1
|
Xu J, Cui J, He Q, Liu Y, Lu X, Qi J, Xiong J, Yu W, Li C. Genome-wide identification of HIPP and mechanism of SlHIPP4/7/9/21/26/32 mediated phytohormones response to Cd, osmotic, and salt stresses in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109220. [PMID: 39437665 DOI: 10.1016/j.plaphy.2024.109220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Heavy-metal-associated isoprenylated plant proteins (HIPPs) contributed to abiotic tolerance in vascular plants. Up to now, the HIPP gene family of tomato (Solanum lycopersicum L.) had not been thoroughly understood. In the present study, 34 SlHIPP genes were identified from the tomato genome using the Hidden Markov Model (HMM). The phylogenetic analysis revealed that the evolution of SlHIPPs was highly conserved. The cis-acting element analysis indicated that SlHIPP genes might be involved in phytohormones and abiotic stresses. We constructed venn diagram with 17 genes containing stress-related motifs as well as 15 genes and 19 genes expressing in leaves and roots in RNA-seq data, suggesting that SlHIPP4/7/9/21/26/32 were selected as candidate genes for study. The quantitative real-time PCR (qRT-PCR) analysis showed that 6 candidate genes were indicated to be involved in osmotic and salt stress tolerance and SlHIPP7/21/26/32 responded to cadmium (Cd) tolerance. The virus-induced silencing of 6 candidate genes caused growth inhibition in stress conditions, further illustrating that 6 candidate genes played a positive role in abiotic conditions. Importantly, the phytohormone analysis implied that 6 candidate genes mediated abscisic acid (ABA), salicylic acid (SA), gibberellin (GA3), auxin (IAA), or methyl jasmonate (MeJA) response to Cd, osmotic, or salt stress tolerance. These findings indicated that SlHIPP4/7/9/21/26/32 were key regulators of abiotic stress responses in tomato seedlings, functioning through multiple phytohormone pathways.
Collapse
Affiliation(s)
- Junrong Xu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jing Cui
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Qiuyu He
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Yunzhi Liu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Xuefang Lu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jin Qi
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jingli Xiong
- The Ziyuan Bureau of Agriculture and Rural, Guilin, 541400, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Changxia Li
- College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
2
|
Agar G, Yagci Ergul S, Yuce M, Arslan Yuksel E, Aydin M, Taspinar MS. Ellagic acid alleviates aluminum and/or drought stress through morpho-physiochemical adjustments and stress-related gene expression in Zea mays L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59521-59532. [PMID: 39358657 DOI: 10.1007/s11356-024-35185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
This study investigates the potential of ellagic acid (EA) to mitigate the effects of drought and aluminum (Al3+) stresses in maize by examining various morpho-physiochemical parameters and gene expressions. Maize (Zea mays L.) serves as a crucial global food source, but its growth and productivity are significantly hindered by drought and aluminum (Al3+) stresses, which lead to impaired root development, elevated levels of reactive oxygen species (ROS), diminished photosynthetic efficiency, and reduced water and mineral absorption. Recently, ellagic acid (EA), a polyphenolic compound with potent antioxidant properties, has been identified for its role in regulating plant growth and enhancing stress tolerance mechanisms. However, the specific mechanisms through which EA contributes to Al3+ and/or drought tolerance in plants remain largely unknown. The present study was conducted to examine the defensive role of EA (100 μg/mL) in some morpho-physiochemical parameters and the expression profiles of some stress-related genes (ZmCPK22, ZmXTH1, ZmHIPP4, ZmSGR, ZmpsbA, ZmAPX1, and ZmGST1) in drought (polyethylene glycol-6000 (PEG-6000), - 0.6 MPa) and aluminum chloride (AlCl3, 60 μM) stressed Zea mays Ada 523 grown in nutrient solution. Our results indicated that drought and aluminum chloride stresses affected root length, shoot height, H2O2 content, chlorophyll content (SPAD), electrolyte leakage (EL), and relative water content (RWC) of maize with several significant (P < 0.05) shifts up and down. Conversely, EA (100 μg/mL) treatment had a mitigating effect on these parameters. Moreover, EA also mitigated the antioxidant enzyme activities (superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX)), and regulated the expressions of aforementioned genes. These findings determined that EA treatment could efficiently improve the gene expressions and morpho-physiochemical parameters under drought and/or Al3+ stresses, thereby increasing the seedlings' adaptability to these stresses.
Collapse
Affiliation(s)
- Guleray Agar
- Faculty of Science, Department of Biology, Ataturk University, 25240, Erzurum, Turkey
| | - Semra Yagci Ergul
- Faculty of Medicine, Department of Medicinal Genetics, Kafkas University, 36000, Kars, Turkey
| | - Merve Yuce
- Faculty of Agriculture, Department of Horticulture, Ataturk University, 25240, Erzurum, Turkey
| | - Esra Arslan Yuksel
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ataturk University, 25240, Erzurum, Turkey.
| | - Murat Aydin
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ataturk University, 25240, Erzurum, Turkey
| | - Mahmut Sinan Taspinar
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
3
|
Hu Y, Li P, Yao X, He Y, Tang H, Zhao Q, Lu L. Zinc Treatment of Tea Plants Improves the Synthesis of Trihydroxylated Catechins via Regulation of the Zinc-Sensitive Protein CsHIPP3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14887-14898. [PMID: 38886187 DOI: 10.1021/acs.jafc.4c02114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The tea plant (Camellia sinensis [L.] O. Kussntze) is a global economic crop. Zinc treatment of tea plants can enhance catechin biosynthesis. However, the underlying molecular mechanism behind catechin formation through zinc regulation remains unclear. This study identified a zinc-responsive protein, C. sinensis heavy metal-associated isoprenylated plant protein 3 (CsHIPP3), from zinc-treated tea seedlings. CsHIPP3 expression was positively correlated with trihydroxylated catechin (TRIC) content. CsF3'5'H1 is a crucial regulator of the TRIC synthesis pathway. The interaction between CsHIPP3 and CsF3'5'H1 was assessed using bimolecular fluorescence complementation, firefly luciferase complementation imaging, and pulldown experiments. CsHIPP3 knockdown using virus-induced gene silencing technology decreased the content of each component of TRICs. Compared with the control, the relative catechin content was reduced by 40.12-55.39%. Co-overexpression of CsHIPP3 and CsF3'5'H1 significantly elevated the TRIC content in tea leaves and calli. Moreover, the TRIC content in transient co-overexpression leaves was 1.44-fold higher than that of the control group, and tea callus was 50.83% higher in transient co-overexpression than in the wild type. Thus, zinc-regulated TRIC synthesis in a zinc-rich environment was mediated by binding CsHIPP3 with CsF3'5'H1 to promote TRIC synthesis and accumulation.
Collapse
Affiliation(s)
- Yilan Hu
- College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Pingping Li
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Xinzhuan Yao
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Yumei He
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Hu Tang
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Qi Zhao
- College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Litang Lu
- College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Yu R, Hou Q, Deng H, Xiao L, Cai X, Shang C, Qiao G. Overexpression of PavHIPP16 from Prunus avium enhances cold stress tolerance in transgenic tobacco. BMC PLANT BIOLOGY 2024; 24:536. [PMID: 38862890 PMCID: PMC11167810 DOI: 10.1186/s12870-024-05267-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND The heavy metal-associated isoprenylated plant protein (HIPP) is an important regulatory element in response to abiotic stresses, especially playing a key role in low-temperature response. RESULTS This study investigated the potential function of PavHIPP16 up-regulated in sweet cherry under cold stress by heterologous overexpression in tobacco. The results showed that the overexpression (OE) lines' growth state was better than wild type (WT), and the germination rate, root length, and fresh weight of OE lines were significantly higher than those of WT. In addition, the relative conductivity and malondialdehyde (MDA) content of the OE of tobacco under low-temperature treatment were substantially lower than those of WT. In contrast, peroxidase (POD), superoxide dismutase (SOD), catalase (CAT) activities, hydrogen peroxide (H2O2), proline, soluble protein, and soluble sugar contents were significantly higher than those of WT. Yeast two-hybrid assay (Y2H) and luciferase complementation assay verified the interactions between PavbHLH106 and PavHIPP16, suggesting that these two proteins co-regulated the cold tolerance mechanism in plants. The research results indicated that the transgenic lines could perform better under low-temperature stress by increasing the antioxidant enzyme activity and osmoregulatory substance content of the transgenic plants. CONCLUSIONS This study provides genetic resources for analyzing the biological functions of PavHIPPs, which is important for elucidating the mechanisms of cold resistance in sweet cherry.
