1
|
Bellavita R, Braccia S, Imbò LE, Grieco P, Galdiero S, D'Auria G, Falanga A, Falcigno L. Exploring Fe(III) coordination and membrane interaction of a siderophore-peptide conjugate: Enhancing synergistically the antimicrobial activity. J Inorg Biochem 2024; 259:112658. [PMID: 38964199 DOI: 10.1016/j.jinorgbio.2024.112658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/10/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Many microbes produce siderophores, which are extremely potent weapons capable of stealing iron ions from human tissues, fluids and cells and transferring them into bacteria through their appropriate porins. We have recently designed a multi-block molecule, each block having a dedicated role. The first component is an antimicrobial peptide, whose good effectiveness against some bacterial strains was gradually improved through interactive sequence modifications. Connected to this block is a flexible bio-band, also optimized in length, which terminates in a hydroxyamide unit, a strong metal binder. Thus, the whole molecule brings together two pieces that work synergistically to fight infection. To understand if the peptide unit, although modified with a long tail, preserves the structure and therefore the antimicrobial activity, and to characterize the mechanism of interaction with bio-membrane models mimicking Gram-negative membranes, we performed a set of fluorescence-based experiments and circular dichroism studies, which further supported our design of a combination of two different entities working synergistically. The chelating activity and iron(III) binding of the peptide was confirmed by iron(III) paramagnetic NMR analyses, and through a competitive assay with ethylenediamine-tetra acetic acid by ultraviolet-visible spectroscopy. The complexation parameters, the Michaelis constant K, and the number of sites n, evaluated with spectrophotometric techniques are confirmed by Fe(III) paramagnetic NMR analyses here reported. In conclusion, we showed that the coupling of antimicrobial capabilities with iron-trapping capabilities works well in the treatment of infectious diseases caused by Gram-negative pathogens.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Via Domenico Montesano 49, 80131 Naples, Italy
| | - Simone Braccia
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Via Domenico Montesano 49, 80131 Naples, Italy
| | - Lorenzo Emiliano Imbò
- Department of Agricultural Science, University of Naples 'Federico II', Via Università 100, Portici, 80055 Portici, Italy
| | - Paolo Grieco
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Via Domenico Montesano 49, 80131 Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Via Domenico Montesano 49, 80131 Naples, Italy
| | - Gabriella D'Auria
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Via Domenico Montesano 49, 80131 Naples, Italy
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples 'Federico II', Via Università 100, Portici, 80055 Portici, Italy.
| | - Lucia Falcigno
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Via Domenico Montesano 49, 80131 Naples, Italy
| |
Collapse
|
2
|
Sandu EC, Serban B, Iordache S, Cursaru A, Costache MA, Dumitru A, Cirstoiu C. Immunohistochemistry Study of Antimicrobial Peptides as a Future Diagnostic and Prognostic Tool for Periprosthetic Joint Infections. Cureus 2024; 16:e69629. [PMID: 39429325 PMCID: PMC11487467 DOI: 10.7759/cureus.69629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Periprosthetic joint infection (PJI) is a reputable complication of arthroplasty surgery. Septic loosening is an implant biofilm-related infection with different characteristics and treatment than aseptic loosening. Misdiagnosing PJI results in choosing an inappropriate treatment and, in most cases, failure to achieve asepsis. The worldwide increase of arthroplasty surgeries forces us to research more accurate ways to detect PJIs earlier, cheaper, and faster. In the current study, we investigated 52 arthroplasty revision surgeries (septic and aseptic) and, using immunohistochemistry staining of periprosthetic tissue, successfully demonstrated an important increase in antimicrobial peptides human β defensin-3 (HBD-3) and cathelicidin (LL-37) in the PJI group. Furthermore, we observed that patients with a positive LL-37 stain were associated with a more reserved prognosis at one-year follow-up. These promising results suggest that antimicrobial peptides HBD-3 and LL-37 could be used as future biomarkers for PJI detection.
