1
|
Wang Z, Zeng Y, Ahmed Z, Qin H, Bhatti IA, Cao H. Calcium‐dependent antimicrobials: Nature‐inspired materials and designs. EXPLORATION (BEIJING, CHINA) 2024; 4:20230099. [PMID: 39439493 PMCID: PMC11491315 DOI: 10.1002/exp.20230099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
Bacterial infection remains a major complication answering for the failures of various implantable medical devices. Tremendous extraordinary advances have been published in the design and synthesis of antimicrobial materials addressing this issue; however, the clinical translation has largely been blocked due to the challenge of balancing the efficacy and safety of these materials. Here, calcium's biochemical features, natural roles in pathogens and the immune systems, and advanced uses in infection medications are illuminated, showing calcium is a promising target for developing implantable devices with less infection tendency. The paper gives a historical overview of biomedical uses of calcium and summarizes calcium's merits in coordination, hydration, ionization, and stereochemistry for acting as a structural former or trigger in biological systems. It focuses on the involvement of calcium in pathogens' integrity, motility, and metabolism maintenance, outlining the potential antimicrobial targets for calcium. It addresses calcium's uses in the immune systems that the authors can learn from for antimicrobial synthesis. Additionally, the advances in calcium's uses in infection medications are highlighted to sketch the future directions for developing implantable antimicrobial materials. In conclusion, calcium is at the nexus of antimicrobial defense, and future works on taking advantage of calcium in antimicrobial developments are promising in clinical translation.
Collapse
Affiliation(s)
- Zhong Wang
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Yongjie Zeng
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Zubair Ahmed
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Hui Qin
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalShanghaiChina
| | | | - Huiliang Cao
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
- Engineering Research Center for Biomedical Materials of Ministry of EducationEast China University of Science and TechnologyShanghaiChina
- Key Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science & TechnologyShanghaiChina
| |
Collapse
|
2
|
Yang W, Wang Y, Han D, Tang W, Sun L. Recent advances in application of computer-aided drug design in anti-COVID-19 Virials Drug Discovery. Biomed Pharmacother 2024; 173:116423. [PMID: 38493593 DOI: 10.1016/j.biopha.2024.116423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
Corona Virus Disease 2019 (COVID-19) is a global pandemic epidemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which poses a serious threat to human health worldwide and results in significant economic losses. With the continuous emergence of new virus strains, small molecule drugs remain the most effective treatment for COVID-19. The traditional drug development process usually requires several years; however, the development of computer-aided drug design (CADD) offers the opportunity to develop innovative drugs quickly and efficiently. The literature review describes the general process of CADD, the viral proteins that play essential roles in the life cycle of SARS-CoV-2 and can serve as therapeutic targets, and examples of drug screening of viral target proteins by applying CADD methods. Finally, the potential of CADD in COVID-19 therapy, the deficiency, and the possible future development direction are discussed.
Collapse
Affiliation(s)
- Weiying Yang
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun 130021, China
| | - Ye Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Dongfeng Han
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun 130021, China
| | - Wenjing Tang
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun 130021, China
| | - Lichao Sun
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
3
|
Kakavandi S, Zare I, VaezJalali M, Dadashi M, Azarian M, Akbari A, Ramezani Farani M, Zalpoor H, Hajikhani B. Structural and non-structural proteins in SARS-CoV-2: potential aspects to COVID-19 treatment or prevention of progression of related diseases. Cell Commun Signal 2023; 21:110. [PMID: 37189112 PMCID: PMC10183699 DOI: 10.1186/s12964-023-01104-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/15/2023] [Indexed: 05/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by a new member of the Coronaviridae family known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are structural and non-structural proteins (NSPs) in the genome of this virus. S, M, H, and E proteins are structural proteins, and NSPs include accessory and replicase proteins. The structural and NSP components of SARS-CoV-2 play an important role in its infectivity, and some of them may be important in the pathogenesis of chronic diseases, including cancer, coagulation disorders, neurodegenerative disorders, and cardiovascular diseases. The SARS-CoV-2 proteins interact with targets such as angiotensin-converting enzyme 2 (ACE2) receptor. In addition, SARS-CoV-2 can stimulate pathological intracellular signaling pathways by triggering transcription factor hypoxia-inducible factor-1 (HIF-1), neuropilin-1 (NRP-1), CD147, and Eph receptors, which play important roles in the progression of neurodegenerative diseases like Alzheimer's disease, epilepsy, and multiple sclerosis, and multiple cancers such as glioblastoma, lung malignancies, and leukemias. Several compounds such as polyphenols, doxazosin, baricitinib, and ruxolitinib could inhibit these interactions. It has been demonstrated that the SARS-CoV-2 spike protein has a stronger affinity for human ACE2 than the spike protein of SARS-CoV, leading the current study to hypothesize that the newly produced variant Omicron receptor-binding domain (RBD) binds to human ACE2 more strongly than the primary strain. SARS and Middle East respiratory syndrome (MERS) viruses against structural and NSPs have become resistant to previous vaccines. Therefore, the review of recent studies and the performance of current vaccines and their effects on COVID-19 and related diseases has become a vital need to deal with the current conditions. This review examines the potential role of these SARS-CoV-2 proteins in the initiation of chronic diseases, and it is anticipated that these proteins could serve as components of an effective vaccine or treatment for COVID-19 and related diseases. Video Abstract.
