1
|
Meng Z, Ren J, Huang C, Huang H, Yuan X, Li Y, Kim NH, Xu Y. Isoorientin Promotes Early Porcine Embryonic Development by Alleviating Oxidative Stress and Improving Lipid Metabolism. Animals (Basel) 2024; 14:2806. [PMID: 39409754 PMCID: PMC11475669 DOI: 10.3390/ani14192806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Isoorientin (ISO) is a natural lignan glycoside flavonoid found in various plants, including Charcot and Stonecrop. ISO exhibits diverse physiological and pharmacological effects, such as antioxidative, anti-inflammatory, hepatoprotective, antiviral, antianxiety, and anti-myocardial ischaemic properties, as well as lipid metabolism regulation. This study investigated the impact of ISO supplementation on oxidative stress and lipid accumulation in porcine early embryos, along with its underlying mechanisms. Porcine embryos were cultured in vitro under different concentrations of ISO (0, 1, 10, and 100 nM). The results revealed that 10 nM ISO significantly enhanced the blastocyst rate and total embryonic cell count in vitro. ISO-treated embryos exhibited reduced reactive oxygen species levels and elevated glutathione levels compared to the untreated group. In addition, ISO treatment significantly increased the expression of the key antioxidant regulator Nrf2, improved mitochondrial function, and reduced lipid droplet accumulation. Concurrently, early embryo autophagy and apoptosis levels decreased. Furthermore, ISO treatment upregulated antioxidant-related genes (SOD1, SOD2, and CAT) and mitochondrial biogenesis related genes (NRF1, NRF2, and SIRT1), while downregulating lipid synthesis-related genes (SREBP1 and FASN). Additionally, lipid hydrolysis-related genes (ACADS) were elevated. These findings collectively suggest that ISO may facilitate early embryonic development in pigs by ameliorating oxidative stress and lipid metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yongnan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529000, China; (Z.M.); (J.R.); (C.H.); (H.H.); (X.Y.); (Y.L.); (N.-H.K.)
| |
Collapse
|
2
|
Li X, Cheng J, Yao Q, Duan J, Chen H, Zhang Z, Yang L, Hua R, Li Q. Isorhamnetin Improves Oocyte Maturation by Activating the Pi3k/Akt Signaling Pathway. Mol Nutr Food Res 2024; 68:e2300904. [PMID: 38982688 DOI: 10.1002/mnfr.202300904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/20/2024] [Indexed: 07/11/2024]
Abstract
SCOPE Isorhamnetin is a natural flavonoid with various pharmacological activities, which can be widely and continuously ingested by humans and animals through their daily diet. The aim of this study is to explore the benefits and molecular mechanisms of isorhamnetin on oocyte maturation. METHODS AND RESULTS Oocytes are incubated with isorhamnetin (5, 10, 20, and 30 µM) for 44 h. Isorhamnetin (10 µM) increases the polar body extrusion rate of oocytes. Furthermore, isorhamnetin alleviates oxidative stress by inhibiting reactive oxygen species levels and stimulating SOD2 protein expression. The changes in intracellular mitochondrial autophagy and apoptosis-related proteins (Bcl-2, Bax/Bcl-2, and C-Casp3) indicate that isorhamnetin inhibits oocyte apoptosis. Isorhamnetin inhibits endoplasmic reticulum stress by reducing the protein expression of CHOP and GRP78 and improving the normal distribution rate of endoplasmic reticulum. Mechanistic studies show that isorhamnetin activates the PI3K/Akt signaling pathway. CONCLUSION Isorhamnetin promotes oocyte maturation by inhibiting oxidative stress, mitochondrial dysregulation, apoptosis, and endoplasmic reticulum stress, which have important potential for improving oocyte quality and treating female infertility.
Collapse
Affiliation(s)
- Xiaoya Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| | - Jianyong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| | - Qichun Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| | - Jiaxin Duan
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030031, P. R. China
| | - Huali Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000, P. R. China
| | - Zelin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| | - Li Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| | - Rongmao Hua
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Qingwang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| |
Collapse
|
3
|
Travaglione A, Candela A, De Gregorio V, Genovese V, Cimmino M, Barbato V, Talevi R, Gualtieri R. Individually Cultured Bovine Zygotes Successfully Develop to the Blastocyst Stage in an Extremely Confined Environment. Cells 2024; 13:868. [PMID: 38786090 PMCID: PMC11119105 DOI: 10.3390/cells13100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
The possibility of detecting the developmental competence of individually cultured embryos through analysis of spent media is a major current trend in an ART setting. However, individual embryo culture is detrimental compared with high-density group culture due to the reduced concentration of putative embryotropins. The main aim of this study was to identify an individual culture system that is not detrimental over high-density group culture in the bovine model. Blastocyst rates and competence were investigated in a conventional (GC) group, semi-confined group (MG), and individual culture (MS) in a commercial microwell device. Main findings showed that: (1) individual embryos can be continuously cultured for 7 days in ~70 nL microwells (MS) without detrimental effects compared with the GC and MG; (2) MS and MG blastocysts had a reduced number of TUNEL-positive cells compared to GC blastocysts; (3) though blastocyst mean cell numbers, mitochondrial activity, and lipid content were not different among the three culture conditions, MS blastocysts had a higher frequency of small-sized lipid droplets and a reduced mean droplet diameter compared with GC and MG blastocysts. Overall, findings open the way to optimize the development and competence of single embryos in an ART setting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Roberto Gualtieri
- Department of Biology, University of Naples “Federico II”, Complesso Universitario Di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (A.T.); (A.C.); (V.D.G.); (V.G.); (M.C.); (V.B.); (R.T.)