Collapse
Affiliation(s)
- Emanuel-Cristian Sandu
- Orthopedics and Traumatology, "Carol Davila" Faculty of Medicine, Bucharest, ROU
- Orthopedics and Traumatology, University Emergency Hospital, Bucharest, ROU
| | - Bogdan Serban
- Orthopedics and Traumatology, "Carol Davila" Faculty of Medicine, Bucharest, ROU
- Orthopedics and Traumatology, University Emergency Hospital, Bucharest, ROU
| | - Sergiu Iordache
- Orthopedics and Traumatology, University Emergency Hospital, Bucharest, ROU
| | - Adrian Cursaru
- Orthopedics and Traumatology, University Emergency Hospital, Bucharest, ROU
| | | | - Adrian Dumitru
- Pathology, "Carol Davila" Faculty of Medicine, Bucharest, ROU
- Pathology, University Emergency Hospital, Bucharest, ROU
| | - Catalin Cirstoiu
- Orthopedics and Traumatology, "Carol Davila" Faculty of Medicine, Bucharest, ROU
- Orthopedics and Traumatology, University Emergency Hospital, Bucharest, ROU
| |
Collapse
|
3
|
Leveraro S, Garstka K, Śliwka P, Janek T, Rowińska-Żyrek M, Remelli M, Bellotti D. Metal coordination governs the antimicrobial efficacy of calcitermin derivatives. Dalton Trans 2024; 53:12676-12687. [PMID: 39012520 DOI: 10.1039/d4dt01514b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Antimicrobial peptides are promising alternatives to classical antibiotics. Their microbicidal activity can arise from different mechanisms, one of which is known as nutritional immunity and has metal micronutrients and metal-binding biomolecules as its main players. Calcitermin is an antimicrobial peptide and an effective metal chelator. Its properties as an antibacterial and anti-Candida agent have been recently studied both as a free peptide and in the presence of zinc and copper ions, with which it forms stable complexes. Calcitermin derivatives have also gained attention thanks to the possibility of improving their properties, like metal-binding affinity and/or stability in biological fluids, through ad hoc modifications of the native peptide sequence. In this work, the Ala-to-Ser substitutions close to the coordination site of calcitermin have been introduced to study the impact on the biological activity and metal-binding properties. Our results show that metal coordination has a clear impact on the bioactivity of the studied compounds, to the point that the truncated fragment of calcitermin, solely containing the main metal-binding residues, also shows antimicrobial activity.
Collapse
Affiliation(s)
- Silvia Leveraro
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Kinga Garstka
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Paulina Śliwka
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Tomasz Janek
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | | | - Maurizio Remelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Denise Bellotti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
4
|
Liu C, Voskressensky LG, Van der Eycken EV. Recent Advances in the Synthesis of Peptidomimetics via Ugi Reactions. Chemistry 2024; 30:e202303597. [PMID: 38123521 DOI: 10.1002/chem.202303597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Peptidomimetics have been extensively explored in many area due to their ability to improve pharmacological qualities and interesting biological activities. Cycles could be incorporated in peptides to reduce their flexibility, often enhancing the affinity for a certain receptor. Many efforts have been made to synthesize various peptidomimetics. Among them, the Ugi reaction is a popular way for the synthesis of peptidomimetics because it provides peptide-like products. The Ugi reaction consists of the condensation of an aldehyde or ketone, a carboxylic acid, an amine, and an isocyanide usually giving a linear peptidomimetic. In order to obtain other linear, cyclic or polycyclic peptidomimetics, the acyclic products have to undergo additional transformations or cyclizations. This review covers the years from 2018-2023, regarding the synthesis of linear, cyclic and polycyclic peptidomimetics, employing Ugi reactions eventually followed by post-Ugi transformations. Organo-catalyzed reactions, base-promoted reactions, and metal-free reactions toward peptidomimetics are highlighted.