Collapse
Affiliation(s)
- Runrun Yu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Hong Deng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Ling Xiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Xiaowei Cai
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Chunqiong Shang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
5
|
Liu H, Yu M, Zhou S, Wang Y, Xia Z, Wang Z, Song B, An M, Wu Y. Unveiling novel anti-viral mechanisms of ε-poly-l-lysine on tobacco mosaic virus-infected Nicotiana tabacum through microRNA and transcriptome sequencing. Int J Biol Macromol 2024; 268:131628. [PMID: 38631577 DOI: 10.1016/j.ijbiomac.2024.131628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/30/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
MicroRNAs (miRNAs) play important roles in plant defense against various pathogens. ε-poly-l-lysine (ε-PL), a natural anti-microbial peptide produced by microorganisms, effectively suppresses tobacco mosaic virus (TMV) infection. To investigate the anti-viral mechanism of ε-PL, the expression profiles of miRNAs in TMV-infected Nicotiana tabacum after ε-PL treatment were analyzed. The results showed that the expression levels of 328 miRNAs were significantly altered by ε-PL. Degradome sequencing was used to identify their target genes. Integrative analysis of miRNAs target genes and gene-enriched GO/KEGG pathways indicated that ε-PL regulates the expression of miRNAs involved in critical pathways of plant hormone signal transduction, host defense response, and plant pathogen interaction. Subsequently, virus induced gene silencing combined with the short tandem targets mimic technology was used to analyze the function of these miRNAs and their target genes. The results indicated that silencing miR319 and miR164 reduced TMV accumulation in N. benthamiana, indicating the essential roles of these miRNAs and their target genes during ε-PL-mediated anti-viral responses. Collectively, this study reveals that microbial source metabolites can inhibit plant viruses by regulating crucial host miRNAs and further elucidate anti-viral mechanisms of ε-PL.
Collapse
Affiliation(s)
- He Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Miao Yu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Shidong Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yan Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Zhiping Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Mengnan An
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| |
Collapse
|
6
|
Sorour AA, Badr R, Mahmoud N, Abdel-Latif A. Cadmium and zinc accumulation and tolerance in two Egyptian cultivars (S53 and V120) of Helianthus annuus L. as potential phytoremediator. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1643-1654. [PMID: 38644603 DOI: 10.1080/15226514.2024.2343842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
One of the most important oil crops in the world, sunflower (Helianthus annuus L.), is recognized to help in soil phytoremediation. Heavy metal (HM) contamination is one of the most abiotic challenges that may affect the growth and productivity of such an important crop plant. We studied the influence of HM-contaminated soils on metal homeostasis and the potential hypertolerance mechanisms in two sunflower Egyptian cultivars (V120 and S53). Both cultivars accumulated significantly higher cadmium concentrations in their roots compared to their shoots during Cd and Zn/Cd treatments. Higher root concentrations of 121 mg g-1 dry weight (DW) and 125 mg g-1 DW were measured in V120 plants compared to relatively lower values of 111 mg g-1 DW and 105 mg g-1 DW in the roots of S53 plants, respectively. Cadmium contamination significantly upregulated the expression of heavy metal ATPases (HaHMA4) in the shoots of V120 plants. On the other hand, their roots displayed a notable expression of HaHMA3. This study indicates that V120 plants accumulated and sequestered Cd in their roots. Therefore, it is advised to cultivate the V120 cultivar in areas contaminated with heavy metals as it is a promising Cd phytoremediator.
Collapse
Affiliation(s)
- Ahmed A Sorour
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Reem Badr
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nermen Mahmoud
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Amani Abdel-Latif
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
7
|
Huang G, Hu Y, Li F, Zuo X, Wang X, Li F, Li R. Genome-wide characterization of heavy metal-associated isoprenylated plant protein gene family from Citrus sinensis in response to huanglongbing. FRONTIERS IN PLANT SCIENCE 2024; 15:1369883. [PMID: 38601304 PMCID: PMC11004388 DOI: 10.3389/fpls.2024.1369883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024]
Abstract
Introduction Heavy metal-associated isoprenylated plant proteins (HIPPs) play vital roles in maintaining heavy metal balance and responding to both biotic and abiotic stresses in vascular plants. However, the role of HIPPs in the response to Huanglongbing (HLB), a harmful disease of citrus caused by the phloem-colonizing bacterium Candidatus Liberibacter asiaticus (CLas), has not been examined. Methods and results In this study, a total of 26 HIPP genes were identified in Citrus sinensis, and they were grouped into 5 clades. The CsHIPP genes are distributed on 8 chromosomes and exhibited considerable synteny with HIPPs found in Arabidopsis thaliana. Additionally, we analyzed the gene structure, conserved motifs and domains of the CsHIPPs. Various cis-acting elements related to plant hormones and stress responses were identified in the promoters of CsHIPPs. Public transcriptome data and RT-qPCR analysis showed that the expression level of CsHIPP03 was significantly reduced in samples infected by CLas and Xanthomonas citri ssp. citri (Xcc). Furthermore, silencing the homologous gene of CsHIPP03 in Nicotiana benthamiana increased the disease resistance of plants to bacteria. Discussion Our results provide a basis for functional studies of HIPP gene family in C. sinensis, highlighting their functions in bacterial resistance, and improve our understanding to the susceptibility mechanism of HLB.
Collapse
Affiliation(s)
- Guiyan Huang
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Yanan Hu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Fuxuan Li
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Xiru Zuo
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Xinyou Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Fengyao Li
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Ruimin Li
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
8
|
Liu J, Wei L, Wu Y, Wang Z, Wang H, Xiao J, Wang X, Sun L. Characterization of sucrose nonfermenting-1-related protein kinase 2 (SnRK2) gene family in Haynaldia villosa demonstrated SnRK2.9-V enhances drought and salt stress tolerance of common wheat. BMC Genomics 2024; 25:209. [PMID: 38408894 PMCID: PMC10895793 DOI: 10.1186/s12864-024-10114-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND The sucrose nonfermenting-1-related protein kinase 2 (SnRK2) plays a crucial role in responses to diverse biotic/abiotic stresses. Currently, there are reports on these genes in Haynaldia villosa, a diploid wild relative of wheat. RESULTS To understand the evolution of SnRK2-V family genes and their roles in various stress conditions, we performed genome-wide identification of the SnRK2-V gene family in H. villosa. Ten SnRK2-V genes were identified and characterized for their structures, functions and spatial expressions. Analysis of gene exon/intron structure further revealed the presence of evolutionary paths and replication events of SnRK2-V gene family in the H. villosa. In addition, the features of gene structure, the chromosomal location, subcellular localization of the gene family were investigated and the phylogenetic relationship were determined using computational approaches. Analysis of cis-regulatory elements of SnRK2-V gene members revealed their close correlation with different phytohormone signals. The expression profiling revealed that ten SnRK2-V genes expressed at least one tissue (leave, stem, root, or grain), or in response to at least one of the biotic (stripe rust or powdery mildew) or abiotic (drought or salt) stresses. Moreover, SnRK2.9-V was up-regulated in H. villosa under the drought and salt stress and overexpressing of SnRK2.9-V in wheat enhanced drought and salt tolerances via enhancing the genes expression of antioxidant enzymes, revealing a potential value of SnRK2.9-V in wheat improvement for salt tolerance. CONCLUSION Our present study provides a basic genome-wide overview of SnRK2-V genes in H. villosa and demonstrates the potential use of SnRK2.9-V in enhancing the drought and salt tolerances in common wheat.
