1
|
Olender D, Kujawski J, Skóra B, Baranowska-Wójcik E, Sowa-Kasprzak K, Pawełczyk A, Zaprutko L, Szwajgier D, Szychowski KA. Bis-chalcones obtained via one-pot synthesis as the anti-neurodegenerative agents and their effect on the HT-22 cell line. Heliyon 2024; 10:e37147. [PMID: 39286165 PMCID: PMC11403034 DOI: 10.1016/j.heliyon.2024.e37147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
In the area of research on neurodegenerative diseases, the current challenge is to search for appropriate research methods that would detect these diseases at the earliest possible stage, but also new active structures that would reduce the rate of the disease progression and minimize the intensity of their symptoms experienced by the patient. The chalcones are considered in the context of candidates for new drugs dedicated to the fight against neurodegenerative diseases. The synthesis of bis-chalcone derivatives (3a-3d), as aim molecules was performed. Their structures were established by applying 1H NMR, 13C NMR, MS, FT-IR and UV-Vis spectra. All bis-chalcones were synthesized from terephthalaldehyde and appropriate aromatic ketone as substrates in the Claisen-Schmidt condensation method and evaluated in the biological tests and in silico analysis. Compounds exerted antioxidant activity using the HORAC method (3a-3d) and decreased the activities of GPx, COX-2 (3b-3d), GR (3a-3c) and CAT (3a,3b). The high anti-neurodegenerative potential of all four bis-chalcones was observed by inhibition of acetyl- (AChE) and butyrylcholinesterase (BChE) and a positive effect on the mouse hippocampal neuronal HT-22 cell line (LDH release and PGC-1α, PPARγ and GAPDH protein expression). TD-DFT method (computing a number of descriptors associated with HOMO-LUMO electron transition: electronegativity, chemical hardness and potential, first ionization potential, electron affinity) was employed to study the spectroscopic properties. This method showed that the first excited state of compounds was consistent with their maximum absorption in the computed UV-Vis spectra, which showed good agreement with the experimental spectrum using PBE1PBE functional. Using in silico approach, interactions of bis-chalcones with selected targets (aryl hydrocarbon receptor (AhR) PAS-A Domain, ligand binding domain of human PPAR-γ, soman-aged human BChE-butyrylthiocholine complex, Torpedo californica AChE:N-piperidinopropyl-galanthamine complex and the COX-2-celecoxib complex) were characterized. Results obtained in in silico models were consistent with in vitro experiments.
Collapse
Affiliation(s)
- Dorota Olender
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Jacek Kujawski
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszów, Poland
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704, Lublin, Poland
| | - Katarzyna Sowa-Kasprzak
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Anna Pawełczyk
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Lucjusz Zaprutko
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704, Lublin, Poland
| | - Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszów, Poland
| |
Collapse
|
2
|
Zhong S, Borlak J. Sex differences in the tumor promoting effects of tobacco smoke in a cRaf transgenic lung cancer disease model. Arch Toxicol 2024; 98:957-983. [PMID: 38245882 PMCID: PMC10861769 DOI: 10.1007/s00204-023-03671-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
Tobacco smoke (TS) is the leading cause for lung cancer (LC), and female smokers are at a greater risk for LC. Yet, the underlying causes are unknown. We performed whole genome scans in TS exposed wild type and histologically characterized tumor lesions of cRaf transgenic mice. We constructed miRNA-gene and transcription factor-miRNA/gene regulatory networks and determined sex-specific gene regulations by evaluating hormone receptor activities. We validated the findings from TS exposed cRaf mice in a large cohort of smoking and never-smoking LC patients. When compared to males, TS prompted a sevenfold increase in tumor multiplicity in cRaf females. Genome-wide scans of tumor lesions identified 161 and 53 genes and miRNAs, which code for EGFR/MAPK signaling, cell proliferation, oncomirs and oncogenes, and 50% of DEGs code for immune response and tumor evasion. Outstandingly, in transgenic males, TS elicited upregulation of 20 tumor suppressors, some of which are the targets of the androgen and estrogen receptor. Conversely, in females, 18 tumor suppressors were downregulated, and five were specifically repressed by the estrogen receptor. We found TS to perturb the circadian clock in a sex-specific manner and identified a female-specific regulatory loop that consisted of the estrogen receptor, miR-22-3p and circadian genes to support LC growth. Finally, we confirmed sex-dependent tumor promoting effects of TS in a large cohort of LC patients. Our study highlights the sex-dependent genomic responses to TS and the interplay of circadian clock genes and hormone receptors in the regulation of oncogenes and oncomirs in LC growth.