Collapse
Affiliation(s)
- Chao Liu
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Leonid G Voskressensky
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st. 6, Moscow, 117198, Russian Federation
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium
| |
Collapse
|
5
|
Mwangi J, Kamau PM, Thuku RC, Lai R. Design methods for antimicrobial peptides with improved performance. Zool Res 2023; 44:1095-1114. [PMID: 37914524 PMCID: PMC10802102 DOI: 10.24272/j.issn.2095-8137.2023.246] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/20/2023] [Indexed: 11/03/2023] Open
Abstract
The recalcitrance of pathogens to traditional antibiotics has made treating and eradicating bacterial infections more difficult. In this regard, developing new antimicrobial agents to combat antibiotic-resistant strains has become a top priority. Antimicrobial peptides (AMPs), a ubiquitous class of naturally occurring compounds with broad-spectrum antipathogenic activity, hold significant promise as an effective solution to the current antimicrobial resistance (AMR) crisis. Several AMPs have been identified and evaluated for their therapeutic application, with many already in the drug development pipeline. Their distinct properties, such as high target specificity, potency, and ability to bypass microbial resistance mechanisms, make AMPs a promising alternative to traditional antibiotics. Nonetheless, several challenges, such as high toxicity, lability to proteolytic degradation, low stability, poor pharmacokinetics, and high production costs, continue to hamper their clinical applicability. Therefore, recent research has focused on optimizing the properties of AMPs to improve their performance. By understanding the physicochemical properties of AMPs that correspond to their activity, such as amphipathicity, hydrophobicity, structural conformation, amino acid distribution, and composition, researchers can design AMPs with desired and improved performance. In this review, we highlight some of the key strategies used to optimize the performance of AMPs, including rational design and de novo synthesis. We also discuss the growing role of predictive computational tools, utilizing artificial intelligence and machine learning, in the design and synthesis of highly efficacious lead drug candidates.
Collapse
Affiliation(s)
- James Mwangi
- Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Peptides of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Centre for Non-Human Primates, Kunming Primate Research Centre, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Centre, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Peter Muiruri Kamau
- Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Peptides of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Centre for Non-Human Primates, Kunming Primate Research Centre, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Centre, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Rebecca Caroline Thuku
- Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Peptides of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Centre for Non-Human Primates, Kunming Primate Research Centre, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Centre, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ren Lai
- Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Peptides of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Centre for Non-Human Primates, Kunming Primate Research Centre, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Centre, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- Centre for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, China. E-mail:
| |
Collapse
|
6
|
Chen X, Su S, Yan Y, Yin L, Liu L. Anti- Pseudomonas aeruginosa activity of natural antimicrobial peptides when used alone or in combination with antibiotics. Front Microbiol 2023; 14:1239540. [PMID: 37731929 PMCID: PMC10508351 DOI: 10.3389/fmicb.2023.1239540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
The World Health Organization has recently published a list of 12 drug-resistant bacteria that posed a significant threat to human health, and Pseudomonas aeruginosa (P. aeruginosa) was among them. In China, P. aeruginosa is a common pathogen in hospital acquired pneumonia, accounting for 16.9-22.0%. It is a ubiquitous opportunistic pathogen that can infect individuals with weakened immune systems, leading to hospital-acquired acute and systemic infections. The excessive use of antibiotics has led to the development of various mechanisms in P. aeruginosa to resist conventional drugs. Thus, there is an emergence of multidrug-resistant strains, posing a major challenge to conventional antibiotics and therapeutic approaches. Antimicrobial peptides are an integral component of host defense and have been found in many living organisms. Most antimicrobial peptides are characterized by negligible host toxicity and low resistance rates, making them become promising for use as antimicrobial products. This review particularly focuses on summarizing the inhibitory activity of natural antimicrobial peptides against P. aeruginosa planktonic cells and biofilms, as well as the drug interactions when these peptides used in combination with conventional antibiotics. Moreover, the underlying mechanism of these antimicrobial peptides against P. aeruginosa strains was mainly related to destroy the membrane structure through interacting with LPS or increasing ROS levels, or targeting cellular components, leaded to cell lysis. Hopefully, this analysis will provide valuable experimental data on developing novel compounds to combat P. aeruginosa.