| |
Collapse
|
4
|
Pawlak P, Lipinska P, Sell-Kubiak E, Kajdasz A, Derebecka N, Warzych E. Energy metabolism disorders during in vitro maturation of bovine cumulus-oocyte complexes interfere with blastocyst quality and metabolism. Dev Biol 2024; 509:51-58. [PMID: 38342400 DOI: 10.1016/j.ydbio.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
Glucose and fatty acids (FA) metabolism disturbances during oocyte in vitro maturation (IVM) affect their metabolism and surrounding cumulus cells, but only inhibition of glucose metabolism decreases embryo culture efficiency. Therefore, the present experiment aimed to reveal if glucose or FA metabolism inhibition leads to the disruption of embryo developmental potential, and to characterize the metabolic landscape of embryos reaching the blastocyst stage. Inhibitors of glucose (IO + DHEA) or FA (ETOMOXIR) metabolism were applied during IVM, and the control group was matured under standard conditions. Blastocysts obtained from experimental and control groups were analyzed with regard to lipidome and metabolome (mass spectrometry), transcriptome (RNA-Seq) and fluorescence lipid droplets staining (BODIPY). We showed that inhibition of glucose and fatty acid metabolism leads to cellular stress response compromising the quality of preimplantation embryos. The inhibition of energy metabolism affects membrane fluidity as well as downregulates fatty acids biosynthesis and gene expression of trophectoderm cell line markers. Therefore, we conclude that oocyte maturation environment exerts a substantial effect on preimplantation development programming at cellular and molecular levels.
Collapse
Affiliation(s)
- Piotr Pawlak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Paulina Lipinska
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Ewa Sell-Kubiak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Arkadiusz Kajdasz
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Natalia Derebecka
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Ewelina Warzych
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| |
Collapse
|
5
|
Hu Z, Feng L, Jiang Q, Wang W, Tan B, Tang X, Yin Y. Intestinal tryptophan metabolism in disease prevention and swine production. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:364-374. [PMID: 38058568 PMCID: PMC10695851 DOI: 10.1016/j.aninu.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 12/08/2023]
Abstract
Tryptophan (Trp) is an essential amino acid that cannot be synthesized by animals. It has been characterized into two different isomers, levorotation-Trp (L-Trp) and dextrorotation-Trp (D-Trp), based on their distinct molecule orientation. Intestinal epithelial cells and gut microbiota are involved in metabolizing L-Trp in the gut via the activation of the kynurenine, serotonin, and indole pathways. However, knowledge regarding D-Trp metabolism in the gut remains unclear. In this review, we briefly update the current understanding of intestinal L/D-Trp metabolism and the function of their metabolites in modulating the gut physiology and diseases. Finally, we summarize the effects of Trp nutrition on swine production at different stages, including growth performance in weaned piglets and growing pigs, as well as the reproduction performance in sows.
Collapse
Affiliation(s)
- Zhenguo Hu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, Hunan 410125, China
| | - Luya Feng
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qian Jiang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wenliang Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Bi'e Tan
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiongzhuo Tang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yulong Yin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, Hunan 410125, China
| |
Collapse
|
6
|
Wei X, Fang X, Yu X, Li H, Guo Y, Qi Y, Sun C, Han D, Liu X, Li N, Hu H. Integrative analysis of single-cell embryo data reveals transcriptome signatures for the human pre-implantation inner cell mass. Dev Biol 2023; 502:39-49. [PMID: 37437860 DOI: 10.1016/j.ydbio.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
As the source of embryonic stem cells (ESCs), inner cell mass (ICM) can form all tissues of the embryo proper, however, its role in early human lineage specification remains controversial. Although a stepwise differentiation model has been proposed suggesting the existence of ICM as a distinct developmental stage, the underlying molecular mechanism remains unclear. In the present study, we perform an integrated analysis on the public human preimplantation embryonic single-cell transcriptomic data and apply a trajectory inference algorithm to measure the cell plasticity. In our results, ICM population can be clearly discriminated on the dimension-reduced graph and confirmed by compelling evidences, thus validating the two-step hypothesis of lineage commitment. According to the branch probabilities and differentiation potential, we determine the precise time points for two lineage segregations. Further analysis on gene expression dynamics and regulatory network indicates that transcription factors including GSC, PRDM1, and SPIC may underlie the decisions of ICM fate. In addition, new human ICM marker genes, such as EPHA4 and CCR8 are discovered and validated by immunofluorescence. Given the potential clinical applications of ESCs, our analysis provides a further understanding of human ICM cells and facilitates the exploration of more unique characteristics in early human development.