Collapse
Affiliation(s)
- Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz, 7178795844, Iran
| | - Maryam VaezJalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Azarian
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Abdullatif Akbari
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Lotti V, Lagni A, Diani E, Sorio C, Gibellini D. Crosslink between SARS-CoV-2 replication and cystic fibrosis hallmarks. Front Microbiol 2023; 14:1162470. [PMID: 37250046 PMCID: PMC10213757 DOI: 10.3389/fmicb.2023.1162470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
SARS-CoV-2, the etiological cause of the COVID-19 pandemic, can cause severe illness in certain at-risk populations, including people with cystic fibrosis (pwCF). Nevertheless, several studies indicated that pwCF do not have higher risks of SARS-CoV-2 infection nor do they demonstrate worse clinical outcomes than those of the general population. Recent in vitro studies indicate cellular and molecular processes to be significant drivers in pwCF lower infection rates and milder symptoms than expected in cases of SARS-CoV-2 infection. These range from cytokine releases to biochemical alterations leading to morphological rearrangements inside the cells associated with CFTR impairment. Based on available data, the reported low incidence of SARS-CoV-2 infection among pwCF is likely a result of several variables linked to CFTR dysfunction, such as thick mucus, IL-6 reduction, altered ACE2 and TMPRSS2 processing and/or functioning, defective anions exchange, and autophagosome formation. An extensive analysis of the relation between SARS-CoV-2 infection and pwCF is essential to elucidate the mechanisms involved in this lower-than-expected infection impact and to possibly suggest potential new antiviral strategies.
Collapse
Affiliation(s)
- Virginia Lotti
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Anna Lagni
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Erica Diani
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Claudio Sorio
- General Pathology Section, Department of Medicine, University of Verona, Verona, Italy
| | - Davide Gibellini
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
5
|
Hu L, Tang Y, Mei L, Liang M, Huang J, Wang X, Wu L, Jiang J, Li L, Long F, Xiao J, Tan L, Lu S, Peng T. A new intracellular targeting motif in the cytoplasmic tail of the spike protein may act as a target to inhibit SARS-CoV-2 assembly. Antiviral Res 2023; 209:105509. [PMID: 36572190 PMCID: PMC9788845 DOI: 10.1016/j.antiviral.2022.105509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a threat to global public health, underscoring the urgent need for the development of preventive and therapeutic measures. The spike (S) protein of SARS-CoV-2, which mediates receptor binding and subsequent membrane fusion to promote viral entry, is a major target for current drug development and vaccine design. The S protein comprises a large N-terminal extracellular domain, a transmembrane domain, and a short cytoplasmic tail (CT) at the C-terminus. CT truncation of the S protein has been previously reported to promote the infectivity of SARS-CoV and SARS-CoV-2 pseudoviruses. However, the underlying molecular mechanism has not been precisely elucidated. In addition, the CT of various viral membrane glycoproteins play an essential role in the assembly of virions, yet the role of the S protein CT in SARS-CoV-2 infection remains unclear. In this study, through constructing a series of mutations of the CT of the S protein and analyzing their impact on the packaging of the SARS-CoV-2 pseudovirus and live SARS-CoV-2 virus, we identified V1264L1265 as a new intracellular targeting motif in the CT of the S protein, that regulates the transport and subcellular localization of the spike protein through the interactions with cytoskeleton and vesicular transport-related proteins, ARPC3, SCAMP3, and TUBB8, thereby modulating SARS-CoV-2 pseudovirus and live SARS-CoV-2 virion assembly. Either disrupting the V1264L1265 motif or reducing the expression of ARPC3, SCAMP3, and TUBB8 significantly repressed the assembly of the live SARS-CoV-2 virion, raising the possibility that the V1264L1265 motif and the host responsive pathways involved could be new drug targets for the treatment of SARS-CoV-2 infection. Our results extend the understanding of the role played by the S protein CT in the assembly of pseudoviruses and live SARS-CoV-2 virions, which will facilitate the application of pseudoviruses to the study of SARS-CoV-2 and provide potential strategies for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Longbo Hu
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China,Corresponding author
| | - Yongjie Tang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lingling Mei
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mengdi Liang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinxian Huang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xufei Wang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Liping Wu
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiajing Jiang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Leyi Li
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Fei Long
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jing Xiao
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Long Tan
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shaohua Lu
