1
|
Chang HJ, Ke CH, Wang YS. Case report: Combinations of immune checkpoint inhibitor, chemotherapy, and hyperthermia therapy avoid lymphatic recurrence in cholangiocarcinoma. Front Oncol 2024; 14:1421340. [PMID: 39512770 PMCID: PMC11540691 DOI: 10.3389/fonc.2024.1421340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Cholangiocarcinoma is a malignancy known for its aggressiveness and limited treatment options. The malignant tumor behaviors include intrahepatic recurrence, regional lymph node (LN) metastasis, peritoneal carcinomatosis, and lung metastasis. Herein, we reported a case of lymphatic recurrence in an intrahepatic cholangiocarcinoma patient after surgery, adjuvant concurrent chemoradiotherapy (CCRT), who experienced a remarkable response to a combination therapy. However, the patient failed to undergo radiotherapy or other invasive local therapy and therefore received Opdivo (nivolumab) in combination with chemotherapy (FOLFOX) and modulated electro-hyperthermia. Notably, after these medical interventions, this patient had a complete response (CR) to treatments, in which no lymph node metastasis occurred, and a significantly decreased tumor marker, CA 19-9, level was found. This case highlights the potential of multiple anti-tumor therapies, including immune checkpoint inhibitors, chemotherapy, and hyperthermia, in managing challenging cholangiocarcinoma cases.
Collapse
Affiliation(s)
- Heng-Jui Chang
- Department of Radiation Oncology, Wesing Surgery Hospital, Kaohsiung, Taiwan
| | - Chiao-Hsu Ke
- Department of Chemical Engineering and Biotechnology, Institute of Chemical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Yu-Shan Wang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Uni-Pharma Co-Ltd., Taipei, Taiwan
| |
Collapse
|
2
|
Muratoglu R, Gerster D, Nadobny J, Hansch A, Krahl P, Veltsista PD, Beck M, Zips D, Ghadjar P. Comparisons of computer simulations and experimental data for capacitive hyperthermia using different split-phantoms. Int J Hyperthermia 2024; 41:2416999. [PMID: 39428108 DOI: 10.1080/02656736.2024.2416999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024] Open
Abstract
INTRODUCTION Several positive clinical trials have demonstrated that capacitive hyperthermia (CHT) improves the effectiveness of radiation therapy for the treatment of various cancer entities. However, the ability of CHT to induce significant heating throughout the body is under debate. OBJECTIVES To perform a pilot study involving comparisons of computer simulations and experimental data using different split-phantoms to validate hyperthermia treatment modeling for pre-planning for a clinical CHT system and to investigate the feasibility of split-phantom measurements in capacitive hyperthermia. MATERIALS AND METHODS The CHT system EHY-2030 (Oncotherm, Budapest, Hungary) was used. The system provides two electrode sizes, but only the smaller electrode, indicated as D200 electrode, was investigated in this pilot study. Horizontally and vertically splittable, different multi-slice phantoms with dielectric material properties simulating muscle and electrically low conductive fat were produced and heated. During the heating procedure, temperature-time curves were measured, and thermal images were captured. Specific absorption rate values were derived from the temperature rise (TR) values. Concomitantly, computer field simulations utilizing a detailed CAD-based model of the CHT system were performed using the simulation platform Sim4Life and compared with measurements. RESULTS For the investigated electrode D200 the system power of 75 W was applied, which is half of the maximum power of 150 W and lies in the range of usual values for this electrode applied in patient treatments in our clinic. For 75 W, a heating of 3.6 °C in 6 min in a depth of 1 cm in an agar-based, muscle tissue-equivalent phantom was achieved. The addition of a 1 cm thick, synthetic, low dielectric fat layer reduced the TR up until a depth of 8.5 cm by on average around 38% (from 8.5 cm onwards the absolute local TR is similar, deviations are ≤0.1 °C). In terms of point-to-point absolute SAR comparison (without any normalization), up to a depth of 11 cm in the phantoms central vertical plot, the simulation differs from the measured TR points by on average 25% (ranging from 7% to 36%) for the homogeneous phantom and by on average 43% (ranging from 26% to 60%) for the inhomogeneous phantom. CONCLUSION Computer simulations and experimental data were compared for the CHT system EHY-2030 using the D200 electrode, applying a thermal imaging technique for different vertically splittable phantoms. This pilot study data can be used as a guidance regarding the expected heating for this commonly used electrode size but also to further elucidate the significance of non-thermal anticancer effects. Further studies are needed for different sizes and geometries of electrodes and phantoms.
Collapse
Affiliation(s)
- Rami Muratoglu
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Dominik Gerster
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Jacek Nadobny
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Alexander Hansch
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Paul Krahl
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Paraskevi Danai Veltsista
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Marcus Beck
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Pirus Ghadjar
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
3
|
Dobos NK, Garay T, Herold M, Simon A, Madar-Dank V, Balka G, Gajdacsi J, Dank M, Szasz AM, Herold Z. Immune Marker and C-Reactive Protein Dynamics and Their Prognostic Implications in Modulated Electro-Hyperthermia Treatment in Advanced Pancreatic Cancer: A Retrospective Analysis. IMMUNO 2024; 4:385-399. [DOI: 10.3390/immuno4040025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Background: Previous research has suggested that modulated electro-hyperthermia (mEHT) can be used to induce anti-tumor immune effects and to extend patient survival. The use of mEHT in advanced pancreatic cancer is beneficial; however, its immune-mediating effects were never investigated. Methods: A retrospective observational study was conducted. Leukocyte counts, C-reactive protein (CRP), neutrophil-to-lymphocyte ratio (NLR), and granulocyte-to-lymphocyte ratio (GLR) were measured at baseline, midpoint, and after mEHT treatment. Results: A total of 73 mEHT treated pancreatic cancer patients were included. The time elapsed between tumor diagnosis and the first mEHT treatment was 4.40 ± 5.70 months. While no change could be observed between the baseline and the first follow-up visits, the total white blood cell (WBC), neutrophil, and granulocyte count, CRP, NLR, and GLR were significantly higher at the second follow-up compared to both previous visits. Higher levels of the latter parameters following the last mEHT treatment were signaling significantly poor prognostic signs, and so were their longitudinal changes. Conclusions: After the initiation of mEHT, immune markers stabilize with the treatment, but this positive effect is eroded over time by progressive disease. Monitoring the changes in these markers and the occurrence of their increase is a prognostic marker of shorter survival.