Collapse
Affiliation(s)
- Shen Zhong
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
3
|
Haidar R, Shabo R, Moeser M, Luch A, Kugler J. The nuclear entry of the aryl hydrocarbon receptor (AHR) relies on the first nuclear localization signal and can be negatively regulated through IMPα/β specific inhibitors. Sci Rep 2023; 13:19668. [PMID: 37951956 PMCID: PMC10640566 DOI: 10.1038/s41598-023-47066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
The human aryl hydrocarbon receptor (AHR) undergoes continuous shuttling between nucleus and cytoplasm. Binding to exogenous or endogenous ligands promotes its rapid nuclear import. The proposed mechanism for the ligand-dependent import is based on exposing the bipartite nuclear localisation signal (NLS) to members of the importin (IMP) superfamily. Among this, the molecular interactions involved in the basal import still need to be clarified. Utilizing fluorescently fused AHR variants, we recapitulated and characterized AHR localization and nucleo-cytoplasmic shuttling in living cells. Analysis of AHR variants carrying NLS point mutations demonstrated a mandatory role of first (13RKRRK17) and second (37KR-R40) NLS segments on the basal import of AHR. Further experiments indicated that ligand-induced import is mainly regulated through the first NLS, while the second NLS is supportive but not essential. Additionally, applying IMPα/β specific inhibitors, ivermectin (IVM) and importazole (IPZ), slowed down the ligand-induced import and, correspondingly, decreased the basal nuclear accumulation of the receptor. In conclusion, our data show that ligand-induced and basal nuclear entry of AHR rely on the same mechanism but are controlled uniquely by the two NLS components.
Collapse
Affiliation(s)
- Rashad Haidar
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
- Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - Reneh Shabo
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Marie Moeser
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Josephine Kugler
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
4
|
Wu J, Duan C, Yang Y, Wang Z, Tan C, Han C, Hou X. Insights into the liver-eyes connections, from epidemiological, mechanical studies to clinical translation. J Transl Med 2023; 21:712. [PMID: 37817192 PMCID: PMC10566185 DOI: 10.1186/s12967-023-04543-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/19/2023] [Indexed: 10/12/2023] Open
Abstract
Maintenance of internal homeostasis is a sophisticated process, during which almost all organs get involved. Liver plays a central role in metabolism and involves in endocrine, immunity, detoxification and storage, and therefore it communicates with distant organs through such mechanisms to regulate pathophysiological processes. Dysfunctional liver is often accompanied by pathological phenotypes of distant organs, including the eyes. Many reviews have focused on crosstalk between the liver and gut, the liver and brain, the liver and heart, the liver and kidney, but with no attention paid to the liver and eyes. In this review, we summarized intimate connections between the liver and the eyes from three aspects. Epidemiologically, we suggest liver-related, potential, protective and risk factors for typical eye disease as well as eye indicators connected with liver status. For molecular mechanism aspect, we elaborate their inter-organ crosstalk from metabolism (glucose, lipid, proteins, vitamin, and mineral), detoxification (ammonia and bilirubin), and immunity (complement and inflammation regulation) aspect. In clinical application part, we emphasize the latest advances in utilizing the liver-eye axis in disease diagnosis and therapy, involving artificial intelligence-deep learning-based novel diagnostic tools for detecting liver disease and adeno-associated viral vector-based gene therapy method for curing blinding eye disease. We aim to focus on and provide novel insights into liver and eyes communications and help resolve existed clinically significant issues.