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China,Guangdong South China Vaccine, Guangzhou, China,Greater Bay Area Innovative Vaccine Technology Development Center, Guangzhou International Bio-island Laboratory, China,Corresponding author. State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
6
|
Konlaan Y, Asamoah Sakyi S, Kumi Asare K, Amoah Barnie P, Opoku S, Nakotey GK, Victor Nuvor S, Amoani B. Evaluating immunohaematological profile among COVID-19 active infection and recovered patients in Ghana. PLoS One 2022; 17:e0273969. [PMID: 36094915 PMCID: PMC9467340 DOI: 10.1371/journal.pone.0273969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/18/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction The rapid spread of COVID-19 has been a global public health problem and it is yet to be put under control. Active COVID-19 is associated with unrestrained secretion of pro-inflammatory cytokines and imbalances in haematological profile including anaemia, leukocytosis and thrombocytopaenia. However, the haematological profile and immune status following recovery from COVID-19 has not been recognized. We evaluated the immunohaematological profile among COVID-19 patients with active infection, recovered cases and unexposed healthy individuals in the Ashanti region of Ghana. Methodology A total of 95 adult participants, consisting of 35 positive, 30 recovered and 30 unexposed COVID-19 negative individuals confirmed by RT-PCR were recruited for the study. All the patients had the complete blood count performed using the haematological analyzer Sysmex XN-1500. Their plasma cytokine levels of interleukin (IL)-1β, IL-6, IL-10, IL-17, tumour necrosis factor-alpha (TNF-α) and interferon gamma (IFN-γ) were analysed using ELISA. Statistical analyses were performed on R statistical software. Result The Patients with COVID-19 active infection had significantly higher levels of IL10 (181±6.14 pg/mL vs 155.00±14.32 pg/mL vs 158.80±11.70 pg/mL, p = 0.038), WBC count (5.5±0.4 x109 /L vs 4.5±0.6 x109 /L vs 3.8±0.5, p < 0.0001) and percentage basophil (1.8±0.1% vs 0.8±0.3% vs 0.7±0.2%, p = 0.0040) but significantly lower levels of IFN-γ (110.10±9.52 pg/mL vs 142.80±5.46 pg/mL vs 140.80±6.39 pg/mL, p = 0.021), haematocrit (24.1±3.7% vs 38.3± 3.0% vs 38.5±2.2%, p < 0.0001), haemoglobin concentration (9.4±0.1g/dl vs 12.5± 5.0g/dl vs 12.7±0.8, p < 0.0001) and MPV (9.8±0.2fL vs 11.1±0.5fL vs 11.6±0.3fL, p < 0.0001) compared to recovered and unexposed controls respectively. There were significant association between IL-1β & neutrophils (r = 0.42, p<0.05), IL-10 & WBC (r = 0.39, p<0.05), IL-10 & Basophils (r = -0.51, p<0.01), IL-17 & Neutrophil (r = 0.39, p<0.05) in the active COVID-19 cases. Conclusion COVID-19 active infection is associated with increased IL-10 and WBC with a concomitant decrease in IFN-γ and haemoglobin concentration. However, recovery from the disease is associated with immune recovery with appareantly normal haematological profile.
Collapse
Affiliation(s)
- Yatik Konlaan
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Asamoah Sakyi
- Department of Molecular Medicine, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwame Kumi Asare
- Department of Biomedical Sciences, College of Health and Allied Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Prince Amoah Barnie
- Department of Forensic Science, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Stephen Opoku
- Department of Molecular Medicine, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Gideon Kwesi Nakotey
- Department of Biomedical Sciences, College of Health and Allied Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Victor Nuvor
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Benjamin Amoani
- Department of Biomedical Sciences, College of Health and Allied Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
7
|
Chang CC, Hsu HJ, Wu TY, Liou JW. Computer-aided discovery, design, and investigation of COVID-19 therapeutics. Tzu Chi Med J 2022; 34:276-286. [PMID: 35912059 PMCID: PMC9333103 DOI: 10.4103/tcmj.tcmj_318_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic is currently the most serious public health threat faced by mankind. Thus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19, is being intensively investigated. Several vaccines are now available for clinical use. However, owing to the highly mutated nature of RNA viruses, the SARS-CoV-2 is changing at a rapid speed. Breakthrough infections by SARS-CoV-2 variants have been seen in vaccinated individuals. As a result, effective therapeutics for treating COVID-19 patients is urgently required. With the advance of computer technology, computational methods have become increasingly powerful in the biomedical research and pharmaceutical drug discovery. The applications of these techniques have largely reduced the costs and simplified processes of pharmaceutical drug developments. Intensive and extensive studies on SARS-CoV-2 proteins have been carried out and three-dimensional structures of the major SARS-CoV-2 proteins have been resolved and deposited in the Protein Data Bank. These structures provide the foundations for drug discovery and design using the structure-based computations, such as molecular docking and molecular dynamics simulations. In this review, introduction to the applications of computational methods in the discovery and design of novel drugs and repurposing of existing drugs for the treatments of COVID-19 is given. The examples of computer-aided investigations and screening of COVID-19 effective therapeutic compounds, functional peptides, as well as effective molecules from the herb medicines are discussed.