Collapse
Affiliation(s)
- Nikolett Kitti Dobos
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary
| | - Tamas Garay
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, H-1083 Budapest, Hungary
| | - Magdolna Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, H-1083 Budapest, Hungary
- Department of Internal Medicine and Hematology, Semmelweis University, H-1088 Budapest, Hungary
| | - Alexandra Simon
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary
| | | | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Jozsef Gajdacsi
- Clinical Center, Semmelweis University, H-1083 Budapest, Hungary
| | - Magdolna Dank
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, H-1083 Budapest, Hungary
| | - Attila Marcell Szasz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, H-1083 Budapest, Hungary
| | - Zoltan Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, H-1083 Budapest, Hungary
| |
Collapse
|
4
|
Viana PHL, Schvarcz CA, Danics LO, Besztercei B, Aloss K, Bokhari SMZ, Giunashvili N, Bócsi D, Koós Z, Benyó Z, Hamar P. Heat shock factor 1 inhibition enhances the effects of modulated electro hyperthermia in a triple negative breast cancer mouse model. Sci Rep 2024; 14:8241. [PMID: 38589452 PMCID: PMC11002009 DOI: 10.1038/s41598-024-57659-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Female breast cancer is the most diagnosed cancer worldwide. Triple negative breast cancer (TNBC) is the most aggressive type and there is no existing endocrine or targeted therapy. Modulated electro-hyperthermia (mEHT) is a non-invasive complementary cancer therapy using an electromagnetic field generated by amplitude modulated 13.56 MHz frequency that induces tumor cell destruction. However, we have demonstrated a strong induction of the heat shock response (HSR) by mEHT, which can result in thermotolerance. We hypothesized that inhibition of the heat shock factor 1 (HSF1) can synergize with mEHT and enhance tumor cell-killing. Thus, we either knocked down the HSF1 gene with a CRISPR/Cas9 lentiviral construct or inhibited HSF1 with a specific small molecule inhibitor: KRIBB11 in vivo. Wild type or HSF1-knockdown 4T1 TNBC cells were inoculated into the mammary gland's fat pad of BALB/c mice. Four mEHT treatments were performed every second day and the tumor growth was followed by ultrasound and caliper. KRIBB11 was administrated intraperitoneally at 50 mg/kg daily for 8 days. HSF1 and Hsp70 expression were assessed. HSF1 knockdown sensitized transduced cancer cells to mEHT and reduced tumor growth. HSF1 mRNA expression was significantly reduced in the KO group when compared to the empty vector group, and consequently mEHT-induced Hsp70 mRNA upregulation diminished in the KO group. Immunohistochemistry (IHC) confirmed the inhibition of Hsp70 upregulation in mEHT HSF1-KO group. Demonstrating the translational potential of HSF1 inhibition, combined therapy of mEHT with KRIBB11 significantly reduced tumor mass compared to either monotherapy. Inhibition of Hsp70 upregulation by mEHT was also supported by qPCR and IHC. In conclusion, we suggest that mEHT-therapy combined with HSF1 inhibition can be a possible new strategy of TNBC treatment with great translational potential.
Collapse
Affiliation(s)
- Pedro H L Viana
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Csaba A Schvarcz
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Lea O Danics
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Balázs Besztercei
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Kenan Aloss
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Syeda M Z Bokhari
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Nino Giunashvili
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Dániel Bócsi
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Zoltán Koós
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary.
| |
Collapse
|
5
|
Giunashvili N, Thomas JM, Schvarcz CA, Viana PHL, Aloss K, Bokhari SMZ, Koós Z, Bócsi D, Major E, Balogh A, Benyó Z, Hamar P. Enhancing therapeutic efficacy in triple-negative breast cancer and melanoma: synergistic effects of modulated electro-hyperthermia (mEHT) with NSAIDs especially COX-2 inhibition in in vivo models. Mol Oncol 2024; 18:1012-1030. [PMID: 38217262 PMCID: PMC10994232 DOI: 10.1002/1878-0261.13585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a leading cause of cancer mortality and lacks modern therapy options. Modulated electro-hyperthermia (mEHT) is an adjuvant therapy with demonstrated clinical efficacy for the treatment of various cancer types. In this study, we report that mEHT monotherapy stimulated interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) expression, and consequently cyclooxygenase 2 (COX-2), which may favor a cancer-promoting tumor microenvironment. Thus, we combined mEHT with nonsteroid anti-inflammatory drugs (NSAIDs): a nonselective aspirin, or the selective COX-2 inhibitor SC236, in vivo. We demonstrate that NSAIDs synergistically increased the effect of mEHT in the 4T1 TNBC model. Moreover, the strongest tumor destruction ratio was observed in the combination SC236 + mEHT groups. Tumor damage was accompanied by a significant increase in cleaved caspase-3, suggesting that apoptosis played an important role. IL-1β and COX-2 expression were significantly reduced by the combination therapies. In addition, a custom-made nanostring panel demonstrated significant upregulation of genes participating in the formation of the extracellular matrix. Similarly, in the B16F10 melanoma model, mEHT and aspirin synergistically reduced the number of melanoma nodules in the lungs. In conclusion, mEHT combined with a selective COX-2 inhibitor may offer a new therapeutic option in TNBC.
Collapse
Grants
- STIA-OTKA-2022 Semmelweis Science and Innovation Fund
- OTKA_ANN 110810 National Research, Development, and Innovation Office
- OTKA_SNN 114619 National Research, Development, and Innovation Office
- ÚNKP-23-3-II-SE-45 National Research, Development, and Innovation Office
- ÚNKP-23-4-I-SE-22 National Research, Development, and Innovation Office
- OTKA_K 145998 National Research, Development, and Innovation Office
- Tempus Foundation
- EFOP-3.6.3-VEKOP-16-2017-00009 Semmelweis Excellence 250+ Scholarship
Collapse
Affiliation(s)
- Nino Giunashvili
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
| | | | - Csaba András Schvarcz
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
- HUN‐REN‐SU Cerebrovascular and Neurocognitive Diseases Research GroupBudapestHungary
| | | | - Kenan Aloss
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
| | | | - Zoltán Koós
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
| | - Dániel Bócsi
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
| | - Enikő Major
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
- HUN‐REN‐SU Cerebrovascular and Neurocognitive Diseases Research GroupBudapestHungary
| | - Andrea Balogh
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
- HUN‐REN‐SU Cerebrovascular and Neurocognitive Diseases Research GroupBudapestHungary
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
| |
Collapse
|
6
|
Viana P, Hamar P. Targeting the heat shock response induced by modulated electro-hyperthermia (mEHT) in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189069. [PMID: 38176599 DOI: 10.1016/j.bbcan.2023.189069] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
The Heat Shock Response (HSR) is a cellular stress reaction crucial for cell survival against stressors, including heat, in both healthy and cancer cells. Modulated electro-hyperthermia (mEHT) is an emerging non-invasive cancer therapy utilizing electromagnetic fields to selectively target cancer cells via temperature-dependent and independent mechanisms. However, mEHT triggers HSR in treated cells. Despite demonstrated efficacy in cancer treatment, understanding the underlying molecular mechanisms for improved therapeutic outcomes remains a focus. This review examines the HSR induced by mEHT in cancer cells, discussing potential strategies to modulate it for enhanced tumor-killing effects. Approaches such as HSF1 gene-knockdown and small molecule inhibitors like KRIBB11 are explored to downregulate the HSR and augment tumor destruction. We emphasize the impact of HSR inhibition on cancer cell viability, mEHT sensitivity, and potential synergistic effects, addressing challenges and future directions. This understanding offers opportunities for optimizing treatment strategies and advancing precision medicine in cancer therapy.
Collapse
Affiliation(s)
- Pedro Viana
- Institute of Translational Medicine, Semmelweis University, Tűzoltó utca 37-49, 1094 Budapest, Hungary.
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, Tűzoltó utca 37-49, 1094 Budapest, Hungary.
| |
Collapse
|
7
|
Bokhari SZ, Aloss K, Leroy Viana PH, Schvarcz CA, Besztercei B, Giunashvili N, Bócsi D, Koós Z, Balogh A, Benyó Z, Hamar P. Digoxin-Mediated Inhibition of Potential Hypoxia-Related Angiogenic Repair in Modulated Electro-Hyperthermia (mEHT)-Treated Murine Triple-Negative Breast Cancer Model. ACS Pharmacol Transl Sci 2024; 7:456-466. [PMID: 38357275 PMCID: PMC10863435 DOI: 10.1021/acsptsci.3c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 02/16/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer type with no targeted therapy and hence limited treatment options. Modulated electrohyperthermia (mEHT) is a novel complementary therapy where a 13.56 MHz radiofrequency current targets cancer cells selectively, inducing tumor damage by thermal and electromagnetic effects. We observed severe vascular damage in mEHT-treated tumors and investigated the potential synergism between mEHT and inhibition of tumor vasculature recovery in our TNBC mouse model. 4T1/4T07 isografts were orthotopically inoculated and treated three to five times with mEHT. mEHT induced vascular damage 4-12 h after treatment, leading to tissue hypoxia detected at 24 h. Hypoxia in treated tumors induced an angiogenic recovery 24 h after the last treatment. Administration of the cardiac glycoside digoxin with the potential hypoxia-inducible factor 1-α (HIF1-α) and angiogenesis inhibitory effects could synergistically augment mEHT-mediated tumor damage and reduce tissue hypoxia signaling and consequent vascular recovery in mEHT-treated TNBC tumors. Conclusively, repeated mEHT induced vascular damage and hypoxic stress in TNBC that promoted vascular recovery. Inhibiting this hypoxic stress signaling enhanced the effectiveness of mEHT and may potentially enhance other forms of cancer treatment.
