1
|
Han S, Li Y, Chen D, Si Z, Xu T, Du Y, Xing N. Comprehensive Genetic Profile of Chinese Muscle-Invasive Bladder Cancer Cohort. Clin Genitourin Cancer 2024; 23:102280. [PMID: 39817975 DOI: 10.1016/j.clgc.2024.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/23/2024] [Indexed: 01/18/2025]
Abstract
OBJECTIVE The aim of our study was to characterize the spectrum of mutations in muscle-invasive bladder cancer (MIBC) in the Chinese population, identifying mutational features and exploring potential therapeutic targets. METHODS We collected samples from 62 Chinese patients with MIBC. For each patient, tumor tissues or blood samples were collected and sequenced by whole exome sequencing. RESULTS Our findings revealed the most frequently mutated genes included TP53 (41%), TTN (41%), HYDIN (34%), FRG1 (33%), ZNF717 (23%), AHNAK2 (21%), MUC4 (21%), KMT2D (20%), CDC27 (18%) and IGSF3 (18%). The most frequently mutated DNA damage repair (DDR) genes were TP53 (49%), SMARCA4 (10%), ERCC2 (8%), BRAC2 (6%), HERC2 (6%), HLTF (6%), PALB2 (6%) and POLG (6%). Additionally, our analysis confirmed an association between DDR mutations and high TMB (P = .022). Significant differences in MSI were observed between smokers and nonsmokers (P = .022), drinkers and nondrinkers (P = .018). By analyzing the data of 323 white MIBC samples from TCGA database, we identified frequently mutated driver genes in both our cohort and TCGA white cohort, including TP53, KMT2D, KMT2C, and FGFR3. Our study also revealed genes with distinct mutation frequencies compared to the TCGA white cohort, including FRG1, CDC27, IGSF3, MUC16, and ARID1A. CONCLUSIONS Our study provided comprehensive insights into genomic alterations in a cohort of Chinese MIBC, which could provide potential clues for clinical applications.
Collapse
Affiliation(s)
- Sujun Han
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yining Li
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Dong Chen
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhannan Si
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Yiqing Du
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Matye D, Leak J, Woolbright BL, Taylor JA. Preclinical models of bladder cancer: BBN and beyond. Nat Rev Urol 2024; 21:723-734. [PMID: 38769130 DOI: 10.1038/s41585-024-00885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
Preclinical modelling is a crucial component of advancing the understanding of cancer biology and therapeutic development. Several models exist for understanding the pathobiology of bladder cancer and evaluating therapeutics. N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced bladder cancer is a commonly used model that recapitulates many of the features of human disease. Particularly in mice, BBN is a preferred laboratory model owing to a high level of reproducibility, high genetic fidelity to the human condition, and its relative ease of use. However, important aspects of the model are often overlooked in laboratory studies. Moreover, the advent of new models has yielded a variety of methodologies that complement the use of BBN. Toxicokinetics, histopathology, molecular genetics and sex can differ between available models and are important factors to consider in bladder cancer modelling.
Collapse
Affiliation(s)
- David Matye
- School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Juliann Leak
- School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Benjamin L Woolbright
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - John A Taylor
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.
- Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
3
|
Akand M, Jatsenko T, Muilwijk T, Gevaert T, Joniau S, Van der Aa F. Deciphering the molecular heterogeneity of intermediate- and (very-)high-risk non-muscle-invasive bladder cancer using multi-layered -omics studies. Front Oncol 2024; 14:1424293. [PMID: 39497708 PMCID: PMC11532112 DOI: 10.3389/fonc.2024.1424293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/13/2024] [Indexed: 11/07/2024] Open
Abstract
Bladder cancer (BC) is the most common malignancy of the urinary tract. About 75% of all BC patients present with non-muscle-invasive BC (NMIBC), of which up to 70% will recur, and 15% will progress in stage and grade. As the recurrence and progression rates of NMIBC are strongly associated with some clinical and pathological factors, several risk stratification models have been developed to individually predict the short- and long-term risks of disease recurrence and progression. The NMIBC patients are stratified into four risk groups as low-, intermediate-, high-risk, and very high-risk by the European Association of Urology (EAU). Significant heterogeneity in terms of oncological outcomes and prognosis has been observed among NMIBC patients within the same EAU risk group, which has been partly attributed to the intrinsic heterogeneity of BC at the molecular level. Currently, we have a poor understanding of how to distinguish intermediate- and (very-)high-risk NMIBC with poor outcomes from those with a more benign disease course and lack predictive/prognostic tools that can specifically stratify them according to their pathologic and molecular properties. There is an unmet need for developing a more accurate scoring system that considers the treatment they receive after TURBT to enable their better stratification for further follow-up regimens and treatment selection, based also on a better response prediction to the treatment. Based on these facts, by employing a multi-layered -omics (namely, genomics, epigenetics, transcriptomics, proteomics, lipidomics, metabolomics) and immunohistopathology approach, we hypothesize to decipher molecular heterogeneity of intermediate- and (very-)high-risk NMIBC and to better stratify the patients with this disease. A combination of different -omics will provide a more detailed and multi-dimensional characterization of the tumor and represent the broad spectrum of NMIBC phenotypes, which will help to decipher the molecular heterogeneity of intermediate- and (very-)high-risk NMIBC. We think that this combinatorial multi-omics approach has the potential to improve the prediction of recurrence and progression with higher precision and to develop a molecular feature-based algorithm for stratifying the patients properly and guiding their therapeutic interventions in a personalized manner.
Collapse
Affiliation(s)
- Murat Akand
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Experimental Urology, Urogenital, Abdominal and Plastic Surgery, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Tatjana Jatsenko
- Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven, Belgium
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Tim Muilwijk
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Experimental Urology, Urogenital, Abdominal and Plastic Surgery, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | - Steven Joniau
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Experimental Urology, Urogenital, Abdominal and Plastic Surgery, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Frank Van der Aa
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Experimental Urology, Urogenital, Abdominal and Plastic Surgery, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Xu PH, Li T, Qu F, Tian M, Wang J, Gan H, Ye D, Ren F, Shen Y. Comprehensive Collection of Whole-Slide Images and Genomic Profiles for Patients with Bladder Cancer. Sci Data 2024; 11:699. [PMID: 38937479 PMCID: PMC11211330 DOI: 10.1038/s41597-024-03526-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
Bladder cancer is one of the leading causes of cancer-related mortality in the urinary system. Understanding genomic information is important in the treatment and prognosis of bladder cancer, but the current method used to identify mutations is time-consuming and labor-intensive. There are now many novel and convenient ways to predict cancerous genomics from pathological slides. However, the publicly available datasets are limited, especially for Asian populations. In this study, we developed a dataset consisting of 75 Asian cases of bladder cancers and 112 Whole-Slide Images with one to two images obtained for each patient. This dataset provides information on the most frequently and clinically significant mutated genes derived by whole-exome sequencing in these patients. This dataset will facilitate exploration and development of novel diagnostic and therapeutic technologies for bladder cancer.