Collapse
Affiliation(s)
- Junhao Wu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Caihan Duan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Yuanfan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhe Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Chen Tan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Chaoqun Han
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| |
Collapse
|
5
|
Fitriana I, Wu CH, Hsu TJ, Chan YJ, Li CH, Lee CC, Hsiao G, Cheng YW. Activation of aryl hydrocarbon receptor by azatyrosine-phenylbutyric hydroxamide inhibits progression of diabetic retinopathy mice. Biochem Pharmacol 2023; 215:115700. [PMID: 37482199 DOI: 10.1016/j.bcp.2023.115700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Diabetic retinopathy (DR) is a severe consequence of long-term diabetes mellitus and may lead to vision loss. Retinal pigment epithelial (RPE) cells are a diverse group of retinal cells with varied metabolic and functional roles. In hypoxic conditions, RPE cells have been shown to produce angiogenic factors, such as vascular endothelial growth factor (VEGF), which is regulated by hypoxia-inducible factor 1-alpha (HIF1A). VEGF plays a crucial role in angiogenesis in DR. In the present study, we investigated whether azatyrosine-phenylbutyric hydroxamide (AZP) has therapeutic effect on DR therapy. In this study, we treated high glucose-activated human retinal pigment epithelial cells (ARPE-19) with and without AZP. The effector proteins were evaluated using western blotting. In the in vivo study, AZP was administered to the db/db mice as a DR animal model. Moreover, invasive imaging techniques such as optical coherence tomography (OCT), fundus photography, and fundus fluorescein angiography (FFA) were performed on the mice to assess DR progression. We found that treatment of AZP for 12 weeks reversed increasing DR retinal alterations in db/db mice, decreasing vascular density, retinal blood perfusion, retinal thickness, decreasing DR lesion, lipofuscin accumulation, HIF1A, VEGF, and inflammation factor expression. In addition, AZP treatment could activate the aryl hydrocarbon receptor AHR and reverse the high-glucose-induced HIF1A and VEGF in ARPE-19 cells and db/db mice. In conclusion, AZP activated AHR while inhibiting HIF1A and VEGF. This study indicates that AZP may be a promising therapeutic agent for treating DR.
Collapse
Affiliation(s)
- Ida Fitriana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Chia-Hua Wu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Tai-Ju Hsu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Yen-Ju Chan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Hao Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chen-Chen Lee
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - George Hsiao
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan.
| |
Collapse
|
6
|
Lee WJ, Lin KH, Wang JS, Sheu WHH, Shen CC, Yang CN, Wu SM, Shen LW, Lee SH, Lai DW, Lan KL, Tung CW, Liu SH, Sheu ML. Aryl hydrocarbon receptor deficiency augments dysregulated microangiogenesis and diabetic retinopathy. Biomed Pharmacother 2022; 155:113725. [PMID: 36152407 DOI: 10.1016/j.biopha.2022.113725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022] Open
Abstract
Diabetic retinopathy (DR) is a pathophysiologic vasculopathic process with obscure mechanisms and limited effective therapeutic strategies. Aryl hydrocarbon receptor (AhR) is an important regulator of xenobiotic metabolism and an environmental sensor. The aim of the present study was to investigate the role of AhR in the development of DR and elucidate the molecular mechanism of its downregulation. DR was evaluated in diabetes-induced retinal injury in wild type and AhR knockout (AhR-/-) mice. Retinal expression of AhR was determined in human donor and mice eyes by immunofluorescence since AhR activity was examined in diabetes. AhR knockout (AhRKO) mice were used to induce diabetes with streptozotocin, high-fat diet, or genetic double knockout with diabetes spontaneous mutation (Leprdb) (DKO; AhR-/-×Leprdb/db) for investigating structural, functional, and metabolic abnormalities in vascular and epithelial retina. Structural molecular docking simulation was used to survey the pharmacologic AhR agonists targeting phosphorylated AhR (Tyr245). Compared to diabetic control mice, diabetic AhRKO mice had aggravated alterations in retinal vasculature that amplified hallmark features of DR like vasopermeability, vascular leakage, inflammation, blood-retinal barrier breakdown, capillary degeneration, and neovascularization. AhR agonists effectively inhibited inflammasome formation and promoted AhR activity in human retinal microvascular endothelial cells and pigment epithelial cells. AhR activity and protein expression was downregulated, resulting in a decrease in DNA promoter binding site of pigment epithelium-derived factor (PEDF) by gene regulation in transcriptional cascade. This was reversed by AhR agonists. Our study identified a novel of DR model that target the protective AhR/PEDF axis can potentially maintain retinal vascular homeostasis, providing opportunities to delay the development of DR.