Collapse
Affiliation(s)
| | - Kenan Aloss
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
| | | | - Csaba András Schvarcz
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
- Cerebrovascular
and Neurocognitive Disorders Research Group, Eötvös, Loránd Research Network and Semmelweis
University (ELKH-SE), Tűzoltó utca 37-47, Budapest 1094, Hungary
| | - Balázs Besztercei
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
| | - Nino Giunashvili
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
| | - Dániel Bócsi
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
| | - Zoltán Koós
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
| | - Andrea Balogh
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
| | - Zoltán Benyó
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
| | - Péter Hamar
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
| |
Collapse
|
8
|
Lukácsi S, Munkácsy G, Győrffy B. Harnessing Hyperthermia: Molecular, Cellular, and Immunological Insights for Enhanced Anticancer Therapies. Integr Cancer Ther 2024; 23:15347354241242094. [PMID: 38818970 PMCID: PMC11143831 DOI: 10.1177/15347354241242094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 06/01/2024] Open
Abstract
Hyperthermia, the raising of tumor temperature (≥39°C), holds great promise as an adjuvant treatment for cancer therapy. This review focuses on 2 key aspects of hyperthermia: its molecular and cellular effects and its impact on the immune system. Hyperthermia has profound effects on critical biological processes. Increased temperatures inhibit DNA repair enzymes, making cancer cells more sensitive to chemotherapy and radiation. Elevated temperatures also induce cell cycle arrest and trigger apoptotic pathways. Furthermore, hyperthermia modifies the expression of heat shock proteins, which play vital roles in cancer therapy, including enhancing immune responses. Hyperthermic treatments also have a significant impact on the body's immune response against tumors, potentially improving the efficacy of immune checkpoint inhibitors. Mild systemic hyperthermia (39°C-41°C) mimics fever, activating immune cells and raising metabolic rates. Intense heat above 50°C can release tumor antigens, enhancing immune reactions. Using photothermal nanoparticles for targeted heating and drug delivery can also modulate the immune response. Hyperthermia emerges as a cost-effective and well-tolerated adjuvant therapy when integrated with immunotherapy. This comprehensive review serves as a valuable resource for the selection of patient-specific treatments and the guidance of future experimental studies.
Collapse
Affiliation(s)
- Szilvia Lukácsi
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University, Budapest, Hungary
| | - Gyöngyi Munkácsy
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University, Budapest, Hungary
| | - Balázs Győrffy
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University, Budapest, Hungary
- University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| |
Collapse
|
9
|
Kleef R, Dank M, Herold M, Agoston EI, Lohinszky J, Martinek E, Herold Z, Szasz AM. Comparison of the effectiveness of integrative immunomodulatory treatments and conventional therapies on the survival of selected gastrointestinal cancer patients. Sci Rep 2023; 13:20360. [PMID: 37990076 PMCID: PMC10663566 DOI: 10.1038/s41598-023-47802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
In the last decade, the use of immunomodulating treatments (IMT) at integrative oncology providers (IOP) increased. IMTs are used to modulate the tumor microenvironment, which might lead to increased response-to-treatment, and the indication of immune checkpoint inhibitors might also be widened. The efficacy and safety of IMTs in advanced/metastatic gastrointestinal cancers were compared with conventional chemo(radio)therapy (CT). 21 colorectal- (CRC), 14 pancreatic- (PC), 5 cholangiocellular- (CCC), 5 gastric- (GC) and 4 esophageal cancer (EC) patients received IMT. IMT and CT were compared in CRC and PC. CT was administered at an academic oncology center. After the initiation of IMT, a median survival of ~ 20 (CRC, PC and EC) and ~ 10 months (CCC and GC) was observed. Of the IMTs, locoregional modulated electro-hyperthermia had the most positive effect on overall survival (HR: 0.3055; P = 0.0260), while fever-inducing interleukin-2, and low-dose ipilimumab showed a positive tendency. IMT was superior to CT in PC (HR: 0.1974; P = 0.0013), while modest effect was detected in CRC (HR: 0.7797; P = 0.4710). When the whole study population was analyzed, IMTs showed minimal effect on patient survival, still CT had the greatest effect if introduced as early as possible (HR: 0.0624; P < 0.0001). The integrative IMTs in the presented form have mild impact on gastrointestinal cancer patients' survival, however, we observed its benefit in PC, which warrants further investigations.
Collapse
Affiliation(s)
- Ralf Kleef
- Dr. Kleef Medical Center, 1030, Vienna, Austria
| | - Magdolna Dank
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, 1082, Hungary
| | - Magdolna Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, 1082, Hungary
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, 1088, Hungary
| | - Emese Irma Agoston
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, 1082, Hungary
| | - Julia Lohinszky
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, 1088, Hungary
| | - Emoke Martinek
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, 1082, Hungary
| | - Zoltan Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, 1082, Hungary
| | - Attila Marcell Szasz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, 1082, Hungary.
| |
Collapse
|
10
|
Lee SY, Lorant G, Grand L, Szasz AM. The Clinical Validation of Modulated Electro-Hyperthermia (mEHT). Cancers (Basel) 2023; 15:4569. [PMID: 37760538 PMCID: PMC10526385 DOI: 10.3390/cancers15184569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The mEHT method uses tissues' thermal and bioelectromagnetic heterogeneity for the selective mechanisms. The success of the therapy for advanced, relapsed, and metastatic aggressive tumors can only be demonstrated by measuring survival time and quality of life (QoL). The complication is that mEHT-treated patients cannot be curatively treated any longer with "gold standards", where the permanent progression of the disease, the refractory, relapsing situation, the organ failure, the worsening of blood counts, etc., block them. Collecting a cohort of these patients is frequently impossible. Only an intent-to-treat (ITT) patient group was available. Due to the above limitations, many studies have single-arm data collection. The Phase III trial of advanced cervix tumors subgrouping of HIV-negative and -positive patients showed the stable efficacy of mEHT in all patients' subgroups. The single-arm represents lower-level evidence, which can be improved by comparing the survival data of various studies from different institutes. The Kaplan-Meier probability comparison had no significant differences, so pooled data were compared to other methods. Following this approach, we demonstrate the feasibility and superiority of mEHT in the cases of glioblastoma multiform, pancreas carcinomas, lung tumors, and colorectal tumors.