Collapse
Affiliation(s)
- Pei-Hang Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tianqi Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Fengmei Qu
- Jinfeng Laboratory, Chongqing, 401329, P.R. China
| | | | - Jun Wang
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hualei Gan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Fei Ren
- State Key Lab of Processors, Institute of Computing Technology, CAS, Beijing, 100190, China.
| | - Yijun Shen
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Pullen RL. Bladder cancer: An Update. Nursing 2024; 54:27-39. [PMID: 38517498 DOI: 10.1097/01.nurse.0001007608.96581.fa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
ABSTRACT Bladder cancer, the 10th most common cancer globally, primarily manifests as urothelial cell carcinoma. Risk factors involve acquired genetic mutations and congenital predispositions, impacting diagnosis and management. This article discusses the risk factors, clinical presentation, and treatment strategies, with emphasis on providing comprehensive nursing support and patient education to patients with bladder cancer.
Collapse
Affiliation(s)
- Richard L Pullen
- Richard Pullen is a professor at the Texas Tech University Health Sciences Center and is a member of the Nursing2024 editorial board
| |
Collapse
|
6
|
Abdeltwab RM, Yacoub E, Rashad AH, Shohdy KS. Molecular Basis of Tumorigenesis of Bladder Cancer and Emerging Concepts in Developing Therapeutic Targets. Bladder Cancer 2023; 9:313-322. [PMID: 38994247 PMCID: PMC11165923 DOI: 10.3233/blc-230025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/15/2023] [Indexed: 07/13/2024]
Abstract
BACKGROUND Advanced urothelial carcinoma (UC) is an aggressive disease whose mutagenic processes are yet to be elucidated. Targeted therapies are urgently needed, but the road from bench to bedside is slowly progressing. In this review, we discuss urothelial carcinoma etiology, along with the most recent advances in UC candidate targeted therapies. METHODOLOGY A comprehensive database search was performed. We aimed to review the most recent updates on UC genomics and targeted therapies. Pre-clinical as well as clinical studies were included. RESULTS Our review highlights the advances in understanding the molecular basis of urothelial tumorigenesis, including smoking, chemical parasitic carcinogens, inheritance, and APOBEC3 editing enzymes. We discussed how these factors contributed to the current mutational landscape of UC. Therapeutic options for UC are still very limited. However, several promising therapeutic approaches are in development to leverage our knowledge of molecular targets, such as targeting fibroblast growth factor receptors (FGFR), DNA damage repair pathways, and HER2. CONCLUSIONS Blindly testing targeted therapies based on other cancer data is not sufficient. UC-specific biomarkers are needed to precisely use the appropriate drug for the appropriate population. More efforts to understand UC biology and evolution are urgently needed.
Collapse
Affiliation(s)
| | - Elaria Yacoub
- Department of Clinical Oncology, Cairo University, Cairo, Egypt
| | - Ahmed H. Rashad
- Department of Clinical Oncology, Cairo University, Cairo, Egypt
| | | |
Collapse
|
7
|
Rani B, Ignatz-Hoover JJ, Rana PS, Driscoll JJ. Current and Emerging Strategies to Treat Urothelial Carcinoma. Cancers (Basel) 2023; 15:4886. [PMID: 37835580 PMCID: PMC10571746 DOI: 10.3390/cancers15194886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Urothelial cell carcinoma (UCC, bladder cancer, BC) remains a difficult-to-treat malignancy with a rising incidence worldwide. In the U.S., UCC is the sixth most incident neoplasm and ~90% of diagnoses are made in those >55 years of age; it is ~four times more commonly observed in men than women. The most important risk factor for developing BC is tobacco smoking, which accounts for ~50% of cases, followed by occupational exposure to aromatic amines and ionizing radiation. The standard of care for advanced UCC includes platinum-based chemotherapy and programmed cell death (PD-1) or programmed cell death ligand 1 (PD-L1) inhibitors, administered as frontline, second-line, or maintenance therapy. UCC remains generally incurable and is associated with intrinsic and acquired drug and immune resistance. UCC is lethal in the metastatic state and characterized by genomic instability, high PD-L1 expression, DNA damage-response mutations, and a high tumor mutational burden. Although immune checkpoint inhibitors (ICIs) achieve long-term durable responses in other cancers, their ability to achieve similar results with metastatic UCC (mUCC) is not as well-defined. Here, we discuss therapies to improve UCC management and how comprehensive tumor profiling can identify actionable biomarkers and eventually fulfill the promise of precision medicine for UCC patients.
Collapse
Affiliation(s)
- Berkha Rani
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
| | - James J. Ignatz-Hoover
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
- Division of Hematology & Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Priyanka S. Rana
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
- Division of Hematology & Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - James J. Driscoll
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
- Division of Hematology & Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Doshi B, Athans SR, Woloszynska A. Biological differences underlying sex and gender disparities in bladder cancer: current synopsis and future directions. Oncogenesis 2023; 12:44. [PMID: 37666817 PMCID: PMC10477245 DOI: 10.1038/s41389-023-00489-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
Sex and gender disparities in bladder cancer have long been a subject of interest to the cancer research community, wherein men have a 4 times higher incidence rate than women, and female patients often present with higher-grade disease and experience worse outcomes. Despite the known differences in disease incidence and clinical outcomes between male and female bladder cancer patients, clinical management remains the same. In this review, we critically analyze studies that report on the biological differences between men and women and evaluate how these differences contribute to sex and gender disparities in bladder cancer. Distinct characteristics of the male and female immune systems, differences in circulating hormone levels and hormone receptor expression, and different genetic and epigenetic alterations are major biological factors that all likely contribute to disparate incidence rates and outcomes for male and female bladder cancer patients. Future preclinical and clinical studies in this area should employ experimental approaches that account for and consider sex and gender disparities in bladder cancer, thereby facilitating the development of precision medicine for the effective treatment of bladder cancer in all patients.