Collapse
Affiliation(s)
- Jia Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China
- Jinhua Academy, Zhejiang Chinese Medical University, Jinhua, 321000, China
| | - Luyang Wei
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China
| | - Yirong Wu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China
| | - Zongkuan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China
| | - Haiyan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China
| | - Jin Xiao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China
| | - Xiue Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China.
| | - Li Sun
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China.
| |
Collapse
|
9
|
Yuce M, Yildirim E, Ekinci M, Turan M, Ilhan E, Aydin M, Agar G, Ucar S. N-acetyl-cysteine mitigates arsenic stress in lettuce: Molecular, biochemical, and physiological perspective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108390. [PMID: 38373369 DOI: 10.1016/j.plaphy.2024.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/21/2024]
Abstract
Agricultural land contaminated with heavy metals such as non-biodegradable arsenic (As) has become a serious global problem as it adversely affects agricultural productivity, food security and human health. Therefore, in this study, we investigated how the administration of N-acetyl-cysteine (NAC), regulates the physio-biochemical and gene expression level to reduce As toxicity in lettuce. According to our results, different NAC levels (125, 250 and 500 μM) significantly alleviated the growth inhibition and toxicity induced by As stress (20 mg/L). Shoot fresh weight, root fresh weight, shoot dry weight and root dry weight (33.05%, 55.34%, 17.97% and 46.20%, respectively) were decreased in plants grown in As-contaminated soils compared to lettuce plants grown in soils without the addition of As. However, NAC applications together with As stress increased these growth parameters. While the highest increase in shoot fresh and dry weight (58.31% and 37.85%, respectively) was observed in 250 μM NAC application, the highest increase in root fresh and dry weight (75.97% and 63.07%, respectively) was observed in 125 μM NAC application in plants grown in As-polluted soils. NAC application decreased the amount of ROS, MDA and H2O2 that increased with As stress, and decreased oxidative damage by regulating hormone levels, antioxidant and enzymes involved in nitrogen metabolism. According to gene expression profiles, LsHIPP28 and LsABC3 genes have shown important roles in reducing As toxicity in leaves. This study will provide insight for future studies on how NAC applications develop resistance to As stress in lettuce.
Collapse
Affiliation(s)
- Merve Yuce
- Atatürk University, Faculty of Agriculture, Department of Horticulture, Erzurum, Turkey.
| | - Ertan Yildirim
- Atatürk University, Faculty of Agriculture, Department of Horticulture, Erzurum, Turkey
| | - Melek Ekinci
- Atatürk University, Faculty of Agriculture, Department of Horticulture, Erzurum, Turkey
| | - Metin Turan
- Yeditepe University, Faculty of Economy and Administrative Sciences, Department of Agricultural Trade and Management, Istanbul, Turkey
| | - Emre Ilhan
- Erzurum Technical University, Faculty of Science, Department of Molecular Biology and Genetics, 25050, Erzurum, Turkey
| | - Murat Aydin
- Atatürk University, Faculty of Agriculture, Department of Agricultural Biotechnology, Erzurum, Turkey
| | - Guleray Agar
- Atatürk University, Faculty of Science, Department of Biology, Erzurum, Turkey
| | - Sumeyra Ucar
- Erzurum Technical University, Faculty of Science, Department of Molecular Biology and Genetics, 25050, Erzurum, Turkey
| |
Collapse
|
10
|
Roy D, Adhikari A, Saha S, Ghosh PK, Shaw AK, Mukherjee M, Pramanik G, Hossain Z. Untying the regulatory roles of miRNAs in CuO-NPs stress response mechanism in maize: A genome-wide sRNA transcriptome analysis. CHEMOSPHERE 2024; 347:140628. [PMID: 37951395 DOI: 10.1016/j.chemosphere.2023.140628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
MicroRNAs (miRNAs), a group of tiny non-coding RNAs play pivotal role in plant responses to environmental stress. The present small RNA transcriptome study aims to untie the role of miRNAs in CuO-NPs stress adaptation in maize seedlings. Restricted seedling growth, enhanced ROS generation and higher membrane damage were recorded under CuO-NPs [<50 nm, 8 mM] treatment. Deep sequencing reveals 7 up- and 36 down-regulated known miRNAs from CuO-NPs challenged leaves. Gene ontology study demonstrates involvement of CuO-NPs responsive miRNAs in a variety of biological processes including plant growth (miR159a, miR159b), redox homeostasis (miR156e, miR395a), detoxification of heavy metals (miR156e, miR827), signal transduction (miR156e, miR156d), and cell signalling (miR167b-3p, miR393a). Enhanced transcriptional abundance of ABC transporter G family member 41 isoform X2 and HM-associated isoprenylated plant protein 45 isoform X1 might be involved in sequestration and detoxification of excess Cu, essential for metal homeostasis in maize. The miR528-5p mediated up-regulation of superoxide dismutase does not give much protection against CuO-NPs induced oxidative stress damages as evident after histochemical staining with NBT. Moreover, CuO-NPs stress mediated down regulation of miR396 could be an underlying cause of the restricted seedling growth. Taken together, our findings provide insights into the miRNA-guided stress regulatory networks involved in plant's adaptive responses to CuO-NPs stress.
Collapse
Affiliation(s)
- Doyel Roy
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Ayan Adhikari
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Shrabani Saha
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Pratyush Kanti Ghosh
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Arun Kumar Shaw
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Moupriya Mukherjee
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Bidhan Nagar, Kolkata, 700 106, West Bengal, India
| | - Goutam Pramanik
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Bidhan Nagar, Kolkata, 700 106, West Bengal, India
| | - Zahed Hossain
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
11
|
Xu Z, Wang T, Hou S, Ma J, Li D, Chen S, Gao X, Zhao Y, He Y, Yang G. A R2R3-MYB, BpMYB1, from paper mulberry interacts with DELLA protein BpGAI1 in soil cadmium phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132871. [PMID: 39492101 DOI: 10.1016/j.jhazmat.2023.132871] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
Heavy metal pollution has become increasingly prominent, and bioremediation of heavy metal polluted areas is urgently needed. Broussonetia papyrifera is a pioneer tree species for vegetation restoration in the tailings area, while its molecular mechanism of heavy metal adaptation is not clear. Here, we report that a R2R3 MYB from B. papyrifera (BpMYB1) is involved in Cd accumulation by controlling the down-stream genes and mineral accumulation. Overexpression of BpMYB1 in B. papyrifera resulted in a significant increase in Cd accumulation and multiple gene transcription. Among the up-regulated genes, BpMYB1 could bind to ferrochelatase (BpFC2), basic helix-loop-helix transcription factor bHLH93 (BpbHLH93), and basic leucine zipper transcription factor bZIPs (BpbZIP1, BpbZIP-CPC1) by recognizing TATCCAOSAMY (TATCCA) motif and related promoter segments. Further investigations revealed that overexpression of BpbZIP1 promotes the absorption of Cd, BpMYB1 regulate Cd uptake in plant relating to Fe accumulation without Fe-deficiency pathway via recognizing the downstream BpbHLH93 and involving in PCs biosynthetic pathway via recognizing the target BpFC2. Moreover, the Cd response effect mediated by BpMYB1 was boosted by interacting with a DELLA protein BpGAI1, a vital member of GA signaling. These results provide new insights into the molecular feedback mechanisms underlying BpMYB1-BpGAI1 controlled Cd uptake in plants, which will benefit for phytoremediation of Cd polluted soil.
Collapse
Affiliation(s)
- Zhenggang Xu
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China; Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410125 Hunan, China
| | - Tianyu Wang
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Siyu Hou
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Jiyan Ma
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Dapei Li
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Shuwen Chen
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Xiangqian Gao
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Yunlin Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410125 Hunan, China
| | - Yi He
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Guiyan Yang
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China.
| |
Collapse
|
12
|
Inal B, Mirzapour M, Tufekci ED, Rustemoglu M, Kaba A, Albalawi MA, Alalawy AI, Sakran M, Alqurashi M, Ditta A. Drought-Induced miRNA Expression Correlated with Heavy Metal, Phenolic Acid, and Protein and Nitrogen Levels in Five Chickpea Genotypes. ACS OMEGA 2023; 8:35746-35754. [PMID: 37810661 PMCID: PMC10552140 DOI: 10.1021/acsomega.3c03003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023]
Abstract
Drought is a prime stress, drastically affecting plant growth, development, and yield. Plants have evolved various physiological, molecular, and biochemical mechanisms to cope with drought. Investigating specific biochemical pathways related to drought tolerance mechanisms of plants through biotechnology approaches is one of the quickest and most effective strategies for enhancing crop production. Among them, microRNAs (miRNAs) are the principal post-transcriptional regulators of gene expression in plants during plant growth under biotic and abiotic stresses. In this study, five different chickpea genotypes (İnci, Hasan bey, Arda, Seçkin, and Diyar 95) were grown under normal and drought stress. We recorded the expression levels of microRNAs in these genotypes and found differential expression (miRNA396, miR408, miRNA414, miRNA528, and miRNA1533) under contrasting conditions. Results revealed that miRNA414 and miRNA528 considerably increased in all genotypes under drought stress, and expression levels of miRNA418, miRNA1533, and miRNA396 (except for the Seçkin genotype) were found to be higher under the watered conditions. These genotypes were also investigated for heavy metal, phenolic acid, protein, and nitrogen concentrations under normal and drought stress conditions. The Arda genotype showed a significant increase in nitrogen (5.46%) and protein contents (28.3%), while protein contents were decreased in the Hasan bey and Seçkin genotypes subjected to drought stress. In the case of metals, iron was the most abundant element in all genotypes (İnci = 15.4 ppm, Hasan bey = 29.6 ppm, Seçkin = 37.8 ppm, Arda = 26.3 ppm, and Diyar 95 = 40.8 ppm) under normal conditions. Interestingly, these results were related to miRNA expression in the chickpea genotypes and hint at the regulation of multiple pathways under drought conditions. Overall, the present study will help us to understand the miRNA-mediated regulation of various pathways in chickpea genotypes.