Collapse
Affiliation(s)
- Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taiwan
| | - Keng-Hung Lin
- Department of Ophthalmology, Taichung Veterans General Hospital, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jun-Sing Wang
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan; Division of Endocrinology and Metabolism, Taichung Veterans General Hospital, Taiwan; Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wayne Huey-Herng Sheu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Veterans General Hospital, Taiwan
| | - Chin-Chang Shen
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Cheng-Ning Yang
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sheng-Mao Wu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Li-Wei Shen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Hua Lee
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - De-Wei Lai
- Experimental Animal Center, Department of Molecular Biology and Cell Research, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Keng-Li Lan
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Meei-Ling Sheu
- Department of Medical Research, Taichung Veterans General Hospital, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan; Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
7
|
Peavey J, Parmar VM, Malek G. Nuclear Receptor Atlases of Choroidal Tissues Reveal Candidate Receptors Associated with Age-Related Macular Degeneration. Cells 2022; 11:2386. [PMID: 35954227 PMCID: PMC9367936 DOI: 10.3390/cells11152386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/06/2022] [Accepted: 07/28/2022] [Indexed: 01/27/2023] Open
Abstract
The choroid is a vulnerable tissue site in the eye, impacted in several blinding diseases including age related macular degeneration (AMD), which is the leading cause of central vision loss in the aging population. Choroidal thinning and choriocapillary dropout are features of the early form of AMD, and endothelial dysfunction and vascular changes are primary characteristics of the neovascular clinical sub-type of AMD. Given the importance, the choroidal endothelium and outer vasculature play in supporting visual function, a better understanding of baseline choroidal signaling pathways engaged in tissue and cellular homeostasis is needed. Nuclear receptors are a large family of transcription factors responsible for maintaining various cellular processes during development, aging and disease. Herein we developed a comprehensive nuclear receptor atlas of human choroidal endothelial cells and freshly isolated choroidal tissue by examining the expression levels of all members of this transcription family using quantitative real time PCR. Given the close relationship between the choroid and retinal pigment epithelium (RPE), this data was cross-referenced with the expression profile of nuclear receptors in human RPE cells, to discover potential overlap versus cell-specific nuclear receptor expression. Finally, to identify candidate receptors that may participate in the pathobiology of AMD, we cataloged nuclear receptor expression in a murine model of wet AMD, from which we discovered a subset of nuclear receptors differentially regulated following neovascularization. Overall, these databases serve as useful resources establishing the influence of nuclear receptor signaling pathways on the outer vascular tissue of the eye, while providing a list of receptors, for more focused investigations in the future, to determine their suitability as potential therapeutic targets for diseases, in which the choroid is affected.
Collapse
Affiliation(s)
- Jeremy Peavey
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA; (J.P.); (V.M.P.)
| | - Vipul M. Parmar
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA; (J.P.); (V.M.P.)
| | - Goldis Malek
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA; (J.P.); (V.M.P.)