Collapse
Affiliation(s)
- Bhavisha Doshi
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Sarah R Athans
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Anna Woloszynska
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA.
| |
Collapse
|
9
|
Basu M, Mukhopadhyay D, Chakraborty B, Ghosh S, Pal DK, Ghosh A, Panda CK. Differential operation of MLH1/MSH2 and FANCD2 crosstalk in chemotolerant bladder carcinoma: a clinical and therapeutic intervening study. Mol Cell Biochem 2023; 478:1599-1610. [PMID: 36434146 DOI: 10.1007/s11010-022-04616-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022]
Abstract
We aimed to understand the crosstalk between mismatch repair (MMR) and FA-BRCA pathway in primary bladder carcinoma (BlCa) samples as well as in chemotolerant cell line. We analysed the genetic alterations of MLH1 and MSH2 (MMR-related genes) and after that we correlated it with the nuclear translocation of FANCD2 protein. Next, we evaluated this crosstalk in T24 BlCa cell line in response to doxorubicin treatment. In primary BlCa tumors, infrequent genetic deletion (17-20%) but frequent promoter methylation (28-55%) of MLH1 and MSH2 was observed, where MLH1 was significantly (p < 0.05) more methylated among the early staged samples (NMIBC). However, MSH2 was significantly more altered among the NMIBC samples, signifying the importance of MMR pathway during the early pathogenesis of the disease. Furthermore, BlCa samples with underexpressed MLH1/MSH2 protein possessed cytoplasmic FANCD2 protein; encouraging that inefficiency of MMR proteins might restrict FANCD2 nuclear translocation. Next, we analysed publicly available data in GEO2R tool where we observed that in response to chemotherapeutic drugs, expression of MLH1, MSH2 and FANCD2 were diminishing. Validating this result in doxorubicin tolerant T24 cells, we found that expression of MLH1 and MSH2 was gradually decreased with increasing dose of doxorubicin. Interestingly, FANCD2 mono-ubiquitination (L-form) was also reduced in chemotolerant T24 cells. The crosstalk between MMR and FA-BRCA pathway was substantiated in the primary BlCa tumors. Further, in response to doxorubicin, this crosstalk was found to be hampered due to under-expression of MLH1 and MSH2 gene, thereby rendering chemotolerance.
Collapse
Affiliation(s)
- Mukta Basu
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37 SPMukherjee Road, Kolkata, West Bengal, 700026, India
- Department of Medical Oncology, Cedars Sinai Medical Center, Los Angeles, United States
| | - Debalina Mukhopadhyay
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37 SPMukherjee Road, Kolkata, West Bengal, 700026, India
| | - Balarko Chakraborty
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37 SPMukherjee Road, Kolkata, West Bengal, 700026, India
| | - Sabnam Ghosh
- Department of Life Science, Presidency University, 86/1, College Street, Kolkata, 700073, India
| | - Dilip Kumar Pal
- Department of Urology, IPGMER, SSKM, 244 A.J.C. Bose Road, Kolkata, 700020, India
| | - Amlan Ghosh
- Department of Life Science, Presidency University, 86/1, College Street, Kolkata, 700073, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37 SPMukherjee Road, Kolkata, West Bengal, 700026, India.
| |
Collapse
|
10
|
Lee D, Lee W, Kim HP, Kim M, Ahn HK, Bang D, Kim KH. Accurate Detection of Urothelial Bladder Cancer Using Targeted Deep Sequencing of Urine DNA. Cancers (Basel) 2023; 15:2868. [PMID: 37345205 DOI: 10.3390/cancers15102868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Patients with hematuria are commonly given an invasive cystoscopy test to detect bladder cancer (BC). To avoid the risks associated with cystoscopy, several urine-based methods for BC detection have been developed, the most prominent of which is the deep sequencing of urine DNA. However, the current methods for urine-based BC detection have significant levels of false-positive signals. In this study, we report on uAL100, a method to precisely detect BC tumor DNA in the urine without tumor samples. Using urine samples from 43 patients with BC and 21 healthy donors, uAL100 detected BC with 83.7% sensitivity and 100% specificity. The mutations identified in the urine DNA by uAL100 for BC detection were highly associated with BC tumorigenesis and progression. We suggest that uAL100 has improved accuracy compared to other urine-based methods for early BC detection and can reduce unnecessary cystoscopy tests for patients with hematuria.
Collapse
Affiliation(s)
- Dongin Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | | | | | - Myong Kim
- Department of Urology, Ewha Womans University Seoul Hospital, Seoul 07804, Republic of Korea
| | - Hyun Kyu Ahn
- Department of Urology, Ewha Womans University Seoul Hospital, Seoul 07804, Republic of Korea
| | - Duhee Bang
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Kwang Hyun Kim
- Department of Urology, Ewha Womans University Seoul Hospital, Seoul 07804, Republic of Korea
| |
Collapse
|
11
|
Benvenuto M, Bei R. The Effect of Dietary Factors on Cancer. Int J Mol Sci 2023; 24:ijms24076802. [PMID: 37047775 PMCID: PMC10095496 DOI: 10.3390/ijms24076802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The effects of dietary factors on cancer have been widely studied for several decades [...]
Collapse
Affiliation(s)
- Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Departmental Faculty of Medicine and Surgery, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
12
|
Chan TC, Shiue YL, Li CF. The biological impacts of CEBPD on urothelial carcinoma development and progression. Front Oncol 2023; 13:1123776. [PMID: 36776299 PMCID: PMC9914172 DOI: 10.3389/fonc.2023.1123776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
Urothelial carcinoma (UC), which includes urinary bladder urothelial carcinoma (UBUC) and upper tract urothelial carcinoma (UTUC), is one of the most common malignancies worldwide. Accordingly, a comprehensive understanding of the underlying mechanism governing UC development is compulsory. Aberrant CCAAT/enhancer-binding protein delta (CEBPD), a transcription factor, displays an oncogene or tumor suppressor depending on tumor type and microenvironments. However, CEBPD has been reported to possess a clear oncogenic function in UC through multiple regulation pathways. Genomic amplification of CEBPD triggered by MYC-driven genome instability is frequently examined in UC that drives CEBPD overexpression. Upregulated CEBPD transcriptionally suppresses FBXW7 to stabilize MYC protein and further induces hexokinase II (HK2)-related aerobic glycolysis that fuels cell growth. Apart from the MYC-dependent pathway, CEBPD also downregulates the level of hsa-miR-429 to enhance HK2-associated glycolysis and induce angiogenesis driven by vascular endothelial growth factor A (VEGFA). Additionally, aggressive UC is attributed to the tumor metastasis regulated by CEBPD-induced matrix metalloproteinase-2 (MMP2) overexpression. Furthermore, elevated CEBPD induced by cisplatin (CDDP) is identified to have dual functions, namely, CDDP-induced chemotherapy resistance or drive CDDP-induced antitumorigenesis. Given that the role of CEBPD in UC is getting clear but pending a more systemic reappraisal, this review aimed to comprehensively discuss the underlying mechanism of CEBPD in UC tumorigenesis.