Collapse
Affiliation(s)
- Behcet Inal
- Faculty
of Agriculture, Department of Agricultural Biotechnology, Siirt University, Siirt 56100, Turkey
| | - Mohsen Mirzapour
- Faculty
of Agriculture, Department of Agricultural Biotechnology, Siirt University, Siirt 56100, Turkey
| | - Ebru Derelli Tufekci
- Food
and Agriculture Vocational High School, Department of Field Crops, Cankiri Karatekin University, Cankiri 18100, Turkey
| | - Mustafa Rustemoglu
- Faculty
of Agriculture, Department of Plant Protection, Sirnak University, Sirnak 73000, Turkey
| | - Adem Kaba
- Faculty
of Agriculture, Department of Agricultural Biotechnology, Siirt University, Siirt 56100, Turkey
| | - Marzough Aziz Albalawi
- Department
of Chemistry, University College at Alwajh, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Adel I. Alalawy
- Department
of Biochemistry, Faculty of Science, University
of Tabuk, Tabuk 73000, Kingdom
of Saudi Arabia
| | - Mohamed Sakran
- Department
of Biochemistry, Faculty of Science, University
of Tabuk, Tabuk 73000, Kingdom
of Saudi Arabia
- Biochemistry
Section, Chemistry Department, Faculty of Science, Tanta University, Tanta31527,Egypt
| | - Mohammed Alqurashi
- Department
of Biotechnology, Faculty of Science, Taif
University, Taif 21974, Saudi Arabia
| | - Allah Ditta
- Department
of Environmental Sciences, Shaheed Benazir
Bhutto University Sheringal, Dir (U), Khyber Pakhtunkhwa 18000, Pakistan
- School
of Biological Sciences, The University of
Western Australia, 35
Stirling Highway, Perth, WA 6009, Australia
| |
Collapse
|
13
|
García-García I, Méndez-Cea B, González de Andrés E, Gazol A, Sánchez-Salguero R, Manso-Martínez D, Horreo JL, Camarero JJ, Linares JC, Gallego FJ. Climate and Soil Microsite Conditions Determine Local Adaptation in Declining Silver Fir Forests. PLANTS (BASEL, SWITZERLAND) 2023; 12:2607. [PMID: 37514222 PMCID: PMC10384727 DOI: 10.3390/plants12142607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Ongoing climatic change is threatening the survival of drought-sensitive tree species, such as silver fir (Abies alba). Drought-induced dieback had been previously explored in this conifer, although the role played by tree-level genetic diversity and its relationship with growth patterns and soil microsite conditions remained elusive. We used double digest restriction-site-associated DNA sequencing (ddRADseq) to describe different genetic characteristics of five silver fir forests in the Spanish Pyrenees, including declining and non-declining trees. Single nucleotide polymorphisms (SNPs) were used to investigate the relationships between genetics, dieback, intraspecific trait variation (functional dendrophenotypic traits and leaf traits), local bioclimatic conditions, and rhizosphere soil properties. While there were no noticeable genetic differences between declining and non-declining trees, genome-environment associations with selection signatures were abundant, suggesting a strong influence of climate, soil physicochemical properties, and soil microbial diversity on local adaptation. These results provide novel insights into how genetics and diverse environmental factors are interrelated and highlight the need to incorporate genetic data into silver fir forest dieback studies to gain a better understanding of local adaptation.
Collapse
Affiliation(s)
- Isabel García-García
- Departamento de Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Belén Méndez-Cea
- Departamento de Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | - Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), 50059 Zaragoza, Spain
| | - Raúl Sánchez-Salguero
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - David Manso-Martínez
- Departamento de Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jose Luis Horreo
- Departamento de Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), 50059 Zaragoza, Spain
| | - Juan Carlos Linares
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Francisco Javier Gallego
- Departamento de Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
14
|
Shi Y, Jiang W, Li M, Jiang N, Huang Y, Wang M, Du Z, Chen J, Li J, Wu L, Zhong M, Yang J, Huang J. Metallochaperone protein OsHIPP17 regulates the absorption and translocation of cadmium in rice (Oryza sativa L.). Int J Biol Macromol 2023; 245:125607. [PMID: 37390996 DOI: 10.1016/j.ijbiomac.2023.125607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/03/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Heavy metal-associated isoprenylated plant proteins (HIPPs) play vital roles in regulating heavy metal responding activities in plants. Yet only a handful of studies have characterized the functions of HIPPs. In this study, a novel HIPP member OsHIPP17 was functionally characterized, which was involved in the tolerance of yeast and plants to cadmium (Cd). The Cd accumulation in yeast cells was increased due to the overexpression of OsHIPP17. Nevertheless, the overexpression of OsHIPP17 in Arabidopsis thaliana resulted in compromised growth under Cd stress. Meanwhile, the mutation of OsHIPP17 resulted in 38.9-40.9 % increase of Cd concentration in rice roots as well as 14.3-20.0 % decrease of Cd translocation factor. Further investigation of the genes responsible for Cd absorption and transporter indicated that the expression levels of these genes were also perturbed. In addition, two OsHIPP17-interacting proteins, OsHIPP24 and OsLOL3 were identified in a yeast two hybrid assay. Further analysis of their functions revealed that OsHIPP24 or OsLOL3 may be involved in the regulation of Cd tolerance by OsHIPP17 in rice. All above results implied that OsHIPP17 may affect Cd resistance by regulating the absorption and translocation of Cd in rice.
Collapse
Affiliation(s)
- Yang Shi
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Wenjun Jiang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Mingyu Li
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Nan Jiang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Yanyan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan 611130, China
| | - Mengting Wang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Zhiye Du
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Sichuan 611130, China
| | - Jiahao Li
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Longying Wu
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Min Zhong
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Ju Yang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Jin Huang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China.
| |
Collapse
|
15
|
Wei Y, Peng X, Wang X, Wang C. The heavy metal-associated isoprenylated plant protein (HIPP) gene family plays a crucial role in cadmium resistance and accumulation in the tea plant (Camellia sinensis L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115077. [PMID: 37257351 DOI: 10.1016/j.ecoenv.2023.115077] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/21/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Heavy metal-associated isoprenylated plant proteins (HIPPs) are only distributed in vascular plants, and are essential for the detoxification and vascular transport of heavy metals in plants. However, the HIPP gene family has not been thoroughly explored in the tea plant (Camellia sinensis). In this study, we systematically identified 56C. sinensis CsHIPP genes from five groups and characterized their phylogeny, structures, and the features of the encoded proteins. The expression patterns of CsHIPP genes in various tissues of C. sinensis were investigated based on a previous RNA-seq data analysis. The expression patterns of CsHIPP genes were explored in cadmium (Cd)-treated C. sinensis roots using our RNA-seq data. Three CsHIPP genes (CsHIPP22, CsHIPP24, and CsHIPP36) with high expression levels in Cd-treated C. sinensis roots were selected as candidate genes associated with Cd tolerance. Overexpression of CsHIPP22, CsHIPP24, and CsHIPP36 in a yeast mutant (ycf1) rescued Cd-sensitive ycf1 yeast and increased the yeast resistance to Cd stress, implying that these three CsHIPPs might be involved in Cd tolerance. These findings will enable the roles of HIPPs in Cd absorption and detoxification to be better understood as well as improving our understanding of the Cd-resistance and Cd-accumulation mechanisms in tea plant.