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
8
|
Grishanova AY, Perepechaeva ML. Aryl Hydrocarbon Receptor in Oxidative Stress as a Double Agent and Its Biological and Therapeutic Significance. Int J Mol Sci 2022; 23:6719. [PMID: 35743162 PMCID: PMC9224361 DOI: 10.3390/ijms23126719] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) has long been implicated in the induction of a battery of genes involved in the metabolism of xenobiotics and endogenous compounds. AhR is a ligand-activated transcription factor necessary for the launch of transcriptional responses important in health and disease. In past decades, evidence has accumulated that AhR is associated with the cellular response to oxidative stress, and this property of AhR must be taken into account during investigations into a mechanism of action of xenobiotics that is able to activate AhR or that is susceptible to metabolic activation by enzymes encoded by the genes that are under the control of AhR. In this review, we examine various mechanisms by which AhR takes part in the oxidative-stress response, including antioxidant and prooxidant enzymes and cytochrome P450. We also show that AhR, as a participant in the redox balance and as a modulator of redox signals, is being increasingly studied as a target for a new class of therapeutic compounds and as an explanation for the pathogenesis of some disorders.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Federal Research Center of Fundamental and Translational Medicine, Institute of Molecular Biology and Biophysics, Timakova Str. 2, 630117 Novosibirsk, Russia;
| |
Collapse
|
9
|
Hammond CL, Roztocil E, Gupta V, Feldon SE, Woeller CF. More than Meets the Eye: The Aryl Hydrocarbon Receptor is an Environmental Sensor, Physiological Regulator and a Therapeutic Target in Ocular Disease. FRONTIERS IN TOXICOLOGY 2022; 4:791082. [PMID: 35295218 PMCID: PMC8915869 DOI: 10.3389/ftox.2022.791082] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/08/2022] [Indexed: 12/22/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor originally identified as an environmental sensor of xenobiotic chemicals. However, studies have revealed that the AHR regulates crucial aspects of cell growth and metabolism, development and the immune system. The importance of the AHR and AHR signaling in eye development, toxicology and disease is now being uncovered. The AHR is expressed in many ocular tissues including the retina, choroid, cornea and the orbit. A significant role for the AHR in age-related macular degeneration (AMD), autoimmune uveitis, and other ocular diseases has been identified. Ligands for the AHR are structurally diverse organic molecules from exogenous and endogenous sources. Natural AHR ligands include metabolites of tryptophan and byproducts of the microbiome. Xenobiotic AHR ligands include persistent environmental pollutants such as dioxins, benzo (a) pyrene [B (a) P] and polychlorinated biphenyls (PCBs). Pharmaceutical agents including the proton pump inhibitors, esomeprazole and lansoprazole, and the immunosuppressive drug, leflunomide, activate the AHR. In this review, we highlight the role of the AHR in the eye and discuss how AHR signaling is involved in responding to endogenous and environmental stimuli. We also present the emerging concept that the AHR is a promising therapeutic target for eye disease.
Collapse
Affiliation(s)
| | | | | | | | - Collynn F. Woeller
- Flaum Eye Institute, Rochester, NY, United States
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
- *Correspondence: Collynn F. Woeller,
| |
Collapse
|
10
|
Rajendran R, Ragavan RP, Al-Sehemi AG, Uddin MS, Aleya L, Mathew B. Current understandings and perspectives of petroleum hydrocarbons in Alzheimer's disease and Parkinson's disease: a global concern. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10928-10949. [PMID: 35000177 DOI: 10.1007/s11356-021-17931-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Over the last few decades, the global prevalence of neurodevelopmental and neurodegenerative illnesses has risen rapidly. Although the aetiology remains unclear, evidence is mounting that exposure to persistent hydrocarbon pollutants is a substantial risk factor, predisposing a person to neurological diseases later in life. Epidemiological studies correlate environmental hydrocarbon exposure to brain disorders including neuropathies, cognitive, motor and sensory impairments; neurodevelopmental disorders like autism spectrum disorder (ASD); and neurodegenerative disorders like Alzheimer's disease (AD) and Parkinson's disease (PD). Particulate matter, benzene, toluene, ethylbenzene, xylenes, polycyclic aromatic hydrocarbons and endocrine-disrupting chemicals have all been linked to neurodevelopmental problems in all class of people. There is mounting evidence that supports the prevalence of petroleum hydrocarbon becoming neurotoxic and being involved in the pathogenesis of AD and PD. More study is needed to fully comprehend the scope of these problems in the context of unconventional oil and natural gas. This review summarises in vitro, animal and epidemiological research on the genesis of neurodegenerative disorders, highlighting evidence that supports inexorable role of hazardous hydrocarbon exposure in the pathophysiology of AD and PD. In this review, we offer a summary of the existing evidence gathered through a Medline literature search of systematic reviews and meta-analyses of the most important epidemiological studies published so far.