Collapse
Affiliation(s)
- Sun-Young Lee
- Department of Radiation Oncology, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Gergo Lorant
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, H-1083 Budapest, Hungary;
| | - Laszlo Grand
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary;
| | - Attila Marcell Szasz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, H-1083 Budapest, Hungary;
| |
Collapse
|
11
|
Obrador E, Jihad-Jebbar A, Salvador-Palmer R, López-Blanch R, Oriol-Caballo M, Moreno-Murciano MP, Navarro EA, Cibrian R, Estrela JM. Externally Applied Electromagnetic Fields and Hyperthermia Irreversibly Damage Cancer Cells. Cancers (Basel) 2023; 15:3413. [PMID: 37444524 DOI: 10.3390/cancers15133413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
At present, the applications and efficacy of non-ionizing radiations (NIR) in oncotherapy are limited. In terms of potential combinations, the use of biocompatible magnetic nanoparticles as heat mediators has been extensively investigated. Nevertheless, developing more efficient heat nanomediators that may exhibit high specific absorption rates is still an unsolved problem. Our aim was to investigate if externally applied magnetic fields and a heat-inducing NIR affect tumor cell viability. To this end, under in vitro conditions, different human cancer cells (A2058 melanoma, AsPC1 pancreas carcinoma, MDA-MB-231 breast carcinoma) were treated with the combination of electromagnetic fields (EMFs, using solenoids) and hyperthermia (HT, using a thermostated bath). The effect of NIR was also studied in combination with standard chemotherapy and targeted therapy. An experimental device combining EMFs and high-intensity focused ultrasounds (HIFU)-induced HT was tested in vivo. EMFs (25 µT, 4 h) or HT (52 °C, 40 min) showed a limited effect on cancer cell viability in vitro. However, their combination decreased viability to approximately 16%, 50%, and 21% of control values in A2058, AsPC1, and MDA-MB-231 cells, respectively. Increased lysosomal permeability, release of cathepsins into the cytosol, and mitochondria-dependent activation of cell death are the underlying mechanisms. Cancer cells could be completely eliminated by combining EMFs, HT, and standard chemotherapy or EMFs, HT, and anti-Hsp70-targeted therapy. As a proof of concept, in vivo experiments performed in AsPC1 xenografts showed that a combination of EMFs, HIFU-induced HT, standard chemotherapy, and a lysosomal permeabilizer induces a complete cancer regression.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech, 46002 Valencia, Spain
| | - Ali Jihad-Jebbar
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Rafael López-Blanch
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech, 46002 Valencia, Spain
| | - María Oriol-Caballo
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech, 46002 Valencia, Spain
| | | | - Enrique A Navarro
- Scientia BioTech, 46002 Valencia, Spain
- Department of Computer Sciences, Higher Technical School of Engineering, 46100 Burjassot, Spain
- IRTIC Institute, University of Valencia, 46980 Paterna, Spain
| | - Rosa Cibrian
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech, 46002 Valencia, Spain
| | - José M Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech, 46002 Valencia, Spain
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| |
Collapse
|
12
|
Fiorentini G, Sarti D, Mambrini A, Hammarberg Ferri I, Bonucci M, Sciacca PG, Ballerini M, Bonanno S, Milandri C, Nani R, Guadagni S, Dentico P, Fiorentini C. Hyperthermia combined with chemotherapy vs chemotherapy in patients with advanced pancreatic cancer: A multicenter retrospective observational comparative study. World J Clin Oncol 2023; 14:215-226. [PMID: 37398545 PMCID: PMC10311475 DOI: 10.5306/wjco.v14.i6.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Several studies report the useful therapeutic results of regional hyperthermia in association with chemotherapy (CHT) and radiotherapy for the treatment of pancreatic cancer. Modulated electro-hyperthermia (mEHT) is a new hyperthermia technique that induces immunogenic death or apoptosis of pancreatic cancer cells in laboratory experiments and increases tumor response rate and survival in pancreatic cancer patients, offering beneficial therapeutic effects against this severe type of cancer.
AIM To assess survival, tumor response and toxicity of mEHT alone or combined with CHT compared with CHT for the treatment of locally advanced or metastatic pancreatic cancer.
METHODS This was a retrospective data collection on patients affected by locally advanced or metastatic pancreatic cancer (stage III and IV) performed in 9 Italian centers, members of International Clinical Hyperthermia Society-Italian Network. This study included 217 patients, 128 (59%) of them were treated with CHT (no-mEHT) and 89 (41%) patients received mEHT alone or in association with CHT. mEHT treatments were performed applying a power of 60-150 watts for 40-90 min, simultaneously or within 72 h of administration of CHT.
RESULTS Median patients’ age was 67 years (range 31-92 years). mEHT group had a median overall survival greater than non-mEHT group (20 mo, range 1.6-24, vs 9 mo, range 0.4-56.25, P < 0.001). mEHT group showed a higher number of partial responses (45% vs 24%, P = 0.0018) and a lower number of progressions (4% vs 31%, P < 0.001) than the no-mEHT group, at the three months follow-up. Adverse events were observed as mild skin burns in 2.6% of mEHT sessions.
CONCLUSION mEHT seems safe and has beneficial effects on survival and tumor response of stage III-IV pancreatic tumor treatment. Further randomized studies are warranted to confirm or not these results.
Collapse
Affiliation(s)
- Giammaria Fiorentini
- Integrative Oncology, Integrative Oncology Outpatient Clinic, Bologna 40121, Italy
| | - Donatella Sarti
- Department of Oncology, Santa Maria della Misericordia Hospital, Urbino 60129, Italy
| | - Andrea Mambrini
- Department of Oncology, Azienda Sanitaria Locale Toscana Nord Ovest, Massa Carrara Hospital, Massa 54100, Italy
| | | | - Massimo Bonucci
- Integrative Oncology, Association Research Center for Integrative Oncology Treatments, Roma 00166, Italy
| | | | - Marco Ballerini
- Hyperthermia Unit, Bellessere Medical Center, Terni 05100, Italy
| | | | - Carlo Milandri
- Medical Oncology, San Donato Hospital, Arezzo 52100, Italy
| | - Roberto Nani
- Interventional Radiology Unit, Humanitas Gavazzeni, Bergamo 24121, Italy
| | - Stefano Guadagni
- Applied Clinical Sciences and Biotechnology, Section of General Surgery, University of L'Aquila, L'Aquila 67100, Italy
| | - Patrizia Dentico
- Hyperthermia Service, Medical Oncology Unit, San Giuseppe Hospital, Empoli 50053, Italy
| | - Caterina Fiorentini
- Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich 80331, Germany
| |
Collapse
|
13
|
Liu JL, Yang M, Bai JG, Liu Z, Wang XS. “Cold” colorectal cancer faces a bottleneck in immunotherapy. World J Gastrointest Oncol 2023; 15:240-250. [PMID: 36908324 PMCID: PMC9994051 DOI: 10.4251/wjgo.v15.i2.240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 02/14/2023] Open
Abstract
The advent of immunotherapy and the development of immune checkpoint inhibitors (ICIs) are changing the way we think about cancer treatment. ICIs have shown clinical benefits in a variety of tumor types, and ICI-based immunotherapy has shown effective clinical outcomes in immunologically “hot” tumors. However, for immunologically “cold” tumors such as colorectal cancer (CRC), only a limited number of patients are currently benefiting from ICIs due to limitations such as individual differences and low response rates. In this review, we discuss the classification and differences between hot and cold CRC and the current status of research on cold CRC, and summarize the treatment strategies and challenges of immunotherapy for cold CRC. We also explain the mechanism, biology, and role of immunotherapy for cold CRC, which will help clarify the future development of immunotherapy for cold CRC and discovery of more emerging strategies for the treatment of cold CRC.