Collapse
Affiliation(s)
- Xinshu Wei
- School of Medicine, South China University of Technology, Guangzhou, China; Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Xiang Fang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Xiu Yu
- School of Medicine, Jiaying University, Meizhou, 514015, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hong Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Yuyang Guo
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Yifei Qi
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Chuanbo Sun
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Dingding Han
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Xiaonan Liu
- Department of Assisted Reproductive Technology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Na Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
| | - Hao Hu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China; Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Third Affiliatied Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
7
|
Du C, Nan L, Li C, Chu C, Wang H, Fan Y, Ma Y, Zhang S. Differences in Milk Proteomic Profiles between Estrous and Non-Estrous Dairy Cows. Animals (Basel) 2023; 13:2892. [PMID: 37760292 PMCID: PMC10525490 DOI: 10.3390/ani13182892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Efficient reproductive management of dairy cows depends primarily upon accurate estrus identification. However, the currently available estrus detection methods, such as visual observation, are poor. Hence, there is an urgent need to discover novel biomarkers in non-invasive bodily fluids such as milk to reliably detect estrus status. Proteomics is an emerging and promising tool to identify biomarkers. In this study, the proteomics approach was performed on milk sampled from estrus and non-estrus dairy cows to identify potential biomarkers of estrus. Dairy cows were synchronized and timed for artificial insemination, and the cows with insemination leading to conception were considered to be in estrus at the day of insemination (day 0). Milk samples of day 0 (estrus group) and day -3 (non-estrus group) from dairy cows confirming to be pregnant were collected for proteomic analysis using the tandem mass tags (TMT) proteomics approach. A total of 89 differentially expressed proteins were identified, of which 33 were upregulated and 56 were downregulated in the estrus milk compared with the non-estrus milk. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that acetyl coenzyme A carboxylase α (ACACA), apolipoprotein B (APOB), NAD(P)H steroid dehydrogenase-like (NSDHL), perilipin 2 (PLIN2), and paraoxonase 1 (PON1) participated in lipid binding, lipid storage, lipid localization, and lipid metabolic process, as well as fatty acid binding, fatty acid biosynthesis, and fatty acid metabolism, and these processes are well documented to be related to estrus regulation. These milk proteins are proposed as possible biomarkers of estrus in dairy cows. Further validation studies are required in a large population to determine their potential as estrus biomarkers.
Collapse
Affiliation(s)
- Chao Du
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China;
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (L.N.); (C.L.); (C.C.); (H.W.); (Y.F.)
| | - Liangkang Nan
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (L.N.); (C.L.); (C.C.); (H.W.); (Y.F.)
| | - Chunfang Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (L.N.); (C.L.); (C.C.); (H.W.); (Y.F.)
- Hebei Livestock Breeding Station, Shijiazhuang 050000, China
| | - Chu Chu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (L.N.); (C.L.); (C.C.); (H.W.); (Y.F.)
| | - Haitong Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (L.N.); (C.L.); (C.C.); (H.W.); (Y.F.)
| | - Yikai Fan
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (L.N.); (C.L.); (C.C.); (H.W.); (Y.F.)
| | - Yabin Ma
- Hebei Livestock Breeding Station, Shijiazhuang 050000, China
| | - Shujun Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (L.N.); (C.L.); (C.C.); (H.W.); (Y.F.)
| |
Collapse
|
8
|
Gu L, Li X, Zhu W, Shen Y, Wang Q, Liu W, Zhang J, Zhang H, Li J, Li Z, Liu Z, Li C, Wang H. Ultrasensitive proteomics depicted an in-depth landscape for the very early stage of mouse maternal-to-zygotic transition. J Pharm Anal 2023; 13:942-954. [PMID: 37719194 PMCID: PMC10499587 DOI: 10.1016/j.jpha.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 09/19/2023] Open
Abstract
Single-cell or low-input multi-omics techniques have revolutionized the study of pre-implantation embryo development. However, the single-cell or low-input proteomic research in this field is relatively underdeveloped because of the higher threshold of the starting material for mammalian embryo samples and the lack of hypersensitive proteome technology. In this study, a comprehensive solution of ultrasensitive proteome technology (CS-UPT) was developed for single-cell or low-input mouse oocyte/embryo samples. The deep coverage and high-throughput routes significantly reduced the starting material and were selected by investigators based on their demands. Using the deep coverage route, we provided the first large-scale snapshot of the very early stage of mouse maternal-to-zygotic transition, including almost 5,500 protein groups from 20 mouse oocytes or zygotes for each sample. Moreover, significant protein regulatory networks centered on transcription factors and kinases between the MII oocyte and 1-cell embryo provided rich insights into minor zygotic genome activation.