Collapse
Affiliation(s)
- Xueqi Chen
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Shan Su
- Department of Pharmacy, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Yan Yan
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Limei Yin
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Lihong Liu
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
7
|
Galzitskaya OV. Creation of New Antimicrobial Peptides. Int J Mol Sci 2023; 24:ijms24119451. [PMID: 37298402 DOI: 10.3390/ijms24119451] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Antimicrobial peptides (AMPs) are natural compounds that exhibit potent antimicrobial activity against various microorganisms, including bacteria, fungi, and viruses [...].
Collapse
Affiliation(s)
- Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
8
|
Yang S, Dai J, Aweya JJ, Lin R, Weng W, Xie Y, Jin R. The Antibacterial Activity and Pickering Emulsion Stabilizing Effect of a Novel Peptide, SA6, Isolated from Salt-Fermented Penaeus vannamei. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
|
10
|
Mousavi Maleki MS, Sardari S, Ghandehari Alavijeh A, Madanchi H. Recent Patents and FDA-Approved Drugs Based on Antiviral Peptides and Other Peptide-Related Antivirals. Int J Pept Res Ther 2022; 29:5. [PMID: 36466430 PMCID: PMC9702942 DOI: 10.1007/s10989-022-10477-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
In spite of existing cases of severe viral infections with a high mortality rate, there are not enough antiviral drugs and vaccines available for the prevention and treatment of such diseases. In addition, the increasing reports of the emergence of viral epidemics highlight, the need for novel molecules with antiviral potential. Antimicrobial peptides (AMPs) with antiviral activity or antiviral peptides (AVPs) have turned into a research hotspot and already show tremendous potential to become pharmaceutically available antiviral medicines. AMPs, a diverse group of bioactive peptides act as a part of our first line of defense against pathogen inactivation. Although most of the currently reported AMPs are either antibacterial or antifungal peptides, the number of antiviral peptides is gradually increasing. Some of the AMPs that are shown as effective antivirals have been deployed against viruses such as influenza A virus, severe acute respiratory syndrome coronavirus (SARS-CoV), HIV, HSV, West Nile Virus (WNV), and other viruses. This review offers an overview of AVPs that have been approved within the past few years and will set out a few of the most essential patents and their usage within the context mentioned above during 2000-2020. Moreover, the present study will explain some of the progress in antiviral drugs based on peptides and peptide-related antivirals.
Collapse
Affiliation(s)
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Ghandehari Alavijeh
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Madanchi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Bollati M, Peqini K, Barone L, Natale C, Beeg M, Gobbi M, Diomede L, Trucchi M, de Rosa M, Pellegrino S. Rational Design of a Peptidomimetic Inhibitor of Gelsolin Amyloid Aggregation. Int J Mol Sci 2022; 23:ijms232213973. [PMID: 36430461 PMCID: PMC9698219 DOI: 10.3390/ijms232213973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Gelsolin amyloidosis (AGel) is characterized by multiple systemic and ophthalmic features resulting from pathological tissue deposition of the gelsolin (GSN) protein. To date, no cure is available for the treatment of any form of AGel. More than ten single-point substitutions in the GSN gene are responsible for the occurrence of the disease and, among them, D187N/Y is the most widespread variant. These substitutions undergo an aberrant proteolytic cascade, producing aggregation-prone peptides of 5 and 8 kDa, containing the Gelsolin Amyloidogenic Core, spanning residues 182-192 (GAC182-192). Following a structure-based approach, we designed and synthesized three novel sequence-specific peptidomimetics (LB-5, LB-6, and LB-7) built on a piperidine-pyrrolidine unnatural amino acid. LB-5 and LB-6, but not LB-7, efficiently inhibit the aggregation of the GAC182-192 amyloidogenic peptides at sub-stoichiometric concentrations. These peptidomimetics resulted also effective in vivo, in a C. elegans-based assay, in counteracting the proteotoxicity of aggregated GAC182-192. These data pave the way to a novel pharmacological strategy against AGel and also validate a toolbox exploitable in other amyloidogenic diseases.