Collapse
Affiliation(s)
- Yunfeng Wei
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Xuqian Peng
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Xiaojing Wang
- College of Tea Science, Guizhou University, Guiyang 550025, China.
| | - Cheng Wang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Scienceand Technology, Hubei EngineeringUniversity, Xiaogan 432000, China.
| |
Collapse
|
16
|
Moravčíková D, Žiarovská J. The Effect of Cadmium on Plants in Terms of the Response of Gene Expression Level and Activity. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091848. [PMID: 37176906 PMCID: PMC10181241 DOI: 10.3390/plants12091848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Cadmium (Cd) is a heavy metal that can cause damage to living organisms at different levels. Even at low concentrations, Cd can be toxic to plants, causing harm at multiple levels. As they are unable to move away from areas contaminated by Cd, plants have developed various defence mechanisms to protect themselves. Hyperaccumulators, which can accumulate and detoxify heavy metals more efficiently, are highly valued by scientists studying plant accumulation and detoxification mechanisms, as they provide a promising source of genes for developing plants suitable for phytoremediation techniques. So far, several genes have been identified as being upregulated when plants are exposed to Cd. These genes include genes encoding transcription factors such as iron-regulated transporter-like protein (ZIP), natural resistance associated macrophage protein (NRAMP) gene family, genes encoding phytochelatin synthases (PCs), superoxide dismutase (SOD) genes, heavy metal ATPase (HMA), cation diffusion facilitator gene family (CDF), Cd resistance gene family (PCR), ATP-binding cassette transporter gene family (ABC), the precursor 1-aminocyclopropane-1-carboxylic acid synthase (ACS) and precursor 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) multigene family are also influenced. Thanks to advances in omics sciences and transcriptome analysis, we are gaining more insights into the genes involved in Cd stress response. Recent studies have also shown that Cd can affect the expression of genes related to antioxidant enzymes, hormonal pathways, and energy metabolism.
Collapse
Affiliation(s)
- Dagmar Moravčíková
- Faculty of Agrobiology and Food Resources, Institute of Plant and Environmental Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Jana Žiarovská
- Faculty of Agrobiology and Food Resources, Institute of Plant and Environmental Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|
17
|
Liu Z, Wu X, Hou L, Ji S, Zhang Y, Fan W, Li T, Zhang L, Liu P, Yang L. Effects of cadmium on transcription, physiology, and ultrastructure of two tobacco cultivars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161751. [PMID: 36690104 DOI: 10.1016/j.scitotenv.2023.161751] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metal pollutants worldwide. Tobacco is an important cash crop; however, the accumulation of Cd in its biomass is very high. Cadmium may enter the body of smokers with contaminated tobacco and the surrounding environment via smoke. Therefore, it is important to understand the mechanisms of Cd accumulation and tolerance in tobacco plants, especially in the leaves. In this study, the effects of Cd on the growth, accumulation, and biochemical indices of two tobacco varieties, K326 (Cd resistant) and NC55 (Cd sensitive), were studied through transcriptomic and physiological experiments. Transcriptome and physiological analyses showed differences in the expression of Cd transport and Cd resistance related genes between NC55 and K326 under Cd stress. The root meristem cells of NC55 were more severely damaged. The antioxidant enzyme activity, ABA and ZT content, chlorophyll content, photosynthetic rate, and nitrogen metabolism enzyme activity in K326 leaves were higher than in NC55. These data elucidate the mechanisms of low Cd accumulation and high Cd tolerance in K326 leaves and provide a theoretical basis for cultivating tobacco varieties with low Cd accumulation and high Cd resistance.
Collapse
Affiliation(s)
- Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Xiuzhe Wu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Lei Hou
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Shengzhe Ji
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Yao Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Weiru Fan
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Tong Li
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China.
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China.
| |
Collapse
|
18
|
Yang L, Wu X, Liu S, Zhang L, Li T, Cao Y, Duan Q. Comprehensive Analysis of BrHMPs Reveals Potential Roles in Abiotic Stress Tolerance and Pollen–Stigma Interaction in Brassica rapa. Cells 2023; 12:cells12071096. [PMID: 37048168 PMCID: PMC10093364 DOI: 10.3390/cells12071096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/28/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Heavy metal-associated proteins (HMPs) participate in heavy metal detoxification. Although HMPs have been identified in several plants, no studies to date have identified the HMPs in Brassica rapa (B. rapa). Here, we identified 85 potential HMPs in B. rapa by bioinformatic methods. The promoters of the identified genes contain many elements associated with stress responses, including response to abscisic acid, low-temperature, and methyl jasmonate. The expression levels of BrHMP14, BrHMP16, BrHMP32, BrHMP41, and BrHMP42 were upregulated under Cu2+, Cd2+, Zn2+, and Pb2+ stresses. BrHMP06, BrHMP30, and BrHMP41 were also significantly upregulated after drought treatment. The transcripts of BrHMP06 and BrHMP11 increased mostly under cold stress. After applying salt stress, the expression of BrHMP02, BrHMP16, and BrHMP78 was induced. We observed increased BrHMP36 expression during the self-incompatibility (SI) response and decreased expression in the compatible pollination (CP) response during pollen–stigma interactions. These changes in expression suggest functions for these genes in HMPs include participating in heavy metal transport, detoxification, and response to abiotic stresses, with the potential for functions in sexual reproduction. We found potential co-functional partners of these key players by protein–protein interaction (PPI) analysis and found that some of the predicted protein partners are known to be involved in corresponding stress responses. Finally, phosphorylation investigation revealed many phosphorylation sites in BrHMPs, suggesting post-translational modification may occur during the BrHMP-mediated stress response. This comprehensive analysis provides important clues for the study of the molecular mechanisms of BrHMP genes in B. rapa, especially for abiotic stress and pollen–stigma interactions.
Collapse
Affiliation(s)
- Lin Yang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Xiaoyu Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Shangjia Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Lina Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Ting Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Yunyun Cao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Qiaohong Duan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
19
|
Esmail SM, Omar GE, Mourad AMI. In-Depth Understanding of the Genetic Control of Stripe Rust Resistance ( Puccinia striiformis f. sp. tritici) Induced in Wheat ( Triticum aestivum) by Trichoderma asperellum T34. PLANT DISEASE 2023; 107:457-472. [PMID: 36449539 DOI: 10.1094/pdis-07-22-1593-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Wheat stripe rust (caused by Puccinia striiformis f. tritici Erikss.) causes severe yield losses worldwide. Due to the continuous appearance of new stripe rust races, resistance has been broken in most of the highly resistant genotypes in Egypt and worldwide. Therefore, looking for new ways to resist such a severe disease is urgently needed. Trichoderma asperellum strain T34 has been known as an effective bioagent against many crop diseases. It exists naturally in Egyptian fields. Therefore, in our study, the effectiveness of strain T34 was tested as a bioagent against wheat stripe rust. For this purpose, 198 spring wheat genotypes were tested for their resistance against two different P. striiformis f. tritici populations collected from the Egyptian fields. The most highly aggressive P. striiformis f. tritici population was used to test the effectiveness of strain T34. Highly significant differences were found between strain T34 and stripe rust, suggesting the effectiveness of strain T34 in stripe rust resistance. A genome-wide association study identified 48 gene models controlling resistance under normal conditions and 46 gene models controlling strain T34-induced resistance. Of these gene models, only one common gene model was found, suggesting the presence of two different genetic systems controlling resistance under each condition. The pathways of the biological processes were investigated under both conditions. This study provided in-depth understanding of genetic control and, hence, will accelerate the future of wheat breeding programs for stripe rust resistance.