Collapse
Affiliation(s)
- Ti-Chun Chan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan,National Health Research Institutes, National Institute of Cancer Research, Tainan, Taiwan
| | - Yow-Ling Shiue
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan,*Correspondence: Yow-Ling Shiue, ; Chien-Feng Li,
| | - Chien-Feng Li
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan,National Health Research Institutes, National Institute of Cancer Research, Tainan, Taiwan,Department of Clinical Medicine, Chi Mei Medical Center, Tainan, Taiwan,*Correspondence: Yow-Ling Shiue, ; Chien-Feng Li,
| |
Collapse
|
13
|
Rosenberg JE, Park SH, Kozlov V, Dao TV, Castellano D, Li JR, Mukherjee SD, Howells K, Dry H, Lanasa MC, Stewart R, Bajorin DF. Durvalumab Plus Olaparib in Previously Untreated, Platinum-Ineligible Patients With Metastatic Urothelial Carcinoma: A Multicenter, Randomized, Phase II Trial (BAYOU). J Clin Oncol 2023; 41:43-53. [PMID: 35737919 PMCID: PMC9788981 DOI: 10.1200/jco.22.00205] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Accepted: 05/05/2022] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Homologous recombination repair gene mutations (HRRm) are common in urothelial carcinoma (UC), rendering tumor cells sensitive to poly (ADP-ribose) polymerase (PARP) inhibition. We assessed efficacy and safety of durvalumab (anti-programmed cell death ligand-1) plus olaparib (PARP inhibitor) in patients with metastatic UC (mUC). METHODS This randomized, multicenter, double-blind, phase II trial enrolled untreated, platinum-ineligible patients with mUC. Patients (N = 154) were randomly assigned 1:1 to receive durvalumab (1,500 mg intravenously once every 4 weeks) plus olaparib (300 mg orally, twice daily) or durvalumab plus placebo. The primary end point was progression-free survival (PFS) assessed by investigators per RECIST version 1.1. Secondary end points included overall survival in all patients and PFS in patients with HRRm. RESULTS Overall, median PFS was 4.2 months (95% CI, 3.6 to 5.6) for durvalumab plus olaparib and 3.5 months (95% CI, 1.9 to 5.1) for durvalumab plus placebo (hazard ratio [HR], 0.94; 95% CI, 0.64 to 1.39; log-rank P value, .789). Median overall survival was 10.2 months (95% CI, 7.0 to 13.9) and 10.7 months (95% CI, 7.2 to 17.3), respectively (HR, 1.07; 95% CI, 0.72 to 1.61). In the 20% of patients with HRRm, median PFS was 5.6 months (95% CI, 1.9 to 8.1) and 1.8 months (95% CI, 1.7 to 2.2), respectively (HR, 0.18; 95% CI, 0.06 to 0.47). Treatment-related grade 3 or 4 adverse events occurred in 18% and 9% of patients, respectively. CONCLUSION Adding olaparib to durvalumab did not improve survival outcomes in an unselected mUC population. Efficacy outcomes with durvalumab were similar to those reported for other anti-programmed cell death-1/programmed cell death ligand-1 agents. However, the results of secondary analyses suggest a potential role for PARP inhibition in patients with UC harboring HRRm.
Collapse
Affiliation(s)
- Jonathan E. Rosenberg
- Genitourinary Oncology Service, Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Se Hoon Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Vadim Kozlov
- Novosibirsk Reg Clinical Onc Dispensary, Novosibirsk, Russia
| | - Tu V. Dao
- Vietnam National Cancer Hospital, Hanoi, Vietnam
| | | | - Jian-Ri Li
- Taichung Veterans General Hospital, Hung Kuang University, Taichung, Taiwan
| | - Som D. Mukherjee
- Juravinski Cancer Centre, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | - Dean F. Bajorin
- Genitourinary Oncology Service, Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
14
|
Li EH, Xu BH, Wei HB, Bai YC, Zhang Q, Yu WW, Xu ZH, Qi XL, Zhang DH, Wang H. Molecular mechanism of di-n-butyl phthalate promotion of bladder cancer development. Toxicol In Vitro 2022; 86:105508. [DOI: 10.1016/j.tiv.2022.105508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/15/2022] [Accepted: 10/30/2022] [Indexed: 11/13/2022]
|
15
|
El-Gamal R, Abdelrahim M, El-Sherbiny M, Enan ET, El-Nablaway M. Gasdermin D: A potential mediator and prognostic marker of bladder cancer. Front Mol Biosci 2022; 9:972087. [PMID: 36120543 PMCID: PMC9474890 DOI: 10.3389/fmolb.2022.972087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/25/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Bladder cancer is considered one of the commonest widespread cancers, its presentation ranges from non-muscle invasive form to being muscle-invasive. The gasdermin family of proteins consists of six proteins. Members of gasdermin family are involved in pyroptosis; which is considered as type of inflammatory apoptosis via participation of gasdermin D and inflammatory caspases. Purpose: The goal of this research was to look into the potential involvement of gasdermin D in pathogenesis of bladder cancer, In addition, to investigate its potential role as a prognostic marker of bladder cancer. Methods: Gasdermin D gene and protein expression was examined in fresh frozen 80 bladder cancer specimens (30 NMIBC, and 50 MIBC) and the matching 80 control tissue samples utilizing real-time polymerase chain reaction and western blotting. Furthermore, the immunoreactivity of gasdermin D protein was also detected by immunohistochemistry. Results: Gasdermin D gene and protein expression showed a highly significant difference between the control and the two bladder cancer groups (p < 0.001), as demonstrated by real-time PCR, western blotting and immunohistochemistry. Cox proportional hazards regression models showed that lower gasdermin D gene expression in cancer patients (≤1.58-fold), and younger age (≤53 years) were linked with a higher risk of local tumor recurrence. Moreover, higher gasdermin D gene expression (>2.18-fold), and lymph nodes’ involvement were associated with an increased mortality. Conclusion: Gasdermin D is involved in the pathogenesis of bladder cancer and muscle invasion, in addition, tissue gasdermin D expression may be used as useful tool to predict local tumor recurrence.
Collapse
Affiliation(s)
- Randa El-Gamal
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt
- *Correspondence: Randa El-Gamal, ,
| | - Mona Abdelrahim
- Consultant of Pathology, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, Anatomy Unit, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Eman T. Enan
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohammad El-Nablaway
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Medical Biochemistry Unit, Department of Basic Medical Sciences, College of Medicine, Almaarefa University, Riyad, Saudi Arabia
| |
Collapse
|
16
|
Sivarajah S, Emerick K, Kaufman HL. What Surgeons Need to Know About Gene Therapy for Cancer. Adv Surg 2022; 56:151-168. [PMID: 36096566 DOI: 10.1016/j.yasu.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The broad field of gene therapy offers numerous innovative approaches for cancer treatment. An understanding of the different modalities including gene replacement therapy, cancer vaccines, oncolytic viruses, cellular therapy, and gene editing is essential for managing patients with neoplastic disease. As in other areas of oncology, the surgeon plays a pivotal role in the diagnosis and treatment of the disease. This review focuses on what the clinical surgeon needs to know to optimize the benefit of gene therapy for patients with cancer.