Collapse
Affiliation(s)
- Chun-Chun Chang
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Hao-Jen Hsu
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - Tien-Yuan Wu
- Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Je-Wen Liou
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
8
|
Stahel VP, Blum SD, Anand P. The impact of immune dysfunction on perioperative complications in surgical COVID-19 patients: an imperative for early immunonutrition. Patient Saf Surg 2022; 16:14. [PMID: 35365199 PMCID: PMC8972719 DOI: 10.1186/s13037-022-00323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Surgical patients with coronavirus disease 2019 (COVID-19) are vulnerable to increased perioperative complications and postoperative mortality, independent of the risk for contracting COVID-19 pneumonia after endotracheal intubation for general anesthesia. The presumed root cause of postoperative infections, microvascular soft tissue injuries and thromboembolic complications is largely attributed to the profound immune dysfunction induced by COVID-19 as a result of complement activation and the "cytokine storm". The empirical therapy with anti-inflammatory agents has been shown to attenuate some of the adverse effects of systemic hyperinflammation in COVID-19 patients. In addition, the proactive concept of "immunonutrition" may represent a new promising avenue for mitigating the complex immune dysregulation in COVID-19 and thereby reduce the rates of surgical complications and postoperative mortality. This letter provides a narrative summary of the current state-of-the-art in the field of immunonutrition as it pertains to surgical patient safety in COVID-19 patients.
Collapse
Affiliation(s)
| | - Samson D Blum
- University of Colorado (CU), Boulder, CO, 80309, USA
| | - Pratibha Anand
- University of Colorado, School of Medicine, Aurora, CO, 80045, USA
| |
Collapse
|
9
|
Espinoza C, Alarcón M. The Immune Response to SARS-CoV-2: Mechanisms, Aging, Sequelae and Vaccines. Mini Rev Med Chem 2022; 22:2166-2185. [PMID: 35249484 DOI: 10.2174/1389557522666220304231537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/28/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
This review seeks to clarify the factors involved in the various immune responses to SARS-CoV-2 infection and the mechanisms that influence the development of COVID-19 with severe evolution. The innate immune response that evolves against SARS-CoV-2 in a complex way is highlighted, integrating multiple pathways by coronaviruses to evade it, in addition to characterizing the adaptive immune response, which can lead to an effective immune response or can contribute to immunopathological imbalance. In turn, host-dependent biomarkers such as age, gender, ABO blood group, and risk factors that contribute to the critical and varied progress of COVID-19 immunopathogenesis were analyzed. Finally, the potential vaccine candidates are presented, capable of generating immune protection with humoral and/or cellular neutralizing responses, in favor of blocking and destroying both the new human coronavirus and its variants, which cause the current pandemic.
Collapse
Affiliation(s)
- Carolina Espinoza
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Thrombosis Research Center, Universidad de Talca, Talca, Chile
| | - Marcelo Alarcón
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Thrombosis Research Center, Universidad de Talca, Talca, Chile
| |
Collapse
|
10
|
Makvandi P, Chen M, Sartorius R, Zarrabi A, Ashrafizadeh M, Dabbagh Moghaddam F, Ma J, Mattoli V, Tay FR. Endocytosis of abiotic nanomaterials and nanobiovectors: Inhibition of membrane trafficking. NANO TODAY 2021; 40:101279. [PMID: 34518771 PMCID: PMC8425779 DOI: 10.1016/j.nantod.2021.101279] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 05/04/2023]
Abstract
Humans are exposed to nanoscopical nanobiovectors (e.g. coronavirus SARS-CoV-2) as well as abiotic metal/carbon-based nanomaterials that enter cells serendipitously or intentionally. Understanding the interactions of cell membranes with these abiotic and biotic nanostructures will facilitate scientists to design better functional nanomaterials for biomedical applications. Such knowledge will also provide important clues for the control of viral infections and the treatment of virus-induced infectious diseases. In the present review, the mechanisms of endocytosis are reviewed in the context of how nanomaterials are uptaken into cells. This is followed by a detailed discussion of the attributes of man-made nanomaterials (e.g. size, shape, surface functional groups and elasticity) that affect endocytosis, as well as the different human cell types that participate in the endocytosis of nanomaterials. Readers are then introduced to the concept of viruses as nature-derived nanoparticles. The mechanisms in which different classes of viruses interact with various cell types to gain entry into the human body are reviewed with examples published over the last five years. These basic tenets will enable the avid reader to design advanced drug delivery and gene transfer nanoplatforms that harness the knowledge acquired from endocytosis to improve their biomedical efficacy. The review winds up with a discussion on the hurdles to be addressed in mimicking the natural mechanisms of endocytosis in nanomaterials design.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Meiling Chen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples 80131, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Jingzhi Ma