Collapse
Affiliation(s)
- Samar M Esmail
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ghady E Omar
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Amira M I Mourad
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany
- Department of Agronomy, Faculty of Agriculture, Assiut University, Assiut, Egypt
| |
Collapse
|
20
|
Wang Z, Zhang H, Li Y, Chen Y, Tang X, Zhao J, Yu F, Wang H, Xiao J, Liu J, Zhang X, Sun L, Xie Q, Wang X. Isoprenylation modification is required for HIPP1-mediated powdery mildew resistance in wheat. PLANT, CELL & ENVIRONMENT 2023; 46:288-305. [PMID: 36319595 DOI: 10.1111/pce.14479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/09/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Powdery mildew (Pm), caused by Blumeria graminis f.sp. tritici (Bgt), is one of the most important wheat diseases. Heavy-metal-associated isoprenylated plant protein (HIPP1) has been proved playing important roles in response to biotic and a biotic stress. In present study, we proved HIPP1-V from Haynalidia villosa is a positive regulator in Pm resistance. HIPP1-V was rapidly induced by Bgt. Transiently or stably heterologous overexpressing HIPP1-V in wheat suppressed the haustorium formation and enhanced Pm resistance. HIPP1-V isoprenylation was critical for plasma membrane (PM) localization, interaction with E3-ligase CMPG1-V and function in Pm resistance. Bgt infection recruited the isoprenylated HIPP1-V and CMPG1s on PM; blocking the HIPP1 isoprenylation reduced such recruitment and compromised the resistance of OE-CMPG1-V and OE-HIPP1-V. Overexpressing HIPP1-VC148G could not enhance Pm resistance. These indicated the Pm resistance was dependent on HIPP1-V's isoprenylation. DGEs related to the ROS and SA pathways were remarkably enriched in OE-HIPP1-V, revealing their involvement in Pm resistance. Our results provide evidence on the important role of protein isoprenylation in plant defense.
Collapse
Affiliation(s)
- Zongkuan Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, China
| | - Heng Zhang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yingbo Li
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yiming Chen
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, China
| | - Xiong Tang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, China
| | - Jia Zhao
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, China
| | - Feifei Yu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Haiyan Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, China
| | - Jin Xiao
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, China
| | - Jia Liu
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, China
| | - Xu Zhang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, China
| | - Li Sun
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiue Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
Zahra S, Shaheen T, Qasim M, Mahmood-Ur-Rahman, Hussain M, Zulfiqar S, Shaukat K, Mehboob-Ur-Rahman. Genome-wide survey of HMA gene family and its characterization in wheat ( Triticum aestivum). PeerJ 2023; 11:e14920. [PMID: 36890869 PMCID: PMC9987320 DOI: 10.7717/peerj.14920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/27/2023] [Indexed: 03/06/2023] Open
Abstract
Background Abiotic stresses, particularly drought and heavy metal toxicity, have presented a significant risk to long-term agricultural output around the world. Although the heavy-metal-associated domain (HMA) gene family has been widely explored in Arabidopsis and other plants, it has not been thoroughly studied in wheat (Triticum aestivum). This study was proposed to investigate the HMA gene family in wheat. Methods To analyze the phylogenetic relationships, gene structure, gene ontology, and conserved motifs, a comparative study of wheat HMA genes with the Arabidopsis genome was performed. Results A total of 27 T. aestivum proteins belonging to the HMA gene family were identified in this study, with amino acid counts ranging from 262 to 1,071. HMA proteins were found to be grouped into three subgroups in a phylogenetic tree, and closely related proteins in the tree showed the same expression patterns as motifs found in distinct subgroups. Gene structural study elucidated that intron and exon arrangement differed by family. Conclusion As a result, the current work offered important information regarding HMA family genes in the T. aestivum genome, which will be valuable in understanding their putative functions in other wheat species.
Collapse
Affiliation(s)
- Sadaf Zahra
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Tayyaba Shaheen
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Mahmood-Ur-Rahman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Momina Hussain
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Pakistan
| | - Sana Zulfiqar
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Kanval Shaukat
- Department of Botany, University of Balochistan, Quetta, Pakistan
| | - Mehboob-Ur-Rahman
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| |
Collapse
|
22
|
Ye X, Liu C, Yan H, Wan Y, Wu Q, Wu X, Zhao G, Zou L, Xiang D. Genome-wide identification and transcriptome analysis of the heavy metal-associated (HMA) gene family in Tartary buckwheat and their regulatory roles under cadmium stress. Gene 2022; 847:146884. [PMID: 36103913 DOI: 10.1016/j.gene.2022.146884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022]
Abstract
Heavy metal-associated (HMA) genes are those related to heavy metal transport and detoxification in plants. HMA genes have not been reported in Tartary buckwheat so far. In this study, we accessed the HMA genes of Tartary buckwheat by genome-wide identification for the first time. A total of 56 HMA genes were identified, including 36 ATX1 (antioxidant protein1) genes, 13 HIPP (heavy metal-associated isoprenylated plant protein) genes, and 7 P1B-ATPase (P1B-type adenosine triphosphatase) genes. These gene structures, motif compositions, chromosomal distribution, phylogenetic relationship, duplication events, interaction networks, cis-acting elements, and transcriptional expression under cadmium (Cd) stress were investigated. Among them, genes in HIPP and ATX1 subfamilies were more closely related. The 56 HMA genes were involved in the regulation of metal ion transport and homeostasis by binding metal ions, likely triggered by signals transducted by plant hormones. Fifteen of these HMA genes played regulatory roles under Cd stress. FtP1bA1 was identified to be a core gene involved in the defense regulation of Cd stress. Our results provide not only the first overview and characteristics of HMA genes in the whole genome of Tartary buckwheat but also a valuable reference for the functional analysis of HMA genes under Cd stress. Understanding changes in gene regulation induced by Cd stress lays the foundation for breeding resistant varieties.
Collapse
Affiliation(s)
- Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Huiling Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| |
Collapse
|
23
|
do Nascimento SV, Herrera H, Costa PHDO, Trindade FC, da Costa IRC, Caldeira CF, Gastauer M, Ramos SJ, Oliveira G, Valadares RBDS. Molecular Mechanisms Underlying Mimosa acutistipula Success in Amazonian Rehabilitating Minelands. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14441. [PMID: 36361325 PMCID: PMC9654444 DOI: 10.3390/ijerph192114441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Mimosa acutistipula is endemic to Brazil and grows in ferruginous outcrops (canga) in Serra dos Carajás, eastern Amazon, where one of the largest iron ore deposits in the world is located. Plants that develop in these ecosystems are subject to severe environmental conditions and must have adaptive mechanisms to grow and thrive in cangas. Mimosa acutistipula is a native species used to restore biodiversity in post-mining areas in canga. Understanding the molecular mechanisms involved in the adaptation of M. acutistipula in canga is essential to deduce the ability of native species to adapt to possible stressors in rehabilitating minelands over time. In this study, the root proteomic profiles of M. acutistipula grown in a native canga ecosystem and rehabilitating minelands were compared to identify essential proteins involved in the adaptation of this species in its native environment and that should enable its establishment in rehabilitating minelands. The results showed differentially abundant proteins, where 436 proteins with significant values (p < 0.05) and fold change ≥ 2 were more abundant in canga and 145 in roots from the rehabilitating minelands. Among them, a representative amount and diversity of proteins were related to responses to water deficit, heat, and responses to metal ions. Other identified proteins are involved in biocontrol activity against phytopathogens and symbiosis. This research provides insights into proteins involved in M. acutistipula responses to environmental stimuli, suggesting critical mechanisms to support the establishment of native canga plants in rehabilitating minelands over time.
Collapse
Affiliation(s)
- Sidney Vasconcelos do Nascimento
- Instituto Tecnologico Vale, Rua Boaventura da Silva 955, Belém 66050-090, PA, Brazil
- Programa de Pos-Graduacão em Genética e Biologia Molecular, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Héctor Herrera
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | | | - Felipe Costa Trindade
- Programa de Pos-Graduacão em Genética e Biologia Molecular, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Isa Rebecca Chagas da Costa
- Programa de Pos-Graduacão em Genética e Biologia Molecular, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | | | - Markus Gastauer
- Instituto Tecnologico Vale, Rua Boaventura da Silva 955, Belém 66050-090, PA, Brazil
| | - Silvio Junio Ramos
- Instituto Tecnologico Vale, Rua Boaventura da Silva 955, Belém 66050-090, PA, Brazil
| | - Guilherme Oliveira
- Instituto Tecnologico Vale, Rua Boaventura da Silva 955, Belém 66050-090, PA, Brazil
| | | |
Collapse
|
24
|
SNP Detection in Pinus pinaster Transcriptome and Association with Resistance to Pinewood Nematode. FORESTS 2022. [DOI: 10.3390/f13060946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pinewood nematode (PWN, Bursaphelenchus xylophilus) is the causal agent of pine wilt disease (PWD), which severely affects Pinus pinaster stands in southwestern Europe. Despite the high susceptibility of P. pinaster, individuals of selected half-sib families have shown genetic variability in survival after PWN inoculation, indicating that breeding for resistance can be a valuable strategy to control PWD. In this work, RNA-seq data from susceptible and resistant plants inoculated with PWN were used for SNP discovery and analysis. A total of 186,506 SNPs were identified, of which 31 were highly differentiated between resistant and susceptible plants, including SNPs in genes involved in cell wall lignification, a process previously linked to PWN resistance. Fifteen of these SNPs were selected for validation through Sanger sequencing and 14 were validated. To evaluate SNP-phenotype associations, 40 half-sib plants were genotyped for six validated SNPs. Associations with phenotype after PWN inoculation were found for two SNPs in two different genes (MEE12 and PCMP-E91), as well as two haplotypes of HIPP41, although significance was not maintained following Bonferroni correction. SNPs here detected may be useful for the development of molecular markers for PWD resistance and should be further investigated in future association studies.