Collapse
Affiliation(s)
- Rajalakshmi Rajendran
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Roshni Pushpa Ragavan
- Research Center for Advanced Materials Science, King Khalid University, Abha, 61413, Saudi Arabia.
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science, King Khalid University, Abha, 61413, Saudi Arabia
- Department of Chemistry, King Khalid University, Abha, 61413, Saudi Arabia
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Lotfi Aleya
- Laboratoire Chrono-Environment, CNRS6249, Universite de Bourgogne Franche-Comte, Besancon, France
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, India.
| |
Collapse
|
11
|
Matysik-Woźniak A, Wnorowski A, Turski WA, Jóźwiak K, Rejdak R, Jünemann A. Evidence against involvement of kynurenate branch of kynurenine pathway in pathophysiology of Fuchs' dystrophy and keratoconus. Exp Eye Res 2022; 216:108959. [PMID: 35074345 DOI: 10.1016/j.exer.2022.108959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022]
Abstract
Kynurenine aminotransferases (KAT) are enzymes catalyzing formation of kynurenic acid (KYNA) from kynurenine. KYNA is a Janus-faced molecule of high biological activity. On the one hand KYNA was identified as a UV filter and neuroprotectant with free radical scavenging properties, but on the other hand it may contribute to photodamage of lens proteins resulting in cataract formation. Fuchs endothelial corneal dystrophy (FECD) and keratoconus (KC) are common, vision threatening corneal dystrophies whose etiology is not fully understood. In our previous works, we confirmed the presence of KATs in the human cornea together with GPR35, a receptor for KYNA. This prompted us to investigate the potential changes in the expression of three isoforms: KAT I, KAT II, and KAT III in normal and FECD- and KC-affected corneas. Immunohistochemistry accompanied by gene expression data mining revealed that the levels of neither KAT I, KAT II, nor KAT III are affected in FECD and KC. This constitutes evidence against the involvement of KATs in the pathophysiology of FECD and KC.
Collapse
Affiliation(s)
- Anna Matysik-Woźniak
- Department of General Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079, Lublin, Poland.
| | - Artur Wnorowski
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4A, 20-093, Lublin, Poland.
| | - Waldemar A Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, K. Jaczewskiego 8b, 20-090, Lublin, Poland.
| | - Krzysztof Jóźwiak
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4A, 20-093, Lublin, Poland.
| | - Robert Rejdak
- Department of General Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079, Lublin, Poland.
| | - Anselm Jünemann
- Department of General Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079, Lublin, Poland.
| |
Collapse
|
12
|
Pham N, Miller MD, Marty M. Using High-Throughput Screening to Evaluate Perturbations Potentially Linked to Neurobehavioral Outcomes: A Case Study Using Publicly Available Tools on FDA Batch-Certified Synthetic Food Dyes. Chem Res Toxicol 2021; 34:2319-2330. [PMID: 34705446 DOI: 10.1021/acs.chemrestox.1c00205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is growing evidence from human and animal studies indicating an association between exposure to synthetic food dyes and adverse neurobehavioral outcomes in children. However, data gaps persist for potential mechanisms by which the synthetic food dyes could elicit neurobehavioral impacts. We developed an approach to evaluate seven US FDA-batch-certified food dyes using publicly available high-throughput screening (HTS) data from the US EPA's Toxicity Forecaster to assess potential underlying molecular mechanisms that may be linked to neurological pathway perturbations. The dyes were screened through 270 assays identified based on whether they had a neurological-related gene target and/or were mapped to neurodevelopmental processes or neurobehavioral outcomes, and were conducted in brain tissue, targeted specific hormone receptors, or targeted oxidative stress and inflammation. Some results provided support for neurological impacts found in human and animal studies, while other results showed a lack of correlation with in vivo findings. The azo dyes had a range of activity in assays mapped to G-protein-coupled receptors and were active in assays targeting dopaminergic, serotonergic, and opioid receptors. Assays mapped to nuclear receptors (androgen, estrogen, and thyroid hormone) also exhibited activity with the food dyes. Other molecular targets included the aryl hydrocarbon receptor, acetylcholinesterase, and monoamine oxidase. The Toxicological Prioritization Index tool was used to visualize the results of the Novascreen assays. Our results highlight certain limitations of HTS assays but provide insight into potential underlying mechanisms of neurobehavioral effects observed in in vivo animal toxicology studies and human clinical studies.