Collapse
Affiliation(s)
- Jia-Liang Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| | - Ming Yang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| | - Jun-Ge Bai
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| | - Zheng Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| | - Xi-Shan Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
14
|
Szasz AM, Arrojo Alvarez EE, Fiorentini G, Herold M, Herold Z, Sarti D, Dank M. Meta-Analysis of Modulated Electro-Hyperthermia and Tumor Treating Fields in the Treatment of Glioblastomas. Cancers (Basel) 2023; 15:cancers15030880. [PMID: 36765840 PMCID: PMC9913117 DOI: 10.3390/cancers15030880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Glioblastoma is one of the most difficult to treat and most aggressive brain tumors, having a poor survival rate. The use of non-invasive modulated electro-hyperthermia (mEHT) and Tumor Treating Fields (TTF) devices has been introduced in the last few decades, both of which having proven anti-tumor effects. METHODS A meta-analysis of randomized and observational studies about mEHT and TTF was conducted. RESULTS A total of seven and fourteen studies about mEHT and TTF were included, with a total number of 450 and 1309 cases, respectively. A 42% [95% confidence interval (95% CI): 25-59%] 1-year survival rate was found for mEHT, which was raised to 61% (95% CI: 32-89%) if only the studies conducted after 2008 were investigated. In the case of TTF, 1-year survival was 67% (95% CI: 53-81%). Subgroup analyses revealed that newly diagnosed patients might get extra benefits from the early introduction of the devices (mEHT all studies: 73% vs. 37%, p = 0.0021; mEHT studies after 2008: 73% vs. 54%, p = 0.4214; TTF studies: 83% vs. 52%, p = 0.0083), compared with recurrent glioblastoma. CONCLUSIONS Our meta-analysis showed that both mEHT and TTF can improve glioblastoma survival, and the most benefit may be achieved in newly diagnosed cases.
Collapse
Affiliation(s)
- Attila Marcell Szasz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-459-1500
| | - Elisabeth Estefanía Arrojo Alvarez
- Oncología Radioterápica, Servicios y Unidades Asistenciales, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
- Medical Institute of Advanced Oncology, 28037 Madrid, Spain
| | - Giammaria Fiorentini
- Department of Oncology, Azienda Ospedaliera “Ospedali Riuniti Marche Nord”, 61121 Pesaro, Italy
- IHF Integrative Oncology Outpatient Clinic, 40121 Bologna, Italy
| | - Magdolna Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary
- Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| | - Zoltan Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary
| | - Donatella Sarti
- Department of Oncology, Azienda Ospedaliera “Ospedali Riuniti Marche Nord”, 61121 Pesaro, Italy
| | - Magdolna Dank
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
15
|
Kim H, Kim D, Kim W, Kim E, Jang WI, Kim MS. The Efficacy of Radiation is Enhanced by Metformin and Hyperthermia Alone or Combined Against FSaII Fibrosarcoma in C3H Mice. Radiat Res 2022; 198:190-199. [DOI: 10.1667/rade-21-00231.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/16/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Hyunkyung Kim
- Clinical Translational Research Team, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Dohyeon Kim
- Clinical Translational Research Team, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Wonwoo Kim
- Clinical Translational Research Team, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - EunJi Kim
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Won Il Jang
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Mi-Sook Kim
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| |
Collapse
|
16
|
Long-Term Feasibility of 13.56 MHz Modulated Electro-Hyperthermia-Based Preoperative Thermoradiochemotherapy in Locally Advanced Rectal Cancer. Cancers (Basel) 2022; 14:cancers14051271. [PMID: 35267579 PMCID: PMC8909844 DOI: 10.3390/cancers14051271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary We demonstrated that a 13.56 MHz modulated electro-hyperthermia (mEHT) boost is feasible in neoadjuvant treatment for rectal cancer. Herein, we attempted to present the long-term results for this phase 2 trial. Although there are many reports on the usefulness of thermoradiochemotherapy for loco-regional control, so far, only a few cases of survival benefit exist. Thus, this study assessed whether this limitation of hyperthermia could be overcome through the mEHT method featuring an applied energy variable. Following a median follow-up of 58 months for 60 patients, mEHT boost showed comparable results with conventional hyperthermia; potential therapeutic effects were also observed. Moreover, mEHT could be considered a useful tool in combination treatment with radiotherapy owing to its low thermotoxicity and improved treatment compliance. Abstract We evaluated the effect of 13.56 MHz modulated electro-hyperthermia (mEHT) boost in neoadjuvant treatment for cT3-4- or cN-positive rectal cancer. Sixty patients who completed the mEHT feasibility trial (ClinicalTrials.gov Identifier: NCT02546596) were analyzed. Whole pelvis radiotherapy of 40 Gy, mEHT boost twice a week during radiotherapy, and surgical resection 6–8 weeks following radiotherapy were performed. The median age was 59. The median follow-up period was 58 (6–85) months. Total/near total tumor regression was observed in 20 patients (33.3%), including nine cases of complete response. T- and N-downstaging was identified in 40 (66.6%) and 53 (88.3%) patients, respectively. The 5-year overall and disease-free survival were 94.0% and 77.1%, respectively. mEHT energy of ≥3800 kJ potentially increased the overall survival (p = 0.039). The ypN-stage and perineural invasion were possible significant factors in disease-free (p = 0.003 and p = 0.005, respectively) and distant metastasis-free (p = 0.011 and p = 0.034, respectively) survival. Tumor regression, resection margin status, and other molecular genetic factors showed no correlation with survival. Although a limited analysis of a small number of patients, mEHT was feasible considering long-term survival. A relatively low dose irradiation (40 Gy) plus mEHT setting could ensure comparable clinical outcomes with possible mEHT-related prognostic features.
Collapse
|
17
|
Heterogeneous Heat Absorption Is Complementary to Radiotherapy. Cancers (Basel) 2022; 14:cancers14040901. [PMID: 35205649 PMCID: PMC8870118 DOI: 10.3390/cancers14040901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary This review shows the advantages of heterogeneous heating of selected malignant cells in harmonic synergy with radiotherapy. The main clinical achievement of this complementary therapy is its extreme safety and minimal adverse effects. Combining the two methods opens a bright perspective, transforming the local radiotherapy to the antitumoral impact on the whole body, destroying the distant metastases by “teaching” the immune system about the overall danger of malignancy. Abstract (1) Background: Hyperthermia in oncology conventionally seeks the homogeneous heating of the tumor mass. The expected isothermal condition is the basis of the dose calculation in clinical practice. My objective is to study and apply a heterogenic temperature pattern during the heating process and show how it supports radiotherapy. (2) Methods: The targeted tissue’s natural electric and thermal heterogeneity is used for the selective heating of the cancer cells. The amplitude-modulated radiofrequency current focuses the energy absorption on the membrane rafts of the malignant cells. The energy partly “nonthermally” excites and partly heats the absorbing protein complexes. (3) Results: The excitation of the transmembrane proteins induces an extrinsic caspase-dependent apoptotic pathway, while the heat stress promotes the intrinsic caspase-dependent and independent apoptotic signals generated by mitochondria. The molecular changes synergize the method with radiotherapy and promote the abscopal effect. The mild average temperature (39–41 °C) intensifies the blood flow for promoting oxygenation in combination with radiotherapy. The preclinical experiences verify, and the clinical studies validate the method. (4) Conclusions: The heterogenic, molecular targeting has similarities with DNA strand-breaking in radiotherapy. The controlled energy absorption allows using a similar energy dose to radiotherapy (J/kg). The two therapies are synergistically combined.