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
11
|
Valdés-Aguayo JJ, Garza-Veloz I, Badillo-Almaráz JI, Bernal-Silva S, Martínez-Vázquez MC, Juárez-Alcalá V, Vargas-Rodríguez JR, Gaeta-Velasco ML, González-Fuentes C, Ávila-Carrasco L, Martinez-Fierro ML. Mitochondria and Mitochondrial DNA: Key Elements in the Pathogenesis and Exacerbation of the Inflammatory State Caused by COVID-19. ACTA ACUST UNITED AC 2021; 57:medicina57090928. [PMID: 34577851 PMCID: PMC8471487 DOI: 10.3390/medicina57090928] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/21/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022]
Abstract
Background and Objectives. The importance of mitochondria in inflammatory pathologies, besides providing energy, is associated with the release of mitochondrial damage products, such as mitochondrial DNA (mt-DNA), which may perpetuate inflammation. In this review, we aimed to show the importance of mitochondria, as organelles that produce energy and intervene in multiple pathologies, focusing mainly in COVID-19 and using multiple molecular mechanisms that allow for the replication and maintenance of the viral genome, leading to the exacerbation and spread of the inflammatory response. The evidence suggests that mitochondria are implicated in the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which forms double-membrane vesicles and evades detection by the cell defense system. These mitochondrion-hijacking vesicles damage the integrity of the mitochondrion’s membrane, releasing mt-DNA into circulation and triggering the activation of innate immunity, which may contribute to an exacerbation of the pro-inflammatory state. Conclusions. While mitochondrial dysfunction in COVID-19 continues to be studied, the use of mt-DNA as an indicator of prognosis and severity is a potential area yet to be explored.
Collapse
Affiliation(s)
- José J. Valdés-Aguayo
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S., Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (J.J.V.-A.); (I.G.-V.); (J.I.B.-A.); (M.C.M.-V.); (V.J.-A.); (J.R.V.-R.); (L.Á.-C.)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S., Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (J.J.V.-A.); (I.G.-V.); (J.I.B.-A.); (M.C.M.-V.); (V.J.-A.); (J.R.V.-R.); (L.Á.-C.)
| | - José I. Badillo-Almaráz
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S., Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (J.J.V.-A.); (I.G.-V.); (J.I.B.-A.); (M.C.M.-V.); (V.J.-A.); (J.R.V.-R.); (L.Á.-C.)
| | - Sofia Bernal-Silva
- Microbiology Department, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Avenida Venustiano Carranza 2405, San Luis Potosí 78210, Mexico;
| | - Maria C. Martínez-Vázquez
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S., Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (J.J.V.-A.); (I.G.-V.); (J.I.B.-A.); (M.C.M.-V.); (V.J.-A.); (J.R.V.-R.); (L.Á.-C.)
| | - Vladimir Juárez-Alcalá
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S., Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (J.J.V.-A.); (I.G.-V.); (J.I.B.-A.); (M.C.M.-V.); (V.J.-A.); (J.R.V.-R.); (L.Á.-C.)
| | - José R. Vargas-Rodríguez
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S., Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (J.J.V.-A.); (I.G.-V.); (J.I.B.-A.); (M.C.M.-V.); (V.J.-A.); (J.R.V.-R.); (L.Á.-C.)
| | - María L. Gaeta-Velasco
- Hospital General de Zacatecas “Luz González Cosío”, Circuito Ciudad Gobierno 410, Col. Ciudad Gobierno, Zacatecas 98160, Mexico; (M.L.G.-V.); (C.G.-F.)
| | - Carolina González-Fuentes
- Hospital General de Zacatecas “Luz González Cosío”, Circuito Ciudad Gobierno 410, Col. Ciudad Gobierno, Zacatecas 98160, Mexico; (M.L.G.-V.); (C.G.-F.)
| | - Lorena Ávila-Carrasco
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S., Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (J.J.V.-A.); (I.G.-V.); (J.I.B.-A.); (M.C.M.-V.); (V.J.-A.); (J.R.V.-R.); (L.Á.-C.)
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S., Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (J.J.V.-A.); (I.G.-V.); (J.I.B.-A.); (M.C.M.-V.); (V.J.-A.); (J.R.V.-R.); (L.Á.-C.)