Collapse
Affiliation(s)
- Michela Bollati
- Institute of Biophysics, National Research Council (IBF-CNR), c/o Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy
| | - Kaliroi Peqini
- Department of Pharmaceutical Science, “A. Marchesini” General and Organic Chemistry Section, University of Milano, Via Venezian 21, 20133 Milano, Italy
| | - Luigi Barone
- Department of Pharmaceutical Science, “A. Marchesini” General and Organic Chemistry Section, University of Milano, Via Venezian 21, 20133 Milano, Italy
| | - Carmina Natale
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Marten Beeg
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Michelangelo Trucchi
- Institute of Biophysics, National Research Council (IBF-CNR), c/o Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy
| | - Matteo de Rosa
- Institute of Biophysics, National Research Council (IBF-CNR), c/o Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy
- Correspondence: (M.d.R.); (S.P.)
| | - Sara Pellegrino
- Department of Pharmaceutical Science, “A. Marchesini” General and Organic Chemistry Section, University of Milano, Via Venezian 21, 20133 Milano, Italy
- Correspondence: (M.d.R.); (S.P.)
| |
Collapse
|
12
|
Feng Q, Li G, Xia W, Dai G, Zhou J, Xu Y, Liu D, Zhang G. The anti-aging effects of Renshen Guben on thyrotoxicosis mice: Improving immunosenescence, hypoproteinemia, lipotoxicity, and intestinal flora. Front Immunol 2022; 13:983501. [PMID: 36389720 PMCID: PMC9640368 DOI: 10.3389/fimmu.2022.983501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/10/2022] [Indexed: 09/27/2023] Open
Abstract
With the rapid aging of the population, the control of age-related disease susceptibility and prognosis faces greater challenges. There is an urgent need for a strategy to maintain the vitality of elderly people. In this study, the effect of Renshen Guben (RSGB) oral liquid was investigated on an accelerated aging mice model of thyrotoxicosis by conventional detection methods combined with multiomics technology. The results showed that RSGB increased the number of neutrophils and lymphocytes, enhanced the function of lymphocytes, and increased the levels of complement and antimicrobial peptides, which indicated that RSGB improved the immunity of thyrotoxicosis mice at the cellular and molecular levels. RSGB corrected malnutrition in thyrotoxicosis mice by improving anemia, hypoalbuminemia, ion transporters, and vitamin-binding proteins. RSGB significantly reduced the lipotoxicity by reducing the level of fatty acids, triglyceride, sphingolipids, and glucocorticoids, thus increasing the level of docosapentaenoic acid (DPA) and bile acids, which contributed to improve immunosenescence. The intestinal defense ability of thyrotoxicosis mice was enhanced with the increase of bile acids and lactic acid bacteria by the RSGB treatment. The plant metabolomics analysis showed that there were various active components in RSGB oral liquid and medicated serum, including terpenoids, phenolic acids, flavonoids, tannin, alkaloids, organic acids, phenolamines, amino acids, and others. They have antioxidant, immune regulation, and anti-aging effects, which was the material basis of RSGB. Totally, RSGB protected the thyrotoxicosis mice against aging by improving immunosenescence, hypoproteinemia, lipotoxicity, and the intestinal flora. It will be beneficial for improving the disease susceptibility and prognosis of the elderly.
Collapse
Affiliation(s)
- Qin Feng
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Guangyan Li
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Wenkai Xia
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Guoxin Dai
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Jidong Zhou
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Yan Xu
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Deshan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Guimin Zhang
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| |
Collapse
|
13
|
Talapko J, Meštrović T, Juzbašić M, Tomas M, Erić S, Horvat Aleksijević L, Bekić S, Schwarz D, Matić S, Neuberg M, Škrlec I. Antimicrobial Peptides-Mechanisms of Action, Antimicrobial Effects and Clinical Applications. Antibiotics (Basel) 2022; 11:antibiotics11101417. [PMID: 36290075 PMCID: PMC9598582 DOI: 10.3390/antibiotics11101417] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
The growing emergence of antimicrobial resistance represents a global problem that not only influences healthcare systems but also has grave implications for political and economic processes. As the discovery of novel antimicrobial agents is lagging, one of the solutions is innovative therapeutic options that would expand our armamentarium against this hazard. Compounds of interest in many such studies are antimicrobial peptides (AMPs), which actually represent the host's first line of defense against pathogens and are involved in innate immunity. They have a broad range of antimicrobial activity against Gram-negative and Gram-positive bacteria, fungi, and viruses, with specific mechanisms of action utilized by different AMPs. Coupled with a lower propensity for resistance development, it is becoming clear that AMPs can be seen as emerging and very promising candidates for more pervasive usage in the treatment of infectious diseases. However, their use in quotidian clinical practice is not without challenges. In this review, we aimed to summarize state-of-the-art evidence on the structure and mechanisms of action of AMPs, as well as to provide detailed information on their antimicrobial activity. We also aimed to present contemporary evidence of clinical trials and application of AMPs and highlight their use beyond infectious diseases and potential challenges that may arise with their increasing availability.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Correspondence: (J.T.); (I.Š.)