Collapse
|
18
|
Szallasi A. Capsaicin and cancer: Guilty as charged or innocent until proven guilty? Temperature (Austin) 2022; 10:35-49. [PMID: 37187832 PMCID: PMC10177684 DOI: 10.1080/23328940.2021.2017735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/18/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022] Open
Abstract
With an estimated 2 billion chili pepper connoisseurs worldwide, the human exposure to capsaicin is enormous. Therefore, the question whether nutritional capsaicin is a cancer causing or cancer preventive agent is of utmost importance. The gamut of human epidemiology studies suggests that capsaicin in modest, "restaurant-like" doses is not only safe to eat, but it may even provide health benefits, such as lower cancer-related death rate. Very "hot" food is, however, probably better avoided. Importantly, no increased cancer risk was reported in patients following topical (skin or intravesical) capsaicin therapy. Aberrant capsaicin receptor TRPV1 expression was noted in various cancers with potential implications for cancer therapy, diagnosis and prognostication. Indeed, capsaicin can kill cancer cells by a combination of on- and off-target mechanisms, though it remains unclear if this can be exploited for therapeutic purposes. The literature on capsaicin and cancer is vast and controversial. This review aims to find answers to questions that are relevant for our daily life and medical practice.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
19
|
Forika G, Kiss E, Petovari G, Danko T, Gellert AB, Krenacs T. Modulated Electro-Hyperthermia Supports the Effect of Gemcitabine Both in Sensitive and Resistant Pancreas Adenocarcinoma Cell Lines. Pathol Oncol Res 2021; 27:1610048. [PMID: 34955688 PMCID: PMC8702438 DOI: 10.3389/pore.2021.1610048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/17/2021] [Indexed: 12/09/2022]
Abstract
The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is frequently associated to high treatment resistance. Gemcitabine (GEM) alone or in combination is the most used chemotherapy for unresecable PDACs. Here we studied whether modulated electro-hyperthermia (mEHT), a non-invasive complementary treatment, can support the effect of GEM on PDAC cells in vitro. The LD20 for the GEM-resistant Panc1 cells proved to be 200× higher than for the drug-sensitive Capan1. The mEHT alone caused significant apoptosis in Capan1 cultures as confirmed by the elevated SubG1 phase cell fraction and increased number of cleaved Caspase-3 positive cells 48 h after treatment, with an additive effect when GEM was used after hyperthermia. These were accompanied by reduced number of G1, S, and G2/M phase cells and elevated expression of the cyclin-dependent kinase inhibitor p21waf1 protein. In GEM-resistant Panc1 cells, an initial apoptosis was detected by flow cytometry 24 h after mEHT ± GEM treatment, which however diminished by 48 h at persistent number of cleaved Caspase-3 positive tumor cells. Though GEM monotherapy reduced the number of tumor progenitor colonies in Capan1 cell line, an additive colony inhibitory effect of mEHT was observed after mEHT + GEM treatment. The heat shock induced Hsp27 and Hsp70 proteins, which are known to sensitize PDAC cells to GEM were upregulated in both Capan1 and Panc1 cells 24 h after mEHT treatment. The level of E-Cadherin, a cell adhesion molecule, increased in Capan1 cells after mEHT + GEM treatment. In conclusion, in GEM-sensitive PDAC cells mEHT treatment alone induced cell death and cell cycle inhibition and improved GEM efficiency in combination, which effects were milder and short-term up to 24 h in the GEM-resistant Panc1 cells. Our data further support the inclusion of hyperthermia, in particular of mEHT, into the traditional oncotherapy regimens of PDAC.
Collapse
Affiliation(s)
- Gertrud Forika
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Eva Kiss
- 1st Department of Internal Medicine and Oncology, Oncology Profile, Semmelweis University, Budapest, Hungary
| | - Gabor Petovari
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Titanilla Danko
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Aron Bertram Gellert
- Department of Thoracic Surgery, National Institute of Oncology and Semmelweis University, Budapest, Hungary
| | - Tibor Krenacs
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- *Correspondence: Tibor Krenacs,
| |
Collapse
|
20
|
Petenyi FG, Garay T, Muhl D, Izso B, Karaszi A, Borbenyi E, Herold M, Herold Z, Szasz AM, Dank M. Modulated Electro-Hyperthermic (mEHT) Treatment in the Therapy of Inoperable Pancreatic Cancer Patients-A Single-Center Case-Control Study. Diseases 2021; 9:diseases9040081. [PMID: 34842668 PMCID: PMC8628793 DOI: 10.3390/diseases9040081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/03/2021] [Accepted: 10/30/2021] [Indexed: 02/05/2023] Open
Abstract
Our present oncological treatment arsenal has limited treatment options for pancreatic ductal adenocarcinoma (PDAC). Extended reviews have shown the benefits of hyperthermia for PDAC, supporting the perspectives with the improvements of the treatment possibilities. METHODS: A retrospective single-center case-control study was conducted with the inclusion of 78 inoperable PDAC patients. Age-, sex-, chemotherapy-, stage-, and ascites formation-matched patients were assigned to two equal groups based on the application of modulated electro-hyperthermia (mEHT). The EHY2030 mEHT device was used. RESULTS: A trend in favor of mEHT was found in overall survival (p = 0.1420). To further evaluate the potential beneficial effects of mEHT, the presence of distant metastasis or ascites in the patients’ oncological history was investigated. Of note, mEHT treatment had a favorable effect on patients’ overall survival in metastatic disease (p = 0.0154), while less abdominal fluid responded to the mEHT treatment in a more efficient way (p ≤ 0.0138). CONCLUSION: mEHT treatment was associated with improved overall survival in PDAC in our single-center retrospective case-control study. The outcome measures encourage us to design a randomized prospective clinical study to further confirm the efficiency of mEHT in this patient cohort.
Collapse
Affiliation(s)
- Flora Greta Petenyi
- Faculty of Information Technology and Bionics, Pazmany Peter Catholic University, 1083 Budapest, Hungary; (F.G.P.); (T.G.); (B.I.)
| | - Tamas Garay
- Faculty of Information Technology and Bionics, Pazmany Peter Catholic University, 1083 Budapest, Hungary; (F.G.P.); (T.G.); (B.I.)
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (D.M.); (A.K.); (E.B.); (Z.H.); (A.M.S.)
| | - Dorottya Muhl
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (D.M.); (A.K.); (E.B.); (Z.H.); (A.M.S.)
| | - Blanka Izso
- Faculty of Information Technology and Bionics, Pazmany Peter Catholic University, 1083 Budapest, Hungary; (F.G.P.); (T.G.); (B.I.)
| | - Adam Karaszi
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (D.M.); (A.K.); (E.B.); (Z.H.); (A.M.S.)
| | - Erika Borbenyi
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (D.M.); (A.K.); (E.B.); (Z.H.); (A.M.S.)
| | - Magdolna Herold
- Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary;
| | - Zoltan Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (D.M.); (A.K.); (E.B.); (Z.H.); (A.M.S.)
| | - Attila Marcell Szasz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (D.M.); (A.K.); (E.B.); (Z.H.); (A.M.S.)
| | - Magdolna Dank
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (D.M.); (A.K.); (E.B.); (Z.H.); (A.M.S.)
- Correspondence: ; Tel.: +36-1-266-0926
| |
Collapse
|
21
|
Priester MI, Curto S, van Rhoon GC, ten Hagen TLM. External Basic Hyperthermia Devices for Preclinical Studies in Small Animals. Cancers (Basel) 2021; 13:cancers13184628. [PMID: 34572855 PMCID: PMC8470307 DOI: 10.3390/cancers13184628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The application of mild hyperthermia can be beneficial for solid tumor treatment by induction of sublethal effects on a tissue- and cellular level. When designing a hyperthermia experiment, several factors should be taken into consideration. In this review, multiple elementary hyperthermia devices are described in detail to aid standardization of treatment design. Abstract Preclinical studies have shown that application of mild hyperthermia (40–43 °C) is a promising adjuvant to solid tumor treatment. To improve preclinical testing, enhance reproducibility, and allow comparison of the obtained results, it is crucial to have standardization of the available methods. Reproducibility of methods in and between research groups on the same techniques is crucial to have a better prediction of the clinical outcome and to improve new treatment strategies (for instance with heat-sensitive nanoparticles). Here we provide a preclinically oriented review on the use and applicability of basic hyperthermia systems available for solid tumor thermal treatment in small animals. The complexity of these techniques ranges from a simple, low-cost water bath approach, irradiation with light or lasers, to advanced ultrasound and capacitive heating devices.