- Correspondence: ; Tel.: +52-(492)-925669 (ext. 4511)
| |
Collapse
|
12
|
Barros MT, Veletić M, Kanada M, Pierobon M, Vainio S, Balasingham I, Balasubramaniam S. Molecular Communications in Viral Infections Research: Modeling, Experimental Data, and Future Directions. IEEE TRANSACTIONS ON MOLECULAR, BIOLOGICAL, AND MULTI-SCALE COMMUNICATIONS 2021; 7:121-141. [PMID: 35782714 PMCID: PMC8544950 DOI: 10.1109/tmbmc.2021.3071780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022]
Abstract
Hundreds of millions of people worldwide are affected by viral infections each year, and yet, several of them neither have vaccines nor effective treatment during and post-infection. This challenge has been highlighted by the COVID-19 pandemic, showing how viruses can quickly spread and impact society as a whole. Novel interdisciplinary techniques must emerge to provide forward-looking strategies to combat viral infections, as well as possible future pandemics. In the past decade, an interdisciplinary area involving bioengineering, nanotechnology and information and communication technology (ICT) has been developed, known as Molecular Communications. This new emerging area uses elements of classical communication systems to molecular signalling and communication found inside and outside biological systems, characterizing the signalling processes between cells and viruses. In this paper, we provide an extensive and detailed discussion on how molecular communications can be integrated into the viral infectious diseases research, and how possible treatment and vaccines can be developed considering molecules as information carriers. We provide a literature review on molecular communications models for viral infection (intra-body and extra-body), a deep analysis on their effects on immune response, how experimental can be used by the molecular communications community, as well as open issues and future directions.
Collapse
Affiliation(s)
- Michael Taynnan Barros
- CBIG/BioMediTechTampere University33014TampereFinland
- School of Computer Science and Electronic EngineeringUniversity of EssexColchesterCO4 3SQU.K.
| | - Mladen Veletić
- Intervention CentreOslo University Hospital0424OsloNorway
- Department of Electronic SystemsNorwegian University of Science and Technology7491TrondheimNorway
| | - Masamitsu Kanada
- Department of Pharmacology and ToxicologyInstitute for Quantitative Health Science and Engineering, Michigan State UniversityEast LansingMI48824USA
| | - Massimiliano Pierobon
- Department of Computer Science and EngineeringUniversity of Nebraska–LincolnLincolnNE68588USA
| | - Seppo Vainio
- InfoTech OuluKvantum Institute, Faculty of Biochemistry and Molecular Medicine, Laboratory of Developmental Biology, Oulu University90570OuluFinland
| | - Ilangko Balasingham
- Intervention CentreOslo University Hospital0424OsloNorway
- Department of Electronic SystemsNorwegian University of Science and Technology7491TrondheimNorway
| | | |
Collapse
|
13
|
Molecular Dynamics Studies on the Structural Characteristics for the Stability Prediction of SARS-CoV-2. Int J Mol Sci 2021; 22:ijms22168714. [PMID: 34445414 PMCID: PMC8395978 DOI: 10.3390/ijms22168714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 12/27/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affects the COVID-19 pandemic in the world. The spike protein of the various proteins encoded in SARS-CoV-2 binds to human ACE2, fuses, and enters human cells in the respiratory system. Spike protein, however, is highly variable, and many variants were identified continuously. In this study, Korean mutants for spike protein (D614G and D614A-C terminal domain, L455F and F456L-RBD, and Q787H-S2 domain) were investigated in patients. Because RBD in spike protein is related to direct interaction with ACE2, almost all researches were focused on the RBD region or ACE2-free whole domain region. The 3D structure for spike protein complexed with ACE2 was recently released. The stability analysis through RBD distance among each spike protein chain and the binding free energy calculation between spike protein and ACE2 were performed using MD simulation depending on mutant types in 1-, 2-, and 3-open-complex forms. D614G mutant of CT2 domain, showing to be the most prevalent in the global pandemic, showed higher stability in all open-complex forms than the wild type and other mutants. We hope this study will provide an insight into the importance of conformational fluctuation in the whole domain, although RBD is involved in the direct interaction with ACE2.
Collapse
|
14
|
Chaqroun A, Hartard C, Schvoerer E. Anti-SARS-CoV-2 Vaccines and Monoclonal Antibodies Facing Viral Variants. Viruses 2021; 13:1171. [PMID: 34207378 PMCID: PMC8234553 DOI: 10.3390/v13061171] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is genetically variable, allowing it to adapt to various hosts including humans. Indeed, SARS-CoV-2 has accumulated around two mutations per genome each month. The first relevant event in this context was the occurrence of the mutant D614G in the Spike gene. Moreover, several variants have emerged, including the well-characterized 20I/501Y.V1, 20H/501Y.V2, and 20J/501Y.V3 strains, in addition to those that have been detected within clusters, such as 19B/501Y or 20C/655Y in France. Mutants have also emerged in animals, including a variant transmitted to humans, namely, the Mink variant detected in Denmark. The emergence of these variants has affected the transmissibility of the virus (for example, 20I/501Y.V1, which was up to 82% more transmissible than other preexisting variants), its severity, and its ability to escape natural, adaptive, vaccine, and therapeutic immunity. In this respect, we review the literature on variants that have currently emerged, and their effect on vaccines and therapies, and, in particular, monoclonal antibodies (mAbs). The emergence of SARS-CoV-2 variants must be examined to allow effective preventive and curative control strategies to be developed.