Collapse
Affiliation(s)
- Lei Gu
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xumiao Li
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wencheng Zhu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 200031, China
| | - Yi Shen
- Shanghai Applied Protein Technology Co., Ltd., Shanghai, 201100, China
| | - Qinqin Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenjun Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Junfeng Zhang
- Shanghai Applied Protein Technology Co., Ltd., Shanghai, 201100, China
| | - Huiping Zhang
- Shanghai Applied Protein Technology Co., Ltd., Shanghai, 201100, China
| | - Jingquan Li
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ziyi Li
- Shanghai Applied Protein Technology Co., Ltd., Shanghai, 201100, China
| | - Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 200031, China
| | - Chen Li
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hui Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
9
|
Li T, Jin Y, Wu J, Ren Z. Beyond energy provider: multifunction of lipid droplets in embryonic development. Biol Res 2023; 56:38. [PMID: 37438836 DOI: 10.1186/s40659-023-00449-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023] Open
Abstract
Since the discovery, lipid droplets (LDs) have been recognized to be sites of cellular energy reserves, providing energy when necessary to sustain cellular life activities. Many studies have reported large numbers of LDs in eggs and early embryos from insects to mammals. The questions of how LDs are formed, what role they play, and what their significance is for embryonic development have been attracting the attention of researchers. Studies in recent years have revealed that in addition to providing energy for embryonic development, LDs in eggs and embryos also function to resist lipotoxicity, resist oxidative stress, inhibit bacterial infection, and provide lipid and membrane components for embryonic development. Removal of LDs from fertilized eggs or early embryos artificially leads to embryonic developmental arrest and defects. This paper reviews recent studies to explain the role and effect mechanisms of LDs in the embryonic development of several species and the genes involved in the regulation. The review contributes to understanding the embryonic development mechanism and provides new insight for the diagnosis and treatment of diseases related to embryonic developmental abnormalities.
Collapse
Affiliation(s)
- Tai Li
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Jian Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
10
|
Rabel RAC, Marchioretto PV, Bangert EA, Wilson K, Milner DJ, Wheeler MB. Pre-Implantation Bovine Embryo Evaluation-From Optics to Omics and Beyond. Animals (Basel) 2023; 13:2102. [PMID: 37443900 DOI: 10.3390/ani13132102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
Approximately 80% of the ~1.5 million bovine embryos transferred in 2021 were in vitro produced. However, only ~27% of the transferred IVP embryos will result in live births. The ~73% pregnancy failures are partly due to transferring poor-quality embryos, a result of erroneous stereomicroscopy-based morphological evaluation, the current method of choice for pre-transfer embryo evaluation. Numerous microscopic (e.g., differential interference contrast, electron, fluorescent, time-lapse, and artificial-intelligence-based microscopy) and non-microscopic (e.g., genomics, transcriptomics, epigenomics, proteomics, metabolomics, and nuclear magnetic resonance) methodologies have been tested to find an embryo evaluation technique that is superior to morphologic evaluation. Many of these research tools can accurately determine embryo quality/viability; however, most are invasive, expensive, laborious, technically sophisticated, and/or time-consuming, making them futile in the context of in-field embryo evaluation. However accurate they may be, using complex methods, such as RNA sequencing, SNP chips, mass spectrometry, and multiphoton microscopy, at thousands of embryo production/collection facilities is impractical. Therefore, future research is warranted to innovate field-friendly, simple benchtop tests using findings already available, particularly from omics-based research methodologies. Time-lapse monitoring and artificial-intelligence-based automated image analysis also have the potential for accurate embryo evaluation; however, further research is warranted to innovate economically feasible options for in-field applications.
Collapse
Affiliation(s)
- R A Chanaka Rabel
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paula V Marchioretto
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Elizabeth A Bangert
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kenneth Wilson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Derek J Milner
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Matthew B Wheeler
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
11
|
Lipinska P, Pawlak P, Warzych E. Species and embryo genome origin affect lipid droplets in preimplantation embryos. Front Cell Dev Biol 2023; 11:1187832. [PMID: 37250899 PMCID: PMC10217358 DOI: 10.3389/fcell.2023.1187832] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Mammalian embryo development is affected by multiple metabolism processes, among which energy metabolism seems to be crucial. Therefore the ability and the scale of lipids storage in different preimplantation stages might affect embryos quality. The aim of the present studies was to show a complex characterization of lipid droplets (LD) during subsequent embryo developmental stages. It was performed on two species (bovine and porcine) as well as on embryos with different embryo origin [after in vitro fertilization (IVF) and after parthenogenetic activation (PA)]. Embryos after IVF/PA were collected at precise time points of development at the following stages: zygote, 2-cell, 4-cell, 8/16-cell, morula, early blastocyst, expanded blastocyst. LD were stained with BODIPY 493/503 dye, embryos were visualized under a confocal microscope and images were analyzed with the ImageJ Fiji software. The following parameters were analyzed: lipid content, LD number, LD size and LD area within the total embryo. The most important results show that lipid parameters in the IVF vs. PA bovine embryos differ at the most crucial moments of embryonic development (zygote, 8-16-cell, blastocyst), indicating possible dysregulations of lipid metabolism in PA embryos. When bovine vs. porcine species are compared, we observe higher lipid content around EGA stage and lower lipid content at the blastocyst stage for bovine embryos, which indicates different demand for energy depending on the species. We conclude that lipid droplets parameters significantly differ among developmental stages and between species but also can be affected by the genome origin.