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation, University of Washington, 3980 15th Ave. NE, Seattle, WA 98195, USA
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Matej Tomas
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Suzana Erić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Lorena Horvat Aleksijević
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Sanja Bekić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
- Family Medicine Practice, 31000 Osijek, Croatia
| | - Dragan Schwarz
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Suzana Matić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Marijana Neuberg
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Correspondence: (J.T.); (I.Š.)
| |
Collapse
|
14
|
Scano A, Mereu E, Cabras V, Mannias G, Garau A, Pilloni M, Orrù G, Scano A, Ennas G. Green Preparation of Antimicrobial 1D-Coordination Polymers: [Zn(4,4'-bipy)Cl2]∞ and [Zn(4,4'-bipy)2(OAc)2]∞ by Ultrasonication of Zn(II) Salts and 4,4'-Bipyridine. Molecules 2022; 27:molecules27196677. [PMID: 36235214 PMCID: PMC9572912 DOI: 10.3390/molecules27196677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/17/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
We report on the green preparation of one-dimensional metal coordination polymers by sonochemical approach. The spacer ligand 4,4'-bipyridine was ultrasonicated with chloride or acetate zinc salts to obtain [Zn(4,4'-bipy)Cl2]∞ and [Zn(4,4'-bipy)2(OAc)2]∞, respectively. Benign solvents such as ethanol and water were selected as reaction media, and the synthesis took place in a few minutes-a very short time compared to conventional methods where some days' synthesis is required. X-ray powder diffraction, Fourier transform infrared spectroscopy, thermal analysis (thermogravimetric and differential scanning calorimetry), and CHN techniques investigated the influence of using different reaction solvents on the chemical, structural, and thermal properties of the final products. The 1D [Zn(4,4'-bipy)Cl2]∞ and [Zn(4,4'-bipy)2(OAc)2]∞ polymers, in agreement with the structures reported in the literature, were obtained in the form of nanocrystals with an average crystal size around 100 nm. As a proof of concept, a set of Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Klebsiella pneumoniae), and three yeast strains (Candida albicans, Candida krusei, Candida glabrata) were tested to evaluate the antimicrobial activity of the coordination polymers, following the Kirby-Bauer procedure and microplate dilution method. Thus, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimal biofilm inhibitory concentration (MBIC) were evaluated. Except for Candida krusei, the compounds showed an appreciable antimicrobial and antibiofilm activity against these strains grown in the liquid medium.
Collapse
Affiliation(s)
- Alessandra Scano
- Department of Chemical and Geological Sciences, University of Cagliari and INSTM Unit, SS 554 Bivio per Sestu, 09042 Monserrato, CA, Italy
- Correspondence: or (A.S.); (G.E.)