Collapse
Affiliation(s)
- Nathalie Pham
- California Environmental Protection Agency (CalEPA) Office of Environmental Health Hazard Assessment (OEHHA), Sacramento, California 95814, United States
| | - Mark D Miller
- CalEPA OEHHA, Oakland, California 94612, United States
| | - Melanie Marty
- California Environmental Protection Agency (CalEPA) Office of Environmental Health Hazard Assessment (OEHHA), Sacramento, California 95814, United States
| |
Collapse
|
13
|
Influence of the Aryl Hydrocarbon Receptor Activating Environmental Pollutants on Autism Spectrum Disorder. Int J Mol Sci 2021; 22:ijms22179258. [PMID: 34502168 PMCID: PMC8431328 DOI: 10.3390/ijms22179258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is an umbrella term that includes many different disorders that affect the development, communication, and behavior of an individual. Prevalence of ASD has risen exponentially in the past couple of decades. ASD has a complex etiology and traditionally recognized risk factors only account for a small percentage of incidence of the disorder. Recent studies have examined factors beyond the conventional risk factors (e.g., environmental pollution). There has been an increase in air pollution since the beginning of industrialization. Most environmental pollutants cause toxicities through activation of several cellular receptors, such as the aryl hydrocarbon receptor (AhR)/cytochrome P450 (CYPs) pathway. There is little research on the involvement of AhR in contributing to ASD. Although a few reviews have discussed and addressed the link between increased prevalence of ASD and exposure to environmental pollutants, the mechanism governing this effect, specifically the role of AhR in ASD development and the molecular mechanisms involved, have not been discussed or reviewed before. This article reviews the state of knowledge regarding the impact of the AhR/CYP pathway modulation upon exposure to environmental pollutants on ASD risk, incidence, and development. It also explores the molecular mechanisms involved, such as epigenesis and polymorphism. In addition, the review explores possible new AhR-mediated mechanisms of several drugs used for treatment of ASD, such as sulforaphane, resveratrol, haloperidol, and metformin.
Collapse
|
14
|
Kynurenic Acid Accelerates Healing of Corneal Epithelium In Vitro and In Vivo. Pharmaceuticals (Basel) 2021; 14:ph14080753. [PMID: 34451850 PMCID: PMC8398234 DOI: 10.3390/ph14080753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Kynurenic acid (KYNA) is an endogenous compound with a multidirectional effect. It possesses antiapoptotic, anti-inflammatory, and antioxidative properties that may be beneficial in the treatment of corneal injuries. Moreover, KYNA has been used successfully to improve the healing outcome of skin wounds. The aim of the present study is to evaluate the effects of KYNA on corneal and conjunctival cells in vitro and the re-epithelization of corneal erosion in rabbits in vivo. Normal human corneal epithelial cell (10.014 pRSV-T) and conjunctival epithelial cell (HC0597) lines were used. Cellular metabolism, cell viability, transwell migration, and the secretion of IL-1β, IL-6, and IL-10 were determined. In rabbits, after corneal de-epithelization, eye drops containing 0.002% and 1% KYNA were applied five times a day until full recovery. KYNA decreased metabolism but did not affect the proliferation of the corneal epithelium. It decreased both the metabolism and proliferation of conjunctival epithelium. KYNA enhanced the migration of corneal but not conjunctival epithelial cells. KYNA reduced the secretion of IL-1β and IL-6 from the corneal epithelium, leaving IL-10 secretion unaffected. The release of all studied cytokines from the conjunctival epithelium exposed to KYNA was unchanged. KYNA at higher concentration accelerated the healing of the corneal epithelium. These favorable properties of KYNA suggest that KYNA containing topical pharmaceutical products can be used in the treatment of ocular surface diseases.