Collapse
|
12
|
Jian O, MengXia N, Shiyu X, QingXia M, QinYan Z, Jie D, Wei W, Jiaojiao W, Hong L, Yining H. MiR-145 is upregulated in the retarded preimplantation embryos and modulates cholesterol levels in mice preimplantation embryos through targeting Abca1. Reprod Biol Endocrinol 2022; 20:168. [PMID: 36510317 PMCID: PMC9743540 DOI: 10.1186/s12958-022-01044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Preimplantation embryonic lethality is a driver of female infertility. Certain microRNAs (miRNAs) have previously been demonstrated to play important roles in the regulation of embryogenesis. METHODS Normally developing blastocysts and arrested embryos were collected from patients undergoing intracytoplasmic sperm injection (ICSI), and the expression of specific miRNAs therein was evaluated by qPCR. The overexpression of target molecule miR-145 in early mice embryos was achieved via oocyte microinjection, enabling the subsequent monitoring of how such overexpression impacted embryonic development. Bioinformatics approaches were utilized to identify putative miR-145 target mRNAs, and luciferase reporter assessments were implemented to confirm the ability of miR-145 to regulate Abca1 in HEK293T cells. The functional relationship between miR-145 and Abca1 in the mice's embryonic development was then confirmed through rescue assays. RESULTS Abnormally increased miR-145 expression was observed in patients' arrested embryos, and the exogenous overexpression of this miRNA significantly suppressed mural blastocyst formation. Mechanistically, miR-145 was found to bind to the 3'-untranslated area of the Abca1 mRNA in HK293T cells, thus suppressing its expression and increasing embryonic cholesterol levels. In line with the importance of these cholesterol levels to embryogenesis, the upregulation of Abca1 was sufficient to rescue the observed change in cholesterol levels and the associated retardation of mice embryonic development that occurred in response to the overexpression of miR-145. CONCLUSION The regulatory dynamics of the miR-145/Abca1 axis play an important role in shaping normal embryonic development.
Collapse
Affiliation(s)
- Ou Jian
- Center for Reproduction and Genetics, Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Ni MengXia
- Center for Reproduction and Genetics, Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Xing Shiyu
- Center for Reproduction and Genetics, Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Meng QingXia
- Center for Reproduction and Genetics, Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Zou QinYan
- Center for Reproduction and Genetics, Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Ding Jie
- Center for Reproduction and Genetics, Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Wang Wei
- Center for Reproduction and Genetics, Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Wan Jiaojiao
- Peking Jabrehoo Med-Tech Co., Ltd, No. 19 Tianrong Road, Daxing Bio-medicine Industry Park, Daxing District, Peking, 102629, China
| | - Li Hong
- Center for Reproduction and Genetics, Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China.
| | - Huang Yining
- Peking Jabrehoo Med-Tech Co., Ltd, No. 19 Tianrong Road, Daxing Bio-medicine Industry Park, Daxing District, Peking, 102629, China.