Collapse
Affiliation(s)
- Ahlam Chaqroun
- CNRS, LCPME, Université de Lorraine, 54100 Nancy, France; (A.C.); (C.H.)
| | - Cédric Hartard
- CNRS, LCPME, Université de Lorraine, 54100 Nancy, France; (A.C.); (C.H.)
- Laboratoire de Virologie, CHRU de Nancy Brabois, 54500 Vandoeuvre-lès-Nancy, France
| | - Evelyne Schvoerer
- CNRS, LCPME, Université de Lorraine, 54100 Nancy, France; (A.C.); (C.H.)
- Laboratoire de Virologie, CHRU de Nancy Brabois, 54500 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
15
|
Shionoya K, Yamasaki M, Iwanami S, Ito Y, Fukushi S, Ohashi H, Saso W, Tanaka T, Aoki S, Kuramochi K, Iwami S, Takahashi Y, Suzuki T, Muramatsu M, Takeda M, Wakita T, Watashi K. Mefloquine, a Potent Anti-severe Acute Respiratory Syndrome-Related Coronavirus 2 (SARS-CoV-2) Drug as an Entry Inhibitor in vitro. Front Microbiol 2021; 12:651403. [PMID: 33995308 PMCID: PMC8119653 DOI: 10.3389/fmicb.2021.651403] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/06/2021] [Indexed: 12/30/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused serious public health, social, and economic damage worldwide and effective drugs that prevent or cure COVID-19 are urgently needed. Approved drugs including Hydroxychloroquine, Remdesivir or Interferon were reported to inhibit the infection or propagation of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), however, their clinical efficacies have not yet been well demonstrated. To identify drugs with higher antiviral potency, we screened approved anti-parasitic/anti-protozoal drugs and identified an anti-malarial drug, Mefloquine, which showed the highest anti-SARS-CoV-2 activity among the tested compounds. Mefloquine showed higher anti-SARS-CoV-2 activity than Hydroxychloroquine in VeroE6/TMPRSS2 and Calu-3 cells, with IC50 = 1.28 μM, IC90 = 2.31 μM, and IC99 = 4.39 μM in VeroE6/TMPRSS2 cells. Mefloquine inhibited viral entry after viral attachment to the target cell. Combined treatment with Mefloquine and Nelfinavir, a replication inhibitor, showed synergistic antiviral activity. Our mathematical modeling based on the drug concentration in the lung predicted that Mefloquine administration at a standard treatment dosage could decline viral dynamics in patients, reduce cumulative viral load to 7% and shorten the time until virus elimination by 6.1 days. These data cumulatively underscore Mefloquine as an anti-SARS-CoV-2 entry inhibitor.
Collapse
Affiliation(s)
- Kaho Shionoya
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Applied Biological Science, Tokyo University of Science, Tokyo, Japan
| | - Masako Yamasaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Applied Biological Science, Tokyo University of Science, Tokyo, Japan
| | - Shoya Iwanami
- Interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.,Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Ito
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirofumi Ohashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Applied Biological Science, Tokyo University of Science, Tokyo, Japan
| | - Wakana Saso
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomohiro Tanaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Shin Aoki
- Research Institute for Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Kouji Kuramochi
- Department of Applied Biological Science, Tokyo University of Science, Tokyo, Japan
| | - Shingo Iwami
- Interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.,Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan.,MIRAI, JST, Saitama, Japan.,Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Science Groove Inc., Fukuoka, Japan
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan.,Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Applied Biological Science, Tokyo University of Science, Tokyo, Japan.,MIRAI, JST, Saitama, Japan.,Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.,Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Szabó Z, Szabó T, Bodó K, Kemenesi G, Földes F, Kristóf K, Barabás E, Vásárhelyi B, Prohászka Z, Fodor E, Jakab F, Berki T, Lacza Z. Comparison of virus neutralization activity and results of 10 different anti-SARS-CoV-2 serological tests in COVID-19 recovered plasma donors. Pract Lab Med 2021; 25:e00222. [PMID: 33898689 PMCID: PMC8056825 DOI: 10.1016/j.plabm.2021.e00222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022] Open
Abstract
Serological testing is a tool to predict protection against later infection. This potential heavily relies on antibody levels showing acceptable agreement with gold standard virus neutralization tests. The aim of our study was to investigate diagnostic value of the available serological tests in terms of predicting virus neutralizing activity of serum samples drawn 5–7 weeks after onset of symptoms from 101 donors with a history of COVID-19. Immune responses against Receptor Binding Domain (RBD), Spike1 and 2 proteins and Nucleocapsid antigens were measured by various ELISA tests. Neutralizing antibody activity in serum samples was assessed by a cell-based virus neutralization test. Spearman correlation coefficients between serological and neutralization results ranged from 0.41 to 0.91 indicating moderate to strong correlation between ELISA test results and virus neutralization. The