Collapse
|
15
|
Su KM, Gao HW, Chang CM, Lu KH, Yu MH, Lin YH, Liu LC, Chang CC, Li YF, Chang CC. Synergistic AHR Binding Pathway with EMT Effects on Serous Ovarian Tumors Recognized by Multidisciplinary Integrated Analysis. Biomedicines 2021; 9:866. [PMID: 34440070 PMCID: PMC8389648 DOI: 10.3390/biomedicines9080866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelial ovarian cancers (EOCs) are fatal and obstinate among gynecological malignancies in advanced stage or relapsed status, with serous carcinomas accounting for the vast majority. Unlike EOCs, borderline ovarian tumors (BOTs), including serous BOTs, maintain a semimalignant appearance. Using gene ontology (GO)-based integrative analysis, we analyzed gene set databases of serous BOTs and serous ovarian carcinomas for dysregulated GO terms and pathways and identified multiple differentially expressed genes (DEGs) in various aspects. The SRC (SRC proto-oncogene, non-receptor tyrosine kinase) gene and dysfunctional aryl hydrocarbon receptor (AHR) binding pathway consistently influenced progression-free survival and overall survival, and immunohistochemical staining revealed elevated expression of related biomarkers (SRC, ARNT, and TBP) in serous BOT and ovarian carcinoma samples. Epithelial-mesenchymal transition (EMT) is important during tumorigenesis, and we confirmed the SNAI2 (Snail family transcriptional repressor 2, SLUG) gene showing significantly high performance by immunohistochemistry. During serous ovarian tumor formation, activated AHR in the cytoplasm could cooperate with SRC, enter cell nuclei, bind to AHR nuclear translocator (ARNT) together with TATA-Box Binding Protein (TBP), and act on DNA to initiate AHR-responsive genes to cause tumor or cancer initiation. Additionally, SNAI2 in the tumor microenvironment can facilitate EMT accompanied by tumorigenesis. Although it has not been possible to classify serous BOTs and serous ovarian carcinomas as the same EOC subtype, the key determinants of relevant DEGs (SRC, ARNT, TBP, and SNAI2) found here had a crucial role in the pathogenetic mechanism of both tumor types, implying gradual evolutionary tendencies from serous BOTs to ovarian carcinomas. In the future, targeted therapy could focus on these revealed targets together with precise detection to improve therapeutic effects and patient survival rates.
Collapse
Affiliation(s)
- Kuo-Min Su
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan; (K.-M.S.); (M.-H.Y.)
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
| | - Hong-Wei Gao
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Chia-Ming Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Kai-Hsi Lu
- Department of Medical Research and Education, Cheng-Hsin General Hospital, Taipei 112, Taiwan;
| | - Mu-Hsien Yu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan; (K.-M.S.); (M.-H.Y.)
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
| | - Yi-Hsin Lin
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
| | - Li-Chun Liu
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
- Division of Obstetrics and Gynecology, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei 105, Taiwan
| | - Chia-Ching Chang
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
| | - Yao-Feng Li
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Cheng-Chang Chang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan; (K.-M.S.); (M.-H.Y.)
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
| |
Collapse
|
16
|
Hadziahmetovic M, Malek G. Age-Related Macular Degeneration Revisited: From Pathology and Cellular Stress to Potential Therapies. Front Cell Dev Biol 2021; 8:612812. [PMID: 33569380 PMCID: PMC7868387 DOI: 10.3389/fcell.2020.612812] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is a neurodegenerative disease of the aging retina, in which patients experience severe vision loss. Therapies available to patients are limited and are only effective in a sub-population of patients. Future comprehensive clinical care depends on identifying new therapeutic targets and adopting a multi-therapeutic approach. With this goal in mind, this review examines the fundamental concepts underlying the development and progression of AMD and re-evaluates the pathogenic pathways associated with the disease, focusing on the impact of injury at the cellular level, with the understanding that critical assessment of the literature may help pave the way to identifying disease-relevant targets. During this process, we elaborate on responses of AMD vulnerable cells, including photoreceptors, retinal pigment epithelial cells, microglia, and choroidal endothelial cells, based on in vitro and in vivo studies, to select stressful agents, and discuss current therapeutic developments in the field, targeting different aspects of AMD pathobiology.
Collapse
Affiliation(s)
- Majda Hadziahmetovic
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Goldis Malek
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States.,Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|