| |
Collapse
|
13
|
Wang X, Wang J, Raza SHA, Deng J, Ma J, Qu X, Yu S, Zhang D, Alshammari AM, Almohaimeed HM, Zan L. Identification of the hub genes related to adipose tissue metabolism of bovine. Front Vet Sci 2022; 9:1014286. [PMID: 36439361 PMCID: PMC9682410 DOI: 10.3389/fvets.2022.1014286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022] Open
Abstract
Due to the demand for high-quality animal protein, there has been consistent interest in how to obtain more high-quality beef. As well-known, the adipose content of beef has a close connection with the taste and quality of beef, and cattle with different energy or protein diet have corresponding effects on the lipid metabolism of beef. Thus, we performed weighted gene co-expression network analysis (WGCNA) with subcutaneous adipose genes from Norwegian red heifers fed different diets to identify hub genes regulating bovine lipid metabolism. For this purpose, the RNA sequencing data of subcutaneous adipose tissue of 12-month-old Norwegian red heifers (n = 48) with different energy or protein levels were selected from the GEO database, and 7,630 genes with the largest variation were selected for WGCNA analysis. Then, three modules were selected as hub genes candidate modules according to the correlation between modules and phenotypes, including pink, magenta and grey60 modules. GO and KEGG enrichment analysis showed that genes were related to metabolism, and participated in Rap, MAPK, AMPK, VEGF signaling pathways, and so forth. Combined gene interaction network analysis using Cytoscape software, eight hub genes of lipid metabolism were identified, including TIA1, LOC516108, SNAPC4, CPSF2, ZNF574, CLASRP, MED15 and U2AF2. Further, the expression levels of hub genes in the cattle tissue were also measured to verify the results, and we found hub genes in higher expression in muscle and adipose tissue in adult cattle. In summary, we predicted the key genes of lipid metabolism in the subcutaneous adipose tissue that were affected by the intake of various energy diets to find the hub genes that coordinate lipid metabolism, which provide a theoretical basis for regulating beef quality.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | | | - Jiahan Deng
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Jing Ma
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xiaopeng Qu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Shengchen Yu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Dianqi Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | | | - Hailah M. Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- National Beef Cattle Improvement Center, Northwest A&F University, Xianyang, China
- *Correspondence: Linsen Zan
| |
Collapse
|
14
|
Chen F, Ma B, Lin Y, Luo X, Xu T, Zhang Y, Chen F, Li Y, Zhang Y, Luo B, Zhang Q, Xie X. Comparative maternal protein profiling of mouse biparental and uniparental embryos. Gigascience 2022; 11:6691138. [PMID: 36056732 PMCID: PMC9440387 DOI: 10.1093/gigascience/giac084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 12/25/2022] Open
Abstract
Background Maternal proteins have important roles during early embryonic development. However, our understanding of maternal proteins is still very limited. The integrated analysis of mouse uniparental (parthenogenetic) and biparental (fertilized) embryos at the protein level creates a protein expression landscape that can be used to explore preimplantation mouse development. Results Using label-free quantitative mass spectrometry (MS) analysis, we report on the maternal proteome of mouse parthenogenetic embryos at pronucleus, 2-cell, 4-cell, 8-cell, morula, and blastocyst stages and highlight dynamic changes in protein expression. In addition, comparison of proteomic profiles of parthenogenotes and fertilized embryos highlights the different fates of maternal proteins. Enrichment analysis uncovered a set of maternal proteins that are strongly correlated with the subcortical maternal complex, and we report that in parthenogenotes, some of these maternal proteins escape the fate of protein degradation. Moreover, we identified a new maternal factor-Fbxw24, and highlight its importance in early embryonic development. We report that Fbxw24 interacts with Ddb1-Cul4b and may regulate maternal protein degradation in mouse. Conclusions Our study provides an invaluable resource for mechanistic analysis of maternal proteins and highlights the role of the novel maternal factor Fbw24 in regulating maternal protein degradation during preimplantation embryo development.
Collapse
Affiliation(s)
- Fumei Chen
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Buguo Ma
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China.,Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Yongda Lin
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China.,Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Xin Luo
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Tao Xu
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Yuan Zhang
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Fang Chen
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China.,Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Yanfei Li
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China.,Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Yaoyao Zhang
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China.,Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Bin Luo
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China.,Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Qingmei Zhang
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China.,Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Xiaoxun Xie
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China.,Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| |
Collapse
|
15
|
Li J, Wang R, Chen Q, Tian Y, Gao L, Lei A. Salidroside improves porcine oocyte maturation and subsequent embryonic development by promoting lipid metabolism. Theriogenology 2022; 192:89-96. [DOI: 10.1016/j.theriogenology.2022.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022]
|
16
|
Jia B, Xiang D, Shao Q, Hong Q, Quan G, Wu G. Proteomic Exploration of Porcine Oocytes During Meiotic Maturation in vitro Using an Accurate TMT-Based Quantitative Approach. Front Vet Sci 2022; 8:792869. [PMID: 35198619 PMCID: PMC8859466 DOI: 10.3389/fvets.2021.792869] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/20/2021] [Indexed: 01/19/2023] Open
Abstract
The dynamic changes in protein expression are well known to be required for oocyte meiotic maturation. Although proteomic analysis has been performed in porcine oocytes during in vitro maturation, there is still no full data because of the technical limitations at that time. Here, a novel tandem mass tag (TMT)-based quantitative approach was used to compare the proteomic profiles of porcine immature and in vitro mature oocytes. The results of our study showed that there were 763 proteins considered with significant difference−450 over-expressed and 313 under-expressed proteins. The GO and KEGG analyses revealed multiple regulatory mechanisms of oocyte nuclear and cytoplasmic maturation such as spindle and chromosome configurations, cytoskeletal reconstruction, epigenetic modifications, energy metabolism, signal transduction and others. In addition, 12 proteins identified with high-confidence peptide and related to oocyte maturation were quantified by a parallel reaction monitoring technique to validate the reliability of TMT results. In conclusion, we provided a detailed proteomics dataset to enrich the understanding of molecular characteristics underlying porcine oocyte maturation in vitro.