Collapse
|
25
|
Rono JK, Sun D, Yang ZM. Metallochaperones: A critical regulator of metal homeostasis and beyond. Gene 2022; 822:146352. [PMID: 35183685 DOI: 10.1016/j.gene.2022.146352] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022]
Abstract
Metallochaperones are a class of unique protein families that was originally found to interact with cellular metal ions by metal delivery to specific target proteins such as metal enzymes. Recently, some members of metallochaperones receive much attention owning to their multi-biological functions in mediating plant growth, development and biotic or abiotic stress responses, particularly in the aspects of metal transport and accumulation in plants. For example, some non-essential toxic heavy metals (e.g. cadmium and mercury) accumulating in farmland due to the industrial and agronomic activities, are a constant threat to crop production, food safety and human health. Digging genetic resources and functional genes like metallochaperones is critical for understanding the metal detoxification in plants, and may help develop cleaner crops with minimal toxic metals in leafy vegetables and grains, or plants for metal-polluted soil phytoremediation. In this review, we highlight the current advancement of the research on functions of metallochaperones in metal accumulation, detoxification and homeostasis. We also summarize the recent progress of the research on the critical roles of the metal-binding proteins in regulating plant responses to some other biological processes including plant growth, development, pathogen stresses, and abiotic stresses such salt, drought, cold and light. Finally, an additional capacity of some members of metallochaperones involved in the resistance to the pathogen attack and possibly regulatory roles was reviewed.
Collapse
Affiliation(s)
- Justice Kipkorir Rono
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Di Sun
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
26
|
Fu Y, Zhatova H, Li Y, Liu Q, Trotsenko V, Li C. Physiological and Transcriptomic Comparison of Two Sunflower ( Helianthus annuus L.) Cultivars With High/Low Cadmium Accumulation. FRONTIERS IN PLANT SCIENCE 2022; 13:854386. [PMID: 35615138 PMCID: PMC9125308 DOI: 10.3389/fpls.2022.854386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The toxic heavy metal cadmium (Cd) is easily absorbed and accumulated in crops and affects human health through the food chains. Sunflower (Helianthus annuus L.) is a globally important oil crop. In this study, two sunflower cultivars 62\3 (high Cd) and JB231AC (low Cd), were chosen to compare physiological and transcriptomic responses at different Cd concentrations (0, 25, 50, and 100 μM). The results showed that JB231AC had better Cd tolerance than 62\3. The contents of H2O2 and MDA (malondialdehyde) in 62\3 were lower than that in JB231AC under Cd stress, but the activities of SOD (superoxide dismutase) and POD (peroxidase) in JB231AC were higher than in 62\3, which indicated that JB231AC had a strong ability to remove reactive oxygen species (ROS)-induced toxic substances. Many deferentially expressed ABC (ATP-binding cassette) and ZIP (Zn-regulated transporter, Iron-regulated transporter-like protein) genes indicated that the two gene families might play important roles in different levels of Cd accumulation in the two cultivars. One up-regulated NRAMP (Natural resistance-associated macrophage protein) gene was identified and had a higher expression level in 62\3. These results provide valuable information to further understand the mechanism of Cd accumulation and provide insights into breeding new low Cd sunflower cultivars.
Collapse
Affiliation(s)
- Yuanzhi Fu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- Faculty of Agrotechnologies and Natural Resource Management, Sumy National Agrarian University, Sumy, Ukraine
| | - Halyna Zhatova
- Faculty of Agrotechnologies and Natural Resource Management, Sumy National Agrarian University, Sumy, Ukraine
| | - Yuqing Li
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Qiao Liu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Volodymyr Trotsenko
- Faculty of Agrotechnologies and Natural Resource Management, Sumy National Agrarian University, Sumy, Ukraine
| | - Chengqi Li
- Life Science College, Yuncheng University, Yuncheng, China
| |
Collapse
|
27
|
Ramesh L, B V Latha L, Kumar Mukunda C. Identification and characterization of metal-chelating bioenhancer peptide derived from fermented Citrullus lanatus seed milk. J Food Biochem 2022; 46:e14102. [PMID: 35150146 DOI: 10.1111/jfbc.14102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 01/12/2023]
Abstract
In the present investigation, a metal-chelating bioactive peptide was derived from Citrullus lanatus seed milk fermented with Lactococcus lactis. The cationic fermented milk peptide (FMP) thus obtained was purified using the HiTrap-chelating column followed by rpHPLC. The FMP possessed the ability to chelate multiple divalent cations like Cu2+ , Ca2+ , and Fe2+ with 86.81%, 61.04%, and 24.32% of chelation respectively and further it exhibited 78.03% of DPPH free radical scavenging activity. Interaction of FMP with metal ions was assessed by change in the absorption spectra and was analyzed by ultraviolet-visible and fluorescence spectroscopy. The FMP-metal complexes were found stable at simulated gastric conditions. In vitro analysis using intestinal Caco-2 cell lines revealed that there was an increase in metal bioavailability in the presence of the FMP and was least influenced by the addition of a dietary inhibitor, phytic acid. By LC-MS analysis the molecular mass of FMP was found to be 11.6 kD and it contains oxygen-rich and nitrogen-rich amino acids that favor the metal chelation. In our study, we have found that the fermented C. lanatus seed milk can serve as a potential functional food with bioenhancer peptides that increase metal bioavailability and enhance human health. PRACTICAL APPLICATIONS: Chelated metals are preferred over non-chelated ones by most nutritionists for their better absorption rate. Chelation protects the minerals from the digestive process and increases their bioavailability. Fermentation with lactic acid bacteria produces bioactive peptides with metal-chelating and antioxidant ability which provides additional health benefits beyond supplying basic nutrients. Lactococcus lactis fermented milk acts as a probiotic product with bioenhancer peptide that increases mineral bioavailability. Consumption of metals in chelated form can reduce excess intake of metal. Fermented watermelon seed milk can be a promising probiotic drink rich in bioenhancer peptides and can enhance the bioavailability of divalent cations of a high therapeutic index.
Collapse
Affiliation(s)
- Likhitha Ramesh
- LSRB-DRDO Project, JSS College of Arts, Commerce and Science, Mysuru, India
| | - Latha B V Latha
- Postgraduate Department of Biochemistry, JSS College of Arts, Commerce and Science, Mysuru, India
| | - Chethan Kumar Mukunda
- Postgraduate Department of Biochemistry, JSS College of Arts, Commerce and Science, Mysuru, India
| |
Collapse
|
28
|
Niu M, Bao C, Zhan J, Yue X, Zou J, Su N, Cui J. Plasma membrane-localized protein BcHIPP16 promotes the uptake of copper and cadmium in planta. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112920. [PMID: 34678630 DOI: 10.1016/j.ecoenv.2021.112920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is one of the toxic heavy metals in soil, which not only suppresses crop production but also threatens human health. In this study, we aim to clarify the biological function of Cd-related gene BcHIPP16, so as to provide potential genetic solutions to decrease the Cd levels of pak choi. Tissue expression analysis showed that BcHIPP16 expressed in almost all the plant bodies. The transcriptional level of BcHIPP16 in roots was higher than that in shoots, which was significantly induced by copper (Cu) deficiency and Cd exposure conditions. Subcellular localization revealed that BcHIPP16 localized in plasma membrane. Expressing BcHIPP16 in yeast cells improved the sensitivity to Cu and Cd and improved their accumulation in yeast. Furthermore, the Cu and Cd content of Arabidopsis seedlings were increased and complemented, respectively when expressing BcHIPP16 in wild type (WT) and hip16 mutants. Non-invasive Micro-test Technology (NMT) was used to measure the real-time Cd2+ influx from the root surface of BcHIPP16 transgenic Arabidopsis lines, and the result demonstrated that BcHIPP16 promoted Cd2+ influx into Arabidopsis root cells. Taken together, our study showed that BcHIPP16 contributed to absorbing nutrient metal Cu and heavy metal Cd in planta.