Collapse
Affiliation(s)
- Shanmugappiriya Sivarajah
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, 243 Charles Street Boston, MA 02114 USA
| | - Kevin Emerick
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, 243 Charles Street Boston, MA 02114 USA
| | - Howard L Kaufman
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, 55 Fruit Street, Yawkey 7E, Boston, MA 02114, USA.
| |
Collapse
|
17
|
Combining Antiandrogens with Immunotherapy for Bladder Cancer Treatment. EUR UROL SUPPL 2022; 43:35-44. [PMID: 36246841 PMCID: PMC9557088 DOI: 10.1016/j.euros.2022.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 11/20/2022] Open
|
18
|
Wang F, Dong X, Yang F, Xing N. Comparative Analysis of Differentially Mutated Genes in Non-Muscle and Muscle-Invasive Bladder Cancer in the Chinese Population by Whole Exome Sequencing. Front Genet 2022; 13:831146. [PMID: 35419031 PMCID: PMC8996331 DOI: 10.3389/fgene.2022.831146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: To characterize the spectra of mutations in non-muscle invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) in the Chinese population to identify any mutational features and find potential therapeutic targets. Materials and methods: We collected fresh bladder tumor samples from NMIBC (n = 9) and MIBC patients (n = 11) along with adjacent normal bladder tissue specimen and peripheral blood sample. Using whole exome sequencing (WES), we analyzed the mutation spectra of those NMIBC and MIBC bladder cancer (BCa) specimen. Results: Our results demonstrated that 95% of BCa patients (19/20) had varying degrees of driver gene mutations, FGFR3 (45%), KMT2D (40%), PIK3CA (35%), ARID1A (20%), EP300 (20%), KDM6A (20%), KMT2C (20%), and STAG2 (20%) were the most frequently mutated genes in BCa patients. NMIBC and MIBC exhibited different genomic alterations. FGFR3 (67%), PIK3CA (56%), and RHOB (44%) were the most frequently mutated genes in NMIBC patients. Of note, RHOB mutation only occurred in NMIBC, whereas mutations of KMT2D (55%), TP53 (36%) and KMT2B (27%) were frequently detected in MIBC, and TP53 and KMT2B mutation only occurred in MIBC. The frequency of mutations in DNA-damage repair (DDR) gene was higher in MIBC than that in NMIBC (91 vs 78%, 6.2 vs 2.4 gene mutations per patient). Copy number alterations (CNAs) occurred at more diverse chromosomal locations in NMIBC, but the CNA burden was higher in MIBC [9.01 (2.07-31.51) vs 4.98 (0.99-9.73) mutations/Mb]., the trend of which was consistent with the tumor mutation burden (TMB) [8.26 (4.63-21.84) vs 5.58 (3.87-9.58) mutations/Mb]. Among the current set of single-base substitution (SBS) signatures including SBS 1, 2, 5, 13, and 40, we identified one differently expressed signature between NMIBC and MIBC patients: SBS13. Conclusions: There were different gene mutational characteristics and signatures between NMIBC and MIBC in the Chinese population. Frequency of DDR, CNA burden and TMB were higher in MIBC. Our analysis revealed that several genes in NMIBC did not overlap with those reported in MIBC, suggesting that a fraction of NMIBC and MIBC likely developed secondary to different precursor lesions.
Collapse
Affiliation(s)
- Fangming Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiying Dong
- Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Feiya Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nianzeng Xing
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Urology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
19
|
El Ahanidi H, El Azzouzi M, Arrouchi H, Alaoui CH, Tetou M, Bensaid M, Oukabli M, Ameur A, Al Bouzidi A, El Mzibri M, Attaleb M. AKT1 and PIK3CA activating mutations in Moroccan bladder cancer patients´ biopsies and matched urine. Pan Afr Med J 2022; 41:59. [PMID: 35317488 PMCID: PMC8917451 DOI: 10.11604/pamj.2022.41.59.31383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction in cancer cells, activating mutations in PIK3CA and AKT1 genes, major players of PI3K-AKT-mTOR signalling pathway, are widely reported in many cancers and present attractive targets for the identification of new therapeutics and better cancer management. The present study was planned to evaluate the mutational status of PIK3CA and AKT1 genes in bladder cancer patients and to assess the association between these mutations and patients´ clinico-pathological features. Methods in this prospective study, bladder cancer biopsies and matched urine sediments samples were collected form 70 patients. Mutations were assessed by deoxyribonucleic acid (DNA) sequencing and correlation with clinico-pathological data was performed using SPSS software. Results AKT1 alterations were poorly detected. Only one patient with pT1 stage and high-grade tumour carried the E17K mutation. In PIK3CA exon 9, 2 point mutations, E545K and Q546E, and a SNP (E547E) were reported, whereas in exon 20, 2 point mutations (L989V and H1047R) and 2 SNPs (I1022I and T1025T) were detected. PIK3CA mutations were mainly observed in early stages and high-grade tumours. Statistical analysis showed no significant association between the studied AKT1 and PIK3CA mutations and patients´ clinico-pathological parameters (p > 0.05). Detection of these mutations in voided urine samples showed a high specificity (100%) for both genes and a moderate sensitivity: 100% for AKT1 and 66.7% for PIK3CA genes. Conclusion this study shows clearly that mutations in AKT1 and PIK3CA are rare events and could not be considered as valuable biomarkers for bladder cancer management.
Collapse
Affiliation(s)
- Hajar El Ahanidi
- Biology and Medical Research Unit, The National Center for Energy and Nuclear Science and Technology, Rabat, Morocco.,Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Meryem El Azzouzi
- Biology and Medical Research Unit, The National Center for Energy and Nuclear Science and Technology, Rabat, Morocco.,Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Housna Arrouchi
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Chaimae Hafidi Alaoui
- Biology and Medical Research Unit, The National Center for Energy and Nuclear Science and Technology, Rabat, Morocco
| | | | | | - Mohamed Oukabli
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco.,Military Hospital Mohammed V, Rabat, Morocco
| | - Ahmed Ameur
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco.,Military Hospital Mohammed V, Rabat, Morocco
| | | | - Mohammed El Mzibri
- Biology and Medical Research Unit, The National Center for Energy and Nuclear Science and Technology, Rabat, Morocco
| | - Mohammed Attaleb
- Biology and Medical Research Unit, The National Center for Energy and Nuclear Science and Technology, Rabat, Morocco
| |
Collapse
|
20
|
Yang X, Lv J, Zhou Z, Feng D, Zhou R, Yuan B, Wu Q, Yu H, Han J, Cao Q, Gu M, Li P, Yang H, Lu Q. Clinical Application of Circulating Tumor Cells and Circulating Endothelial Cells in Predicting Bladder Cancer Prognosis and Neoadjuvant Chemosensitivity. Front Oncol 2022; 11:802188. [PMID: 35186716 PMCID: PMC8851236 DOI: 10.3389/fonc.2021.802188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose To investigate the role of circulating rare cells (CRCs), namely, circulating tumor cells (CTCs) and circulating endothelial cells (CECs), in aiding early intervention, treatment decision, and prognostication in bladder cancer. Methods A total of 196 patients with pathologically confirmed bladder cancer, namely, 141 non-muscle invasive bladder cancer (NMIBC) and 55 muscle invasive bladder cancer (MIBC) patients. There were 32 patients who received cisplatin-based neoadjuvant chemotherapy (NAC) followed by radical cystectomy (RC). Subtraction enrichment combined with immunostaining-fluorescence in situ hybridization (SE-iFISH) strategy was used for CTC/CEC detection. Kaplan–Meier analysis and Cox regression were used to evaluate the overall survival (OS) and recurrence-free survival (RFS). Receiver operator characteristic analysis was used to discriminate NAC sensitivity. Results CTCs and CECs were related to clinicopathological characteristics. Triploid CTCs, tetraploid CTCs, and total CECs were found to be higher in incipient patients than in relapse patients (P = 0.036, P = 0.019, and P = 0.025, respectively). The number of total CECs and large cell CECs was also associated with advanced tumor stage (P = 0.028 and P = 0.033) and grade (P = 0.028 and P = 0.041). Remarkably, tumor-biomarker-positive CTCs were associated with worse OS and RFS (P = 0.026 and P = 0.038) in NMIBC patients underwent TURBT. CECs cluster was an independent predictor of recurrence in non-high-risk NMIBC patients underwent TURBT (HR = 9.21, P = 0.040). For NAC analysis, pre-NAC tetraploid CTCs and small cell CTCs demonstrated the capability in discriminating NAC-sensitive from insensitive patients. Additionally, tetraploid CTCs and single CTCs elevated post-NAC would indicate chemoresistance. Conclusion CTCs and CECs may putatively guide in diagnosis, prognosis prediction, and therapeutic decision-making for bladder cancer.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiancheng Lv