Collapse
Affiliation(s)
- Marjolein I. Priester
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.C.); (G.C.v.R.)
| | - Sergio Curto
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.C.); (G.C.v.R.)
| | - Gerard C. van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (S.C.); (G.C.v.R.)
| | - Timo L. M. ten Hagen
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Correspondence:
| |
Collapse
|
22
|
Shi F, Luo D, Zhou X, Sun Q, Shen P, Wang S. Combined effects of hyperthermia and chemotherapy on the regulate autophagy of oral squamous cell carcinoma cells under a hypoxic microenvironment. Cell Death Dis 2021; 7:227. [PMID: 34465721 PMCID: PMC8408236 DOI: 10.1038/s41420-021-00538-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/24/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023]
Abstract
Autophagy has a complex dual role in tumor survival or cell death owning to that is an evolutionarily conserved catabolic mechanism and provides the cells with a sustainable source of biomolecules and energy for the maintenance of homeostasis under stressful conditions such as tumor microenvironment. Hyperthermia is a rapidly growing field in cancer therapy and many advances have been made in understanding and applying the mechanisms of hyperthermia. The shallow oral and maxillofacial position and its abundant blood supply are favorable for the use of hyperthermia. However, the relationship between hyperthermia and autophagy has not been examined of oral squamous cell carcinoma (OSCC) in the tumor hypoxia microenvironment. Here, the expression level of autophagy relative genes is examined to explore autophagy effect on the responses of hyperthermia, hypoxia, and innutrition tumor microenvironment. It is founded that hyperthermia and hypoxia cause autophagy in starvation conditions; further, in hypoxia and innutrition tumor microenvironment, hyperthermia combines YC-1 and 3-MA could inhibit HIF-1α/BNIP3/Beclin1 signal pathway and decrease the secretion of HMGB1; moreover, the cell apoptosis rate increases with an inhibited of cell migration capacity. Thus, the present study demonstrated that combined use of YC-1 and 3-MA might increase the death of tumor cells in physiological and hyperthermic conditions, which could be relevant with the inhibition of autophagy in OSCC tumor cells under hypoxia microenvironment in vitro, which offers new insight into the therapy of OSCC and its application in treating others study carcinomas.
Collapse
Affiliation(s)
- Fan Shi
- grid.410645.20000 0001 0455 0905School of Stomatology of Qingdao University, Qingdao, China ,grid.440323.2Department of Oral and Maxillofacial Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Dan Luo
- grid.410645.20000 0001 0455 0905School of Stomatology of Qingdao University, Qingdao, China ,grid.440323.2Department of Oral and Maxillofacial Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xuexiao Zhou
- grid.410645.20000 0001 0455 0905School of Stomatology of Qingdao University, Qingdao, China ,grid.440323.2Department of Oral and Maxillofacial Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Qiaozhen Sun
- grid.410645.20000 0001 0455 0905School of Stomatology of Qingdao University, Qingdao, China ,grid.440323.2Department of Oral and Maxillofacial Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Pei Shen
- grid.410645.20000 0001 0455 0905School of Stomatology of Qingdao University, Qingdao, China ,grid.440323.2Department of Oral and Maxillofacial Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shengzhi Wang
- grid.440323.2Department of Oral and Maxillofacial Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China ,grid.412521.1Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
23
|
Wust P, Stein U, Ghadjar P. Non-thermal membrane effects of electromagnetic fields and therapeutic applications in oncology. Int J Hyperthermia 2021; 38:715-731. [PMID: 33910472 DOI: 10.1080/02656736.2021.1914354] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The temperature-independent effects of electromagnetic fields (EMF) have been controversial for decades. Here, we critically analyze the available literature on non-thermal effects of radiofrequency (RF) and microwave EMF. We present a literature review of preclinical and clinical data on non-thermal antiproliferative effects of various EMF applications, including conventional RF hyperthermia (HT, cRF-HT). Further, we suggest and evaluate plausible biophysical and electrophysiological models to decipher non-thermal antiproliferative membrane effects. Available preclinical and clinical data provide sufficient evidence for the existence of non-thermal antiproliferative effects of exposure to cRF-HT, and in particular, amplitude modulated (AM)-RF-HT. In our model, transmembrane ion channels function like RF rectifiers and low-pass filters. cRF-HT induces ion fluxes and AM-RF-HT additionally promotes membrane vibrations at specific resonance frequencies, which explains the non-thermal antiproliferative membrane effects via ion disequilibrium (especially of Ca2+) and/or resonances causing membrane depolarization, the opening of certain (especially Ca2+) channels, or even hole formation. AM-RF-HT may be tumor-specific owing to cancer-specific ion channels and because, with increasing malignancy, membrane elasticity parameters may differ from that in normal tissues. Published literature suggests that non-thermal antiproliferative effects of cRF-HT are likely to exist and could present a high potential to improve future treatments in oncology.
Collapse
Affiliation(s)
- Peter Wust
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Centrum (MDC), Berlin, Germany
| | - Pirus Ghadjar
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
24
|
Phase Compensation Technique for Effective Heat Focusing in Microwave Hyperthermia Systems. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11135972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this paper, effective electromagnetic (EM) focusing achieved with a phase compensation technique for microwave hyperthermia systems is proposed. To treat tumor cells positioned deep inside a human female breast, EM energy must be properly focused on the target area. A circular antenna array for microwave hyperthermia allows EM energy to concentrate on a specific target inside the breast tumor. Depending on the cancerous cell conditions in the breast, the input phases of each antenna are calculated for single and multiple tumor cell locations. In the case of multifocal breast cancer, sub-array beam focusing via the phase compensation technique is presented to enhance the ability of EM energy to concentrate on multiple targets while minimizing damage to normal cells. To demonstrate the thermal treatment effects on single and multiple tumor locations, the accumulation of the specific absorption rate (SAR) parameter and temperature changes were verified using both simulated and experimental results.
Collapse
|
25
|
Hyperthermia by near infrared radiation induced immune cells activation and infiltration in breast tumor. Sci Rep 2021; 11:10278. [PMID: 33986437 PMCID: PMC8119485 DOI: 10.1038/s41598-021-89740-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
Breast cancer is the most common cancer that causes death in women. Conventional therapies, including surgery and chemotherapy, have different therapeutic effects and are commonly associated with risks and side effects. Near infrared radiation is a technique with few side effects that is used for local hyperthermia, typically as an adjuvant to other cancer therapies. The understanding of the use of near NIR as a monotherapy, and its effects on the immune cells activation and infiltration, are limited. In this study, we investigate the effects of HT treatment using NIR on tumor regression and on the immune cells and molecules in breast tumors. Results from this study demonstrated that local HT by NIR at 43 °C reduced tumor progression and significantly increased the median survival of tumor-bearing mice. Immunohistochemical analysis revealed a significant reduction in cells proliferation in treated tumor, which was accompanied by an abundance of heat shock protein 70 (Hsp70). Increased numbers of activated dendritic cells were observed in the draining lymph nodes of the mice, along with infiltration of T cells, NK cells and B cells into the tumor. In contrast, tumor-infiltrated regulatory T cells were largely diminished from the tumor. In addition, higher IFN-γ and IL-2 secretion was observed in tumor of treated mice. Overall, results from this present study extends the understanding of using local HT by NIR to stimulate a favourable immune response against breast cancer.