Collapse
Affiliation(s)
- Baoyu Jia
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Decai Xiang
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qingyong Shao
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qionghua Hong
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Guobo Quan
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
- *Correspondence: Guobo Quan
| | - Guoquan Wu
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
- Guoquan Wu
| |
Collapse
|
17
|
Xiang D, Jia B, Guo J, Shao Q, Hong Q, Wei H, Quan G, Wu G. Transcriptome Analysis of mRNAs and Long Non-Coding RNAs During Subsequent Embryo Development of Porcine Cloned Zygotes After Vitrification. Front Genet 2022; 12:753327. [PMID: 34976007 PMCID: PMC8718616 DOI: 10.3389/fgene.2021.753327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/17/2021] [Indexed: 11/15/2022] Open
Abstract
Cryopreservation of porcine cloned zygotes has important implications for biotechnology and biomedicine research; however, lower embryo developmental potential remains an urgent problem to be resolved. For exploring the sublethal cryodamages during embryo development, this study was designed to acquire the mRNA and long non-coding RNA (lncRNA) profiles of 2-cells, 4-cells and blastocysts derived from vitrified porcine cloned zygotes using transcriptome sequencing. We identified 167 differentially expressed (DE) mRNAs and 516 DE lncRNAs in 2-cell stage, 469 DE mRNAs and 565 lncRNAs in 4-cell stage, and 389 DE mRNAs and 816 DE lncRNAs in blastocyst stage. Functional enrichment analysis revealed that the DE mRNAs during embryo development were involved in many regulatory mechanisms related to cell cycle, cell proliferation, apoptosis, metabolism and others. Moreover, the target genes of DE lncRNAs in the three embryonic stages were also enriched in many key GO terms or pathways such as “defense response”, “linoleic acid metabolic process”, “embryonic axis specification”, “negative regulation of protein neddylation”, etc., In conclusion, the present study provided comprehensive transcriptomic data about mRNAs and lncRNAs for the vitrified porcine cloned zygotes during different developmental stages, which contributed to further understand the potential cryodamage mechanisms responsible for impaired embryo development.
Collapse
Affiliation(s)
- Decai Xiang
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Baoyu Jia
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Jianxiong Guo
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Qingyong Shao
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qionghua Hong
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Hongjiang Wei
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Guobo Quan
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Guoquan Wu
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| |
Collapse
|
18
|
Schall PZ, Latham KE. Cross-species meta-analysis of transcriptome changes during the morula-to-blastocyst transition: metabolic and physiological changes take center stage. Am J Physiol Cell Physiol 2021; 321:C913-C931. [PMID: 34669511 DOI: 10.1152/ajpcell.00318.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The morula-to-blastocyst transition (MBT) culminates with formation of inner cell mass (ICM) and trophectoderm (TE) lineages. Recent studies identified signaling pathways driving lineage specification, but some features of these pathways display significant species divergence. To better understand evolutionary conservation of the MBT, we completed a meta-analysis of RNA sequencing data from five model species and ICMTE differences from four species. Although many genes change in expression during the MBT within any given species, the number of shared differentially expressed genes (DEGs) is comparatively small, and the number of shared ICMTE DEGs is even smaller. DEGs related to known lineage determining pathways (e.g., POU5F1) are seen, but the most prominent pathways and functions associated with shared DEGs or shared across individual species DEG lists impact basic physiological and metabolic activities, such as TCA cycle, unfolded protein response, oxidative phosphorylation, sirtuin signaling, mitotic roles of polo-like kinases, NRF2-mediated oxidative stress, estrogen receptor signaling, apoptosis, necrosis, lipid and fatty acid metabolism, cholesterol biosynthesis, endocytosis, AMPK signaling, homeostasis, transcription, and cell death. We also observed prominent differences in transcriptome regulation between ungulates and nonungulates, particularly for ICM- and TE-enhanced mRNAs. These results extend our understanding of shared mechanisms of the MBT and formation of the ICM and TE and should better inform the selection of model species for particular applications.