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zijian Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dexiang Feng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Baorui Yuan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qikai Wu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Yu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Cao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengchao Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haiwei Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Identification of the circRNA-miRNA-mRNA Regulatory Network in Bladder Cancer by Bioinformatics Analysis. Int J Genomics 2021; 2021:9935986. [PMID: 34824999 PMCID: PMC8610721 DOI: 10.1155/2021/9935986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/01/2021] [Accepted: 10/26/2021] [Indexed: 01/05/2023] Open
Abstract
In recent years, increasing evidence shows that circular RNA (circRNA) disorder is closely related to tumorigenesis and cancer progression. However, the regulatory functions of most circRNAs in bladder cancer (BCa) remain unclear. This study was aimed at exploring the molecular regulatory mechanism of circRNAs in BCa. We obtained four datasets of circRNA, microRNA (miRNA), and messenger (mRNA) expression profiles from the Gene Expression Omnibus and The Cancer Genome Atlas microarray databases and identified 434, 367, and 4799/4841 differentially expressed circRNAs, miRNAs, and mRNAs, respectively. With these differentially expressed RNAs, we established a circRNA-miRNA-mRNA targeted interaction network. A total of 18, 24, and 51 central circRNAs, miRNAs, and mRNAs were identified, respectively. Among them, the top 10 mRNAs that had high connectivity with other circRNAs and miRNAs were regarded as hub genes. We detected the expression levels of these 10 mRNAs in 16 pairs of BCa tissues and adjacent normal tissues through quantitative real-time polymerase chain reaction. The differentially expressed mRNAs and central mRNAs were enriched in the processes and pathways that are associated with the growth, differentiation, proliferation, and apoptosis of tumor cells. The outstanding genes (CDCA4, GATA6, LATS2, RHOB, ZBTB4, and ZFPM2) also interacted with numerous drugs, indicating their potency as biomarkers and drug targets. The findings of this study provide a deep understanding of the circRNA-related competitive endogenous RNA regulatory mechanism in BCa pathogenesis.
Collapse
|
22
|
Arnoff TE, El-Deiry WS. CDKN1A/p21 WAF1, RB1, ARID1A, FLG, and HRNR mutation patterns provide insights into urinary tract environmental exposure carcinogenesis and potential treatment strategies. Am J Cancer Res 2021; 11:5452-5471. [PMID: 34873472 PMCID: PMC8640812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023] Open
Abstract
Bladder carcinoma has a 6% 5-year survival-rate for metastatic disease, with poorly understood links between genetic and environmental drivers of disease development, progression, and treatment response. Rhode Island has among the highest annual age-adjusted incidence rate of bladder cancer at 26.0/100,000, compared to 20.0 in the US, with a paucity of known driver genes for targeted therapies or predictive biomarkers. Bladder carcinomas have the highest frequency of alterations in CDKN1A/p21WAF1 (10%) across all cancer types analyzed in The Cancer Genome Atlas (TCGA) PanCancer Atlas Studies, displaying a predominance of truncating mutations (86%). We found that lung carcinomas lack CDKN1A truncating mutations, despite the shared role of tobacco as a risk factor for bladder cancer. Bladder carcinomas also have the highest frequency of RB1 alterations in TCGA (25%). We find that chromophobe renal cell carcinomas with CDKN1A and RB1 mutations are 100% truncating. Analysis of 1,868 bladder tumors demonstrated that truncating CDKN1A mutations co-occur with truncating RB1 mutations, suggesting an environmental exposure signature. Moreover, we found that HRNR and FLG mutations are enriched in tumors with CDKN1A alteration, suggesting potential novel roles in promoting bladder tumorigenesis. Association of HRNR with AKT activation offers possible therapeutic avenues, and FLG may provide insight into carcinogen exposure within the bladder. We suggest that because APOBEC mutations largely shape the bladder cancer mutational landscape, these events likely contribute to dysfunctional DNA repair genes, leading to frameshifts and the predominance of truncations in CDKN1A, RB1, ARID1A, or other drivers. We propose that patients with co-occurrence of CDKN1A and RB1 truncations may display enhanced responsiveness to targeted therapies combining cisplatin with ATR, ATM, CHK1, and CHK2 inhibitors, expanding therapeutic options for patients in need of improved precision treatments.
Collapse
Affiliation(s)
- Taylor E Arnoff
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown UniversityProvidence, RI, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown UniversityProvidence, RI, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and The Warren Alpert Medical School, Brown UniversityProvidence, RI, USA
- The Joint Program in Cancer Biology, Lifespan Health System and The Warren Alpert Medical School, Brown UniversityProvidence, RI, USA
- Cancer Center at Brown University, The Warren Alpert Medical School, Brown UniversityProvidence, RI, USA
- Department of Pathology and Laboratory Medicine, Lifespan Health System and The Warren Alpert Medical School, Brown UniversityProvidence, RI, USA
| |
Collapse
|
23
|
Tumor Heterogeneity and Consequences for Bladder Cancer Treatment. Cancers (Basel) 2021; 13:cancers13215297. [PMID: 34771460 PMCID: PMC8582570 DOI: 10.3390/cancers13215297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Bladder cancer is a heterogeneous disease that is composed of epithelia with varying transcriptional, mutational and lineage signatures. The epithelia of bladder tumors can also undergo pronounced changes in transcriptional and phenotypical qualities in response to progression, treatment related stresses and cues from the tumor microenvironment (TME). We hypothesize that changes in epithelial tumor heterogeneity (EpTH) occur due to the evolving content of epithelial subpopulations through both Darwinian and Lamarckian-like natural selection processes. We further conjecture that lineage-defined subpopulations can change through nongenomic and genomic cellular mechanisms that include cellular plasticity and acquired driver mutations, respectively. We propose that such processes are dynamic and contribute towards clinical treatment challenges including progression to drug resistance. In this article, we assess mechanisms that may support dynamic tumor heterogeneity with the overall goal of emphasizing the application of these concepts to the clinical setting. Abstract Acquired therapeutic resistance remains a major challenge in cancer management and associates with poor oncological outcomes in most solid tumor types. A major contributor is tumor heterogeneity (TH) which can be influenced by the stromal; immune and epithelial tumor compartments. We hypothesize that heterogeneity in tumor epithelial subpopulations—whether de novo or newly acquired—closely regulate the clinical course of bladder cancer. Changes in these subpopulations impact the tumor microenvironment including the extent of immune cell infiltration and response to immunotherapeutics. Mechanisms driving epithelial tumor heterogeneity (EpTH) can be broadly categorized as mutational and non-mutational. Mechanisms regulating lineage plasticity; acquired cellular mutations and changes in lineage-defined subpopulations regulate stress responses to clinical therapies. If tumor heterogeneity is a dynamic process; an increased understanding of how EpTH is regulated is critical in order for clinical therapies to be more sustained and durable. In this review and analysis, we assess the importance and regulatory mechanisms governing EpTH in bladder cancer and the impact on treatment response.