sensitivity and specificity of ELISA tests in the prediction of neutralization were 35–100% and 35–90% respectively. No clear cut off levels can be established that would reliably indicate neutralization activity. For some tests, however, a value below which the sample is not expected to neutralize can be established. Our data suggests that several of the ELISA kits tested may be suitable for epidemiological surveys 1–2 months after the infection, estimating whether a person may have recently exposed to the virus. Sensitivities considerably superseding specificity at the cut-off values proposed by the manufacturers suggest greater potential in the identification of insufficient antibody responses than in confirming protection. Nevertheless, the former might be important in assessing response to vaccination and characterizing therapeutic plasma preparations. SARS-CoV-2 antibody levels 5-7 weeks after the onset of COVID show moderate to strong correlation with virus neutralization. Tests based on the use of S1, nucleocapsid or RBD antigens performed similarly in predicting antibody neutralization. None of the examined serological tests could safely identify individuals protected against a later SARS-CoV-2 infection. The products assessed might still provide important epidemiological information. Serological tests might still have potential in screening donors for therapeutic plasma products or vaccinated individuals.
Collapse
Key Words
- AUC, area under the curve
- Antibody response
- COVID-19
- COVID-19, coronavirus disease 2019
- Correlate of protection
- ECDC, European Centre for Disease Prevention and Control
- NAbs, neutralizing antibodies
- NC, Nucleocapsid
- Neutralization
- OD, optical density
- ROC, receiver operating characteristic
- S1, Spike protein 1
- S2, Spike protein 2
- SARS-CoV-2
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2
- Serological test
- VNT, virus neutralization test
Collapse
Affiliation(s)
- Zsófia Szabó
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
- Corresponding author. Department of Laboratory Medicine, Semmelweis University, Budapest, 1082, Üllői str. 78, Hungary.
| | - Tamás Szabó
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
- Institute of Developmental Immunology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kornélia Bodó
- Department of Immunology and Biotechnology, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, BSL-4 Laboratory, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, 7622, Pécs, Hungary
| | - Fanni Földes
- National Laboratory of Virology, BSL-4 Laboratory, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, 7622, Pécs, Hungary
| | - Katalin Kristóf
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Eszter Barabás
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Barna Vásárhelyi
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltán Prohászka
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest and Research Group for Immunology and Hematology, Semmelweis University- Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Eszter Fodor
- Institute of Sports and Health Sciences, University of Physical Education, 1112, Budapest, Hungary
| | - Ferenc Jakab
- National Laboratory of Virology, BSL-4 Laboratory, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, 7622, Pécs, Hungary
| | - Timea Berki
- Department of Immunology and Biotechnology, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Zsombor Lacza
- Institute of Sports and Health Sciences, University of Physical Education, 1112, Budapest, Hungary
| |
Collapse
|
17
|
Masre SF, Jufri NF, Ibrahim FW, Abdul Raub SH. Classical and alternative receptors for SARS-CoV-2 therapeutic strategy. Rev Med Virol 2020; 31:1-9. [PMID: 33368788 PMCID: PMC7883063 DOI: 10.1002/rmv.2207] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 01/08/2023]
Abstract
Understanding the molecules that are essential for severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) entry can provide insights into viral infection and dissemination. Recently, it has been identified from several studies that angiotensin‐converting enzyme 2 receptor and transmembrane serine protease 2 are the main entry molecules for the SARS‐CoV‐2, which produced the pandemic of Covid‐19. However, additional evidence showed several other viral receptors and cellular proteases that are also important in facilitating viral entry and transmission in the target cells. In this review, we summarized the types of SARS‐CoV‐2 entry molecules and discussed their crucial roles for virus binding, protein priming and fusion to the cellular membrane important for SARS‐CoV‐2 infection.
Collapse
Affiliation(s)
- Siti Fathiah Masre
- Faculty of Health Sciences, Centre for Toxicology and Health Risk Studies, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul Farhana Jufri
- Faculty of Health Sciences, Centre for Toxicology and Health Risk Studies, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Farah Wahida Ibrahim
- Faculty of Health Sciences, Centre for Toxicology and Health Risk Studies, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sayyidi Hamzi Abdul Raub
- Pantai Premier Pathology SDN BHD, Reference Specialised Laboratory, Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| |
Collapse
|