Collapse
|
26
|
Miklós Z, Wafa D, Nádasy GL, Tóth ZE, Besztercei B, Dörnyei G, Laska Z, Benyó Z, Ivanics T, Hunyady L, Szekeres M. Angiotensin II-Induced Cardiac Effects Are Modulated by Endocannabinoid-Mediated CB 1 Receptor Activation. Cells 2021; 10:724. [PMID: 33805075 PMCID: PMC8064086 DOI: 10.3390/cells10040724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/13/2021] [Accepted: 03/21/2021] [Indexed: 12/02/2022] Open
Abstract
Angiotensin II (Ang II) has various cardiac effects and causes vasoconstriction. Ang II activates the type-1 angiotensin receptor-Gq/11 signaling pathway resulting in the release of 2-arachidonoylglycerol (2-AG). We aimed to investigate whether cardiac Ang II effects are modulated by 2-AG-release and to identify the role of type-1 cannabinoid receptors (CB1R) in these effects. Expression of CB1R in rat cardiac tissue was confirmed by immunohistochemistry. To characterize short-term Ang II effects, increasing concentrations of Ang II (10-9-10-7 M); whereas to assess tachyphylaxis, repeated infusions of Ang II (10-7 M) were administered to isolated Langendorff-perfused rat hearts. Ang II infusions caused a decrease in coronary flow and ventricular inotropy, which was more pronounced during the first administration. CB agonist 2-AG and WIN55,212-2 administration to the perfusate enhanced coronary flow. The flow-reducing effect of Ang II was moderated in the presence of CB1R blocker O2050 and diacylglycerol-lipase inhibitor Orlistat. Our findings indicate that Ang II-induced cardiac effects are modulated by simultaneous CB1R-activation, most likely due to 2-AG-release during Ang II signalling. In this combined effect, the response to 2-AG via cardiac CB1R may counteract the positive inotropic effect of Ang II, which may decrease metabolic demand and augment Ang II-induced coronary vasoconstriction.
Collapse
Affiliation(s)
- Zsuzsanna Miklós
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (D.W.); (B.B.); (Z.L.); (Z.B.); (T.I.)
| | - Dina Wafa
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (D.W.); (B.B.); (Z.L.); (Z.B.); (T.I.)
| | - György L. Nádasy
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (G.L.N.); (L.H.)
| | - Zsuzsanna E. Tóth
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1094 Budapest, Hungary;
| | - Balázs Besztercei
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (D.W.); (B.B.); (Z.L.); (Z.B.); (T.I.)
| | - Gabriella Dörnyei
- Department of Morphology and Physiology, Semmelweis University, 1088 Budapest, Hungary;
| | - Zsófia Laska
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (D.W.); (B.B.); (Z.L.); (Z.B.); (T.I.)
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (D.W.); (B.B.); (Z.L.); (Z.B.); (T.I.)
| | - Tamás Ivanics
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (D.W.); (B.B.); (Z.L.); (Z.B.); (T.I.)
| | - László Hunyady
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (G.L.N.); (L.H.)
- Laboratory of Molecular Physiology, Semmelweis University and Hungarian Academy of Sciences, 1094 Budapest, Hungary
| | - Mária Szekeres
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (G.L.N.); (L.H.)
- Department of Morphology and Physiology, Semmelweis University, 1088 Budapest, Hungary;
- Laboratory of Molecular Physiology, Semmelweis University and Hungarian Academy of Sciences, 1094 Budapest, Hungary
| |
Collapse
|
27
|
Computational FEM Model and Phantom Validation of Microwave Ablation for Segmental Microcalcifications in Breasts Using a Coaxial Double-Slot Antenna. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8858822. [PMID: 33688503 PMCID: PMC7920705 DOI: 10.1155/2021/8858822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/30/2021] [Accepted: 02/06/2021] [Indexed: 12/24/2022]
Abstract
Introduction Cancer is the second leading cause of death worldwide. Breast cancer is the second most common cause of cancer-related mortality, accounting for 11.6% of the total number of deaths. The main treatments for this disease are surgical removal of the tumor, radiotherapy, and chemotherapy. Recently, different minimally invasive technologies have been applied (e.g., emission of electromagnetic waves, thermal and chemical means) to overcome the important side effects of these treatment modalities. The objective of this study was to develop and evaluate a predictive computational model of microwave ablation. Materials and Methods The predictive computational model of microwave ablation was constructed by means of a dual-slot coaxial antenna. The model was compared with an experiment performed using a breast phantom, which emulates the dielectric properties of breast tissue with segmental microcalcifications. The standing wave ratio (SWR) was obtained for both methods to make a comparison and determine the feasibility of applying electromagnetic ablation to premalignant lesions in breasts. Specifically, for the analysis of segmental microcalcifications, a breast phantom with segmental microcalcifications was developed and two computational models were performed under the same conditions (except for blood perfusion, which was excluded in one of the models). Results The SWR was obtained by triplicate experiments in the phantom, and the measurements had a difference of 0.191 between the minimum and maximum SWR values, implying a change of power reflection of 0.8%. The average of the three measurements was compared with the simulation that did not consider blood perfusion. The comparison yielded a change of 0.104, representing a 0.2% change in power reflection. Discussion. Both experimentation in phantom and simulations demonstrated that ablation therapy can be performed using this antenna. However, an additional optimization procedure is warranted to increase the efficiency of the antenna.
Collapse
|
28
|
Gas P, Miaskowski A, Subramanian M. In Silico Study on Tumor-Size-Dependent Thermal Profiles inside an Anthropomorphic Female Breast Phantom Subjected to Multi-Dipole Antenna Array. Int J Mol Sci 2020; 21:E8597. [PMID: 33202658 PMCID: PMC7698330 DOI: 10.3390/ijms21228597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Electromagnetic hyperthermia as a potent adjuvant for conventional cancer therapies can be considered valuable in modern oncology, as its task is to thermally destroy cancer cells exposed to high-frequency electromagnetic fields. Hyperthermia treatment planning based on computer in silico simulations has the potential to improve the localized heating of breast tissues through the use of the phased-array dipole applicators. Herein, we intended to improve our understanding of temperature estimation in an anatomically accurate female breast phantom embedded with a tumor, particularly when it is exposed to an eight-element dipole antenna matrix surrounding the breast tissues. The Maxwell equations coupled with the modified Pennes' bioheat equation was solved in the modelled breast tissues using the finite-difference time-domain (FDTD) engine. The microwave (MW) applicators around the object were modelled with shortened half-wavelength dipole antennas operating at the same 1 GHz frequency, but with different input power and phases for the dipole sources. The total input power of an eight-dipole antenna matrix was set at 8 W so that the temperature in the breast tumor did not exceed 42 °C. Finding the optimal setting for each dipole antenna from the matrix was our primary objective. Such a procedure should form the basis of any successful hyperthermia treatment planning. We applied the algorithm of multi for multi-objective optimization for the power and phases for the dipole sources in terms of maximizing the specific absorption rate (SAR) parameter inside the breast tumor while minimizing this parameter in the healthy tissues. Electro-thermal simulations were performed for tumors of different radii to confirm the reliable operation of the given optimization procedure. In the next step, thermal profiles for tumors of various sizes were calculated for the optimal parameters of dipole sources. The computed results showed that larger tumors heated better than smaller tumors; however, the procedure worked well regardless of the tumor size. This verifies the effectiveness of the applied optimization method, regardless of the various stages of breast tumor development.
Collapse
Affiliation(s)
- Piotr Gas
- Department of Electrical and Power Engineering, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH, University of Science and Technology, Mickiewicza 30 Avenue, 30-059 Krakow, Poland
| | - Arkadiusz Miaskowski
- Department of Applied Mathematics and Computer Sciences, Faculty of Production Engineering, University of Life Sciences in Lublin, Akademicka 13 Street, 20-950 Lublin, Poland;
| | - Mahendran Subramanian
- Department of Bioengineering and Department of Computing, Royal School of Mines, Imperial College London, London SW7 2AZ, UK;
- Faraday-Fleming Laboratory, London, W14 8TL, UK
| |
Collapse
|