Collapse
|
24
|
Sommer BC, Dhawan D, Ruple A, Ramos-Vara JA, Hahn NM, Utturkar SM, Ostrander EA, Parker HG, Fulkerson CM, Childress MO, Fourez LM, Enstrom AW, Knapp DW. Basal and Luminal Molecular Subtypes in Naturally-Occurring Canine Urothelial Carcinoma are Associated with Tumor Immune Signatures and Dog Breed. Bladder Cancer 2021; 7:317-333. [PMID: 38993617 PMCID: PMC11181872 DOI: 10.3233/blc-201523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/19/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Improved therapies are needed for patients with invasive urothelial carcinoma (InvUC). Tailoring treatment to molecular subtypes holds promise, but requires further study, including studies in pre-clinical animal models. Naturally-occurring canine InvUC harbors luminal and basal subtypes, mimicking those observed in humans, and could offer a relevant model for the disease in people. OBJECTIVE To further validate the canine InvUC model, clinical and tumor characteristics associated with luminal and basal subtypes in dogs were determined, with comparison to findings from humans. METHODS RNA sequencing (RNA-seq) analyses were performed on 56 canine InvUC tissues and bladder mucosa from four normal dogs. Data were aligned to CanFam 3.1, and differentially expressed genes identified. Data were interrogated with panels of genes defining luminal and basal subtypes, immune signatures, and other tumor features. Subject and tumor characteristics, and outcome data were obtained from medical records. RESULTS Twenty-nine tumors were classified as luminal and 27 tumors as basal subtype. Basal tumors were strongly associated with immune infiltration (OR 52.22, 95%CI 4.68-582.38, P = 0.001) and cancer progression signatures in RNA-seq analyses, more advanced clinical stage, and earlier onset of distant metastases in exploratory analyses (P = 0.0113). Luminal tumors were strongly associated with breeds at high risk for InvUC (OR 0.06, 95%CI 0.01 -0.37, P = 0.002), non-immune infiltrative signatures, and less advanced clinical stage. CONCLUSIONS Dogs with InvUC could provide a valuable model for testing new treatment strategies in the context of molecular subtype and immune status, and the search for germline variants impacting InvUC onset and subtype.
Collapse
Affiliation(s)
- Breann C. Sommer
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA
| | - Deepika Dhawan
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA
| | - Audrey Ruple
- Department of Public Health, Purdue University, West Lafayette, IN, USA
- Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - José A. Ramos-Vara
- Purdue University Center for Cancer Research, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette IN, USA
| | - Noah M. Hahn
- Department of Oncology and Urology, and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Sagar M. Utturkar
- Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Elaine A. Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Heidi G. Parker
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher M. Fulkerson
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA
- Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Michael O. Childress
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA
- Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Lindsey M. Fourez
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA
| | - Alexander W. Enstrom
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA
| | - Deborah W. Knapp
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA
- Purdue University Center for Cancer Research, West Lafayette, IN, USA
| |
Collapse
|
25
|
Hayashi Y, Fujita K, Netto GJ, Nonomura N. Clinical Application of TERT Promoter Mutations in Urothelial Carcinoma. Front Oncol 2021; 11:705440. [PMID: 34395278 PMCID: PMC8358429 DOI: 10.3389/fonc.2021.705440] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/02/2021] [Indexed: 12/03/2022] Open
Abstract
Urothelial carcinoma (UC) is a common urological malignancy with a high rate of disease recurrence. Telomerase activity, a hallmark of cancer characterized by overcoming the replicative senescence, is upregulated in over 90% of patients with UC. Somatic mutations in the promoter region of telomerase reverse transcriptase (TERT) are frequently detected in UC, and drive telomerase activity. Recent studies have demonstrated a strong association between TERT promoter mutation and tumorigenesis of UC. Also, TERT promoter mutation has great potential for diagnosis, as well as prognosis in UC treatment, and this is also applicable for the liquid biopsy techniques. In this review, we discuss the progress in these areas and highlight the challenges, clinical potential, and future direction for developing UC treatment methods.
Collapse
Affiliation(s)
- Yujiro Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Urology, Osaka General Medical Center, Osaka, Japan
| | - Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - George J. Netto
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
26
|
Zhang C, Berndt-Paetz M, Neuhaus J. A Comprehensive Bioinformatics Analysis of Notch Pathways in Bladder Cancer. Cancers (Basel) 2021; 13:cancers13123089. [PMID: 34205690 PMCID: PMC8235546 DOI: 10.3390/cancers13123089] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary The Notch pathway is important in embryology and numerous tumor diseases. However, its role in bladder cancer (BCa) has not been deeply investigated thus far. Gene expression data are available for BCa, and bioinformatics analysis can provide insights into a possible role of the Notch pathway in BCa development and prognosis. Using this information can help in better understanding the origin of BCa, finding novel biomarkers for prediction of disease progression, and potentially opening new avenues to improved treatment. Our analysis identified the Notch receptors NOTCH2/3 and their ligand DLL4 as potential drivers of BCa by direct interaction with basic cell functions and indirect by modulating the immune response. Abstract Background: A hallmark of Notch signaling is its variable role in tumor biology, ranging from tumor-suppressive to oncogenic effects. Until now, the mechanisms and functions of Notch pathways in bladder cancer (BCa) are still unclear. Methods: We used publicly available data from the GTEx and TCGA-BLCA databases to explore the role of the canonical Notch pathways in BCa on the basis of the RNA expression levels of Notch receptors, ligands, and downstream genes. For statistical analyses of cancer and non-cancerous samples, we used R software packages and public databases/webservers. Results: We found differential expression between control and BCa samples for all Notch receptors (NOTCH1, 2, 3, 4), the delta-like Notch ligands (DLL1, 3, 4), and the typical downstream gene hairy and enhancer of split 1 (HES1). NOTCH2/3 and DLL4 can significantly differentiate non-cancerous samples from cancers and were broadly altered in subgroups. High expression levels of NOTCH2/3 receptors correlated with worse overall survival (OS) and shorter disease-free survival (DFS). However, at long-term (>8 years) follow-up, NOTCH2 expression was associated with a better OS and DFS. Furthermore, the cases with the high levels of DLL4 were associated with worse OS but improved DFS. Pathway network analysis revealed that NOTCH2/3 in particular correlated with cell cycle, epithelial–mesenchymal transition (EMT), numbers of lymphocyte subtypes, and modulation of the immune system. Conclusions: NOTCH2/3 and DLL4 are potential drivers of Notch signaling in BCa, indicating that Notch and associated pathways play an essential role in the progression and prognosis of BCa through directly modulating immune cells or through interaction with cell cycle and EMT.