Collapse
Affiliation(s)
- Mengyang Niu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Changjian Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Junyi Zhan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaomeng Yue
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jianwen Zou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
29
|
Zhang H, Zhang X, Zhao J, Sun L, Wang H, Zhu Y, Xiao J, Wang X. Genome-Wide Identification of GDSL-Type Esterase/Lipase Gene Family in Dasypyrum villosum L. Reveals That DvGELP53 Is Related to BSMV Infection. Int J Mol Sci 2021; 22:ijms222212317. [PMID: 34830200 PMCID: PMC8624868 DOI: 10.3390/ijms222212317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/21/2022] Open
Abstract
GDSL-type esterase/lipase proteins (GELPs) characterized by a conserved GDSL motif at their N-terminus belong to the lipid hydrolysis enzyme superfamily. In plants, GELPs play an important role in plant growth, development and stress response. The studies of the identification and characterization of the GELP gene family in Triticeae have not been reported. In this study, 193 DvGELPs were identified in Dasypyrum villosum and classified into 11 groups (clade A–K) by means of phylogenetic analysis. Most DvGELPs contain only one GDSL domain, only four DvGELPs contain other domains besides the GDSL domain. Gene structure analysis indicated 35.2% DvGELP genes have four introns and five exons. In the promoter regions of the identified DvGELPs, we detected 4502 putative cis-elements, which were associated with plant hormones, plant growth, environmental stress and light responsiveness. Expression profiling revealed 36, 44 and 17 DvGELPs were highly expressed in the spike, the root and the grain, respectively. Further investigation of a root-specific expressing GELP, DvGELP53, indicated it was induced by a variety of biotic and abiotic stresses. The knockdown of DvGELP53 inhibited long-distance movement of BSMV in the tissue of D. villosum. This research provides a genome-wide glimpse of the D. villosum GELP genes and hints at the participation of DvGELP53 in the interaction between virus and plants.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to The Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.Z.); (Y.Z.)
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (X.Z.); (L.S.); (H.W.); (J.X.)
| | - Xu Zhang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (X.Z.); (L.S.); (H.W.); (J.X.)
| | - Jia Zhao
- College of Agriculture, South China Agriculture University, Guangzhou 510642, China;
| | - Li Sun
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (X.Z.); (L.S.); (H.W.); (J.X.)
| | - Haiyan Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (X.Z.); (L.S.); (H.W.); (J.X.)
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to The Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.Z.); (Y.Z.)
| | - Jin Xiao
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (X.Z.); (L.S.); (H.W.); (J.X.)
| | - Xiue Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (X.Z.); (L.S.); (H.W.); (J.X.)
- Correspondence: ; Tel.: +86-25-84395308
| |
Collapse
|
30
|
Xiong T, Zhang S, Kang Z, Zhang T, Li S. Dose-Dependent Physiological and Transcriptomic Responses of Lettuce ( Lactuca sativa L.) to Copper Oxide Nanoparticles-Insights into the Phytotoxicity Mechanisms. Int J Mol Sci 2021; 22:3688. [PMID: 33916236 PMCID: PMC8036535 DOI: 10.3390/ijms22073688] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 01/05/2023] Open
Abstract
Understanding the complex mechanisms involved in plant response to nanoparticles (NPs) is indispensable in assessing the environmental impact of nano-pollutants. Plant leaves can directly intercept or absorb NPs deposited on their surface; however, the toxicity mechanisms of NPs to plant leaves are unclear. In this study, lettuce leaves were exposed to copper oxide nanoparticles (CuO-NPs, 0, 100, and 1000 mg/L) for 15 days, then physiological tests and transcriptomic analyses were conducted to evaluate the negative impacts of CuO-NPs. Both physiological and transcriptomic results demonstrated that CuO-NPs adversely affected plant growth, photosynthesis, and enhanced reactive oxygen species (ROS) accumulation and antioxidant system activity. The comparative transcriptome analysis showed that 2270 and 4264 genes were differentially expressed upon exposure to 100 and 1000 mg/L CuO-NPs. Gene expression analysis suggested the ATP-binding cassette (ABC) transporter family, heavy metal-associated isoprenylated plant proteins (HIPPs), endocytosis, and other metal ion binding proteins or channels play significant roles in CuO-NP accumulation by plant leaves. Furthermore, the variation in antioxidant enzyme transcript levels (POD1, MDAR4, APX2, FSDs), flavonoid content, cell wall structure and components, and hormone (auxin) could be essential in regulating CuO-NPs-induced stress. These findings could help understand the toxicity mechanisms of metal NPs on crops, especially NPs resulting from foliar exposure.
Collapse
Affiliation(s)
| | | | | | | | - Shaoshan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China; (T.X.); (S.Z.); (Z.K.); (T.Z.)
| |
Collapse
|
31
|
He G, Qin L, Tian W, Meng L, He T, Zhao D. Heavy Metal Transporters-Associated Proteins in S. tuberosum: Genome-Wide Identification, Comprehensive Gene Feature, Evolution and Expression Analysis. Genes (Basel) 2020; 11:genes11111269. [PMID: 33126505 PMCID: PMC7694169 DOI: 10.3390/genes11111269] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023] Open
Abstract
Plants have evolved a number of defense and adaptation responses to protect themselves against challenging environmental stresses. Genes containing a heavy metal associated (HMA) domain are required for the spatiotemporal transportation of metal ions that bind with various enzymes and co-factors within the cell. To uncover the underlying mechanisms mediated by StHMA genes, we identified 36 gene members in the StHMA family and divided them into six subfamilies by phylogenetic analysis. The StHMAs had high collinearity and were segmentally duplicated. Structurally, most StHMAs had one HMA domain, StHIPPc and StRNA1 subfamilies had two, and 13 StHMAs may be genetically variable. The StHMA gene structures and motifs varied considerably among the various classifications, this suggests the StHMA family is diverse in genetic functions. The promoter analysis showed that the StHMAs had six main cis-acting elements with abiotic stress. An expression pattern analysis revealed that the StHMAs were expressed tissue specifically, and a variety of abiotic stresses may induce the expression of StHMA family genes. The HMA transporter family may be regulated and expressed by a series of complex signal networks under abiotic stress. The results of this study may help to establish a theoretical foundation for further research investigating the functions of HMA genes in Solanum tuberosum to elucidate their regulatory role in the mechanism governing the response of plants to abiotic stress.
Collapse
Affiliation(s)
- Guandi He
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.H.); (L.Q.)
| | - Lijun Qin
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.H.); (L.Q.)
| | - Weijun Tian
- Agricultural College, Guizhou University, Guiyang 550025, China; (W.T.); (L.M.)
| | - Lulu Meng
- Agricultural College, Guizhou University, Guiyang 550025, China; (W.T.); (L.M.)
| | - Tengbing He
- Agricultural College, Guizhou University, Guiyang 550025, China; (W.T.); (L.M.)
- Institute of New Rural Development of Guizhou University, Guiyang 550025, China
- Correspondence: (T.H.); (D.Z.)
| | - Degang Zhao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.H.); (L.Q.)
- Guizhou Academy of Agricultural Science, Guiyang 550025, China
- Correspondence: (T.H.); (D.Z.)
| |
Collapse
|
32
|
Hura T. Wheat and Barley: Acclimatization to Abiotic and Biotic Stress. Int J Mol Sci 2020; 21:ijms21197423. [PMID: 33050008 PMCID: PMC7583912 DOI: 10.3390/ijms21197423] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/12/2023] Open
Abstract
Twelve articles (ten research papers and two reviews) included in the Special Issue entitled “Wheat and Barley: Acclimatization to Abiotic and Biotic Stress” are summed up here to present the latest research on the molecular background of adaptation to environmental stresses in two cereal species. Crucial research results were presented and discussed, as they may be of importance in breeding aimed at increasing wheat and barley tolerance to abiotic and biotic stresses.
Collapse
Key Words
- abiotic stress (drought, heat, salinity, cold, UV radiation, flooding)
- barley
- biotic stress (bacteria, viruses, fungi, parasites, insects, weeds)
- genes and proteins
- metabolome
- multi-stress
- proteome
- transcriptome
- wheat
Collapse
Affiliation(s)
- Tomasz Hura
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland
| |
Collapse
|