contribute to deregulated IAP expression and resistance to therapy. This review aims at highlighting the mechanistic and clinical importance of IAP regulation by p53 in CRC and describing potential therapeutic strategies based on this interrelationship.
Collapse
|
24
|
Mirzayans R, Murray D. Do TUNEL and Other Apoptosis Assays Detect Cell Death in Preclinical Studies? Int J Mol Sci 2020; 21:ijms21239090. [PMID: 33260475 PMCID: PMC7730366 DOI: 10.3390/ijms21239090] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay detects DNA breakage by labeling the free 3ʹ-hydroxyl termini. Given that genomic DNA breaks arise during early and late stages of apoptosis, TUNEL staining continues to be widely used as a measure of apoptotic cell death. The advantages of the assay include its relative ease of performance and the broad availability of TUNEL assay kits for various applications, such as single-cell analysis of apoptosis in cell cultures and tissue samples. However, as briefly discussed herein, aside from some concerns relating to the specificity of the TUNEL assay itself, it was demonstrated some twenty years ago that the early stages of apoptosis, detected by TUNEL, can be reversed. More recently, compelling evidence from different biological systems has revealed that cells can recover from even late stage apoptosis through a process called anastasis. Specifically, such recovery has been observed in cells exhibiting caspase activation, genomic DNA breakage, phosphatidylserine externalization, and formation of apoptotic bodies. Furthermore, there is solid evidence demonstrating that apoptotic cells can promote neighboring tumor cell repopulation (e.g., through caspase-3-mediated secretion of prostaglandin E2) and confer resistance to anticancer therapy. Accordingly, caution should be exercised in the interpretation of results obtained by the TUNEL and other apoptosis assays (e.g., caspase activation) in terms of apoptotic cell demise.
Collapse
|
25
|
Chatterjee N, Whitman MA, Harris CA, Min SM, Jonas O, Lien EC, Luengo A, Vander Heiden MG, Hong J, Zhou P, Hemann MT, Walker GC. REV1 inhibitor JH-RE-06 enhances tumor cell response to chemotherapy by triggering senescence hallmarks. Proc Natl Acad Sci U S A 2020; 117:28918-28921. [PMID: 33168727 PMCID: PMC7682577 DOI: 10.1073/pnas.2016064117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
REV1/POLζ-dependent mutagenic translesion synthesis (TLS) promotes cell survival after DNA damage but is responsible for most of the resulting mutations. A novel inhibitor of this pathway, JH-RE-06, promotes cisplatin efficacy in cancer cells and mouse xenograft models, but the mechanism underlying this combinatorial effect is not known. We report that, unexpectedly, in two different mouse xenograft models and four human and mouse cell lines we examined in vitro cisplatin/JH-RE-06 treatment does not increase apoptosis. Rather, it increases hallmarks of senescence such as senescence-associated β-galactosidase, increased p21 expression, micronuclei formation, reduced Lamin B1, and increased expression of the immune regulators IL6 and IL8 followed by cell death. Moreover, although p-γ-H2AX foci formation was elevated and ATR expression was low in single agent cisplatin-treated cells, the opposite was true in cells treated with cisplatin/JH-RE-06. These observations suggest that targeting REV1 with JH-RE-06 profoundly affects the nature of the persistent genomic damage after cisplatin treatment and also the resulting physiological responses. These data highlight the potential of REV1/POLζ inhibitors to alter the biological response to DNA-damaging chemotherapy and enhance the efficacy of chemotherapy.
Collapse
Affiliation(s)
- Nimrat Chatterjee
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139;
| | - Matthew A Whitman
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Cynthia A Harris
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Sophia M Min
- Department of Chemistry, Duke University, Durham, NC 27708
| | - Oliver Jonas
- Department of Radiology, Brigham and Women's Hospital, Boston, MA 02215
| | - Evan C Lien
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA 02139
| | - Alba Luengo
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA 02139
| | - Matthew G Vander Heiden
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA 02139
- Dana-Farber Cancer Institute, Boston, MA 02115
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC 27708
| | - Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710
| | - Michael T Hemann
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA 02139
| | - Graham C Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139;
| |
Collapse
|