Collapse
Affiliation(s)
- Chuan Zhang
- Department of Urology, University of Leipzig, 04109 Leipzig, Germany; (C.Z.); (M.B.-P.)
- Department of Urology, Chengdu Fifth People’s Hospital Affiliated to the Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Mandy Berndt-Paetz
- Department of Urology, University of Leipzig, 04109 Leipzig, Germany; (C.Z.); (M.B.-P.)
| | - Jochen Neuhaus
- Department of Urology, University of Leipzig, 04109 Leipzig, Germany; (C.Z.); (M.B.-P.)
- Correspondence: ; Tel.: +49-341-971-7688
| |
Collapse
|
27
|
Tomiyama E, Matsuzaki K, Fujita K, Shiromizu T, Narumi R, Jingushi K, Koh Y, Matsushita M, Nakano K, Hayashi Y, Wang C, Ishizuya Y, Kato T, Hatano K, Kawashima A, Ujike T, Uemura M, Takao T, Adachi J, Tomonaga T, Nonomura N. Proteomic analysis of urinary and tissue-exudative extracellular vesicles to discover novel bladder cancer biomarkers. Cancer Sci 2021; 112:2033-2045. [PMID: 33721374 PMCID: PMC8088963 DOI: 10.1111/cas.14881] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Proteomic analysis of urinary extracellular vesicles (EVs) is a powerful approach to discover potential bladder cancer (BCa) biomarkers, however urine contains numerous EVs derived from the kidney and normal urothelial epithelium, which can obfuscate information related to BCa cell-derived EVs. In this study, we combined proteomic analysis of urinary EVs and tissue-exudative EVs (Te-EVs), which were isolated from culture medium of freshly resected viable BCa tissues. Urinary EVs were isolated from urine samples of 11 individuals (7 BCa patients and 4 healthy individuals), and Te-EVs were isolated from 7 BCa tissues. We performed tandem mass tag (TMT)-labeling liquid chromatography (LC-MS/MS) analysis for both urinary EVs and Te-EVs and identified 1960 proteins in urinary EVs and 1538 proteins in Te-EVs. Most of the proteins identified in Te-EVs were also present in urinary EVs (82.4%), with 55 of these proteins showing upregulated levels in the urine of BCa patients (fold change > 2.0; P < .1). Among them, we selected 22 membrane proteins as BCa biomarker candidates for validation using selected reaction monitoring/multiple reaction monitoring (SRM/MRM) analysis on urine samples from 70 individuals (40 BCa patients and 30 healthy individuals). Six urinary EV proteins (heat-shock protein 90, syndecan-1, myristoylated alanine-rich C-kinase substrate (MARCKS), MARCKS-related protein, tight junction protein ZO-2, and complement decay-accelerating factor) were quantified using SRM/MRM analysis and validated as significantly upregulated in BCa patients (P < .05). In conclusion, the novel strategy that combined proteomic analysis of urinary EVs and Te-EVs enabled selective detection of urinary BCa biomarkers.
Collapse
Affiliation(s)
- Eisuke Tomiyama
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Kyosuke Matsuzaki
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Kazutoshi Fujita
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
- Department of UrologyKindai University Faculty of MedicineSayamaJapan
| | - Takashi Shiromizu
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionIbarakiJapan
| | - Ryohei Narumi
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionIbarakiJapan
| | - Kentaro Jingushi
- Laboratory of Molecular and Cellular PhysiologyOsaka University Graduate School of Pharmaceutical SciencesSuitaJapan
| | - Yoko Koh
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Makoto Matsushita
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Kosuke Nakano
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Yujiro Hayashi
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Cong Wang
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Yu Ishizuya
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Taigo Kato
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
- Department of Urological Immuno‐oncologyOsaka University Graduate School of MedicineSuitaJapan
| | - Koji Hatano
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Atsunari Kawashima
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Takeshi Ujike
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Motohide Uemura
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
- Department of Urological Immuno‐oncologyOsaka University Graduate School of MedicineSuitaJapan
| | - Tetsuya Takao
- Department of UrologyOsaka General Medical CenterOsakaJapan
| | - Jun Adachi
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionIbarakiJapan
| | - Takeshi Tomonaga
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionIbarakiJapan
| | - Norio Nonomura
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| |
Collapse
|
28
|
Hayashi Y, Fujita K. Toward urinary cell-free DNA-based treatment of urothelial carcinoma: a narrative review. Transl Androl Urol 2021; 10:1865-1877. [PMID: 33968675 PMCID: PMC8100839 DOI: 10.21037/tau-20-1259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Liquid biopsy technique targeting urinary cell-free DNA (cfDNA) is getting a lot of attention to overcome limitations of the present treatment strategy for urothelial carcinoma, including urothelial bladder carcinoma (UBC) and upper tract urothelial carcinoma (UTUC). Analysis of tumor-derived DNA in urine focusing either on genomic or epigenomic alterations, holds great potential as a noninvasive method for the detection of urothelial carcinoma with high accuracy. It is also predictive of prognosis and response to drugs, and reveals the underlying characteristics of different stages of urothelial carcinoma. Although cfDNA methylation analyses based on a combination of several methylation profiles have demonstrated high sensitivity for UBC diagnosis, there have been few reports involving epigenomic studies of urinary cfDNA. In mutational analyses, frequent gene mutations (TERT promoter, TP53, FGFR3, PIK3CA, RAS, etc.) have been detected in urine supernatant by using remarkable technological innovations such as next-generation sequencing and droplet digital PCR. These methods allow highly sensitive detection of rare mutation alleles while minimizing artifacts. In this review, we summarize the current insights into the clinical applications of urinary cfDNA from patients with urothelial carcinoma. Although it is necessary to conduct prospective multi-institutional clinical trials, noninvasive urine biopsy is expected to play an important role in the realization of precision medicine in patients with urothelial carcinoma in the near future.
Collapse
Affiliation(s)
- Yujiro Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|