Collapse
Affiliation(s)
- Peter Z Schall
- Department of Animal Science, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan.,Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, Michigan
| | - Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan.,Department of Obstetrics, Gynecology, & Reproductive Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
19
|
Ohata K, Ezoe K, Miki T, Kouraba S, Fujiwara N, Yabuuchi A, Kobayashi T, Kato K. Effects of fatty acid supplementation during vitrification and warming on the developmental competence of mouse, bovine and human oocytes and embryos. Reprod Biomed Online 2021; 43:14-25. [PMID: 34049810 DOI: 10.1016/j.rbmo.2021.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 02/05/2023]
Abstract
RESEARCH QUESTION Does fatty acid supplementation in vitrification and warming media influence developmental competence in oocytes after vitrification and warming? DESIGN Mouse oocytes and four-cell embryos were vitrified and warmed with solutions supplemented with fatty acid and cultured to the blastocyst stage. To study lipid metabolism after vitrification, quantitative real-time polymerase chain reaction was used to analyse the expression of genes related to beta oxidation in mouse embryos vitrified and warmed with or without fatty acids. The effects of fatty acid supplementation in the warming solutions on the developmental competence of bovine and human embryos were analysed. Blastocyst outgrowth assay was used to evaluate the potential of human blastocysts for adhesion to fibronectin. RESULTS The neutral lipid content of mouse oocytes in the fatty acid 1% supplementation group was significantly higher than in the fatty acid 0% group (P = 0.0032). The developmental rate to the blastocyst stage was significantly higher in the fatty acid 1% group than in the fatty acid 0% group in mice (P = 0.0345). Fatty acid supplementation in warming solution upregulated Acaa2 and Hadha in mouse embryos. Fatty acids significantly improved the developmental ability of bovine embryos to the blastocyst stage (P = 0.0048). Warming with 1% fatty acid supplementation significantly increased the proportion of human blastocysts with morphological grade A inner cell mass (P = 0.0074) and trophectoderm (P = 0.0323). CONCLUSIONS Fatty acid supplementation in the warming solutions improved the developmental competence of vitrified-warmed mouse oocytes by activating the beta-oxidation pathway. Fatty acid supplementation enhanced the developmental rate of bovine embryos to the blastocyst stage and improved morphological characteristics of human embryos vitrified at the cleavage stage.
Collapse
Affiliation(s)
- Kazuki Ohata
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Tokyo Shinjuku-ku 160-0023, Japan
| | - Kenji Ezoe
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Tokyo Shinjuku-ku 160-0023, Japan.
| | - Tetsuya Miki
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Tokyo Shinjuku-ku 160-0023, Japan
| | - Shizu Kouraba
- Towako Medical Research Center, 2-5-2 Asahidai, Ishikawa Nomi-shi 923-1211, Japan
| | - Nanoha Fujiwara
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Tokyo Shinjuku-ku 160-0023, Japan
| | - Akiko Yabuuchi
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Tokyo Shinjuku-ku 160-0023, Japan
| | - Tamotsu Kobayashi
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Tokyo Shinjuku-ku 160-0023, Japan
| | - Keiichi Kato
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Tokyo Shinjuku-ku 160-0023, Japan.
| |
Collapse
|
20
|
Almubarak AM, Kim E, Yu IJ, Jeon Y. Supplementation with Niacin during in vitro maturation improves the quality of porcine embryos. Theriogenology 2021; 169:36-46. [PMID: 33932650 DOI: 10.1016/j.theriogenology.2021.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 01/17/2023]
Abstract
Niacin, also known as vitamin B3, has a pivotal role in energy metabolism, cellular signaling cascades regulating gene expression, and apoptosis. However, the effect of Niacin on porcine early embryo developmental competence remains to be elucidated. The present study aimed to assess the effects of Niacin treatment during in vitro maturation (IVM) on the nuclear maturation of porcine oocytes and subsequent development of in vitro embryos. In addition, the expression profiles of selected genes related to lipid metabolism, oxidative stress, and apoptosis were assessed. The IVM medium was supplemented with different concentrations of Niacin (0, 300, 600, and 900 μM). The results showed that a high concentration of Niacin (900 μM) significantly decreased cumulus expansion compared to the other groups (p < 0.05). No significant difference was observed among the experimental groups for nuclear maturation rate. Niacin treatments (300, 600, and 900 μM) during IVM significantly (p < 0.05) enhanced glutathione levels. Treatment with 300 and 600 μM significantly (p < 0.05) lowered the reactive oxygen species levels compared to treatment with 900 μM and the control group. Niacin supplementation to the IVM media significantly improved the cleavage and blastocyst rates compared to the control group. Supplementation with 300 and 600 μM of Niacin significantly increased the total cell number of blastocysts compared to supplementation with 900 μM or the control groups. Cytoplasmic lipid droplets were significantly reduced after 600 μM treatment. Supplementation of Niacin to IVM media positively affected the relative expression of genes related to energy and oxidative status (SIRT1), pro-apoptosis (BAX), anti-apoptosis (BCL2), and lipid metabolism (ACACA and PNPLA2) in cumulus cells and oocytes. Taken together, Niacin supplementation to porcine IVM media improved the developmental competence of early embryos mainly through protection against oxidative stress and its influence on energy metabolism and apoptosis pathways.
Collapse
Affiliation(s)
- Areeg M Almubarak
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea; Department of Veterinary Medicine and Animal Surgery, College of Veterinary Medicine, Sudan University of Science and Technology, Khartoum North, Khartoum, 11111, Sudan
| | - Eunji Kim
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Il-Jeoung Yu
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| | - Yubyeol Jeon
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|