| | - Elisabetta Mereu
- Department of Chemical and Geological Sciences, University of Cagliari and INSTM Unit, SS 554 Bivio per Sestu, 09042 Monserrato, CA, Italy
| | - Valentina Cabras
- Department of Chemical and Geological Sciences, University of Cagliari and INSTM Unit, SS 554 Bivio per Sestu, 09042 Monserrato, CA, Italy
| | - Giada Mannias
- Department of Chemical and Geological Sciences, University of Cagliari and INSTM Unit, SS 554 Bivio per Sestu, 09042 Monserrato, CA, Italy
| | - Alessandra Garau
- Department of Chemical and Geological Sciences, University of Cagliari and INSTM Unit, SS 554 Bivio per Sestu, 09042 Monserrato, CA, Italy
| | - Martina Pilloni
- Department of Chemical and Geological Sciences, University of Cagliari and INSTM Unit, SS 554 Bivio per Sestu, 09042 Monserrato, CA, Italy
| | - Germano Orrù
- Department of Surgical Sciences, Molecular Biology Service, University of Cagliari, 09124 Cagliari, Italy
| | - Alessandra Scano
- Department of Surgical Sciences, Molecular Biology Service, University of Cagliari, 09124 Cagliari, Italy
| | - Guido Ennas
- Department of Chemical and Geological Sciences, University of Cagliari and INSTM Unit, SS 554 Bivio per Sestu, 09042 Monserrato, CA, Italy
- Correspondence: or (A.S.); (G.E.)
| |
Collapse
|
15
|
Pindjakova D, Pilarova E, Pauk K, Michnova H, Hosek J, Magar P, Cizek A, Imramovsky A, Jampilek J. Study of Biological Activities and ADMET-Related Properties of Salicylanilide-Based Peptidomimetics. Int J Mol Sci 2022; 23:ijms231911648. [PMID: 36232947 PMCID: PMC9569995 DOI: 10.3390/ijms231911648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
A series of eleven benzylated intermediates and eleven target compounds derived from salicylanilide were tested against Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 as reference strains and against three clinical isolates of methicillin-resistant S. aureus (MRSA) and three isolates of vancomycin-resistant E. faecalis. In addition, the compounds were evaluated against Mycobacterium tuberculosis H37Ra and M. smegmatis ATCC 700084. The in vitro cytotoxicity of the compounds was assessed using the human monocytic leukemia cell line THP-1. The lipophilicity of the prepared compounds was experimentally determined and correlated with biological activity. The benzylated intermediates were found to be completely biologically inactive. Of the final eleven compounds, according to the number of amide groups in the molecule, eight are diamides, and three are triamides that were inactive. 5-Chloro-2-hydroxy-N-[(2S)- 4-(methylsulfanyl)-1-oxo-1-{[4-(trifluoromethyl)phenyl]amino}butan-2-yl]benzamide (3e) and 5-chloro-2-hydroxy-N-[(2S)-(4-methyl-1-oxo-1-{[4-(trifluoromethyl)phenyl]amino)pentan-2-yl)benzamide (3f) showed the broadest spectrum of activity against all tested species/isolates comparable to the used standards (ampicillin and isoniazid). Six diamides showed high antistaphylococcal activity with MICs ranging from 0.070 to 8.95 μM. Three diamides showed anti-enterococcal activity with MICs ranging from 4.66 to 35.8 μM, and the activities of 3f and 3e against M. tuberculosis and M. smegmatis were MICs of 18.7 and 35.8 μM, respectively. All the active compounds were microbicidal. It was observed that the connecting linker between the chlorsalicylic and 4-CF3-anilide cores must be substituted with a bulky and/or lipophilic chain such as isopropyl, isobutyl, or thiabutyl chain. Anticancer activity on THP-1 cells IC50 ranged from 1.4 to >10 µM and increased with increasing lipophilicity.
Collapse
Affiliation(s)
- Dominika Pindjakova
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Eliska Pilarova
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 530 09 Pardubice, Czech Republic
| | - Karel Pauk
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 530 09 Pardubice, Czech Republic
| | - Hana Michnova
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Jan Hosek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Pratibha Magar
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 530 09 Pardubice, Czech Republic
| | - Alois Cizek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Ales Imramovsky
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 530 09 Pardubice, Czech Republic
- Correspondence:
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
16
|
Antimicrobial peptides for tackling cystic fibrosis related bacterial infections: a review. Microbiol Res 2022; 263:127152. [DOI: 10.1016/j.micres.2022.127152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022]
|
17
|
Technique Evolutions for Microorganism Detection in Complex Samples: A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rapid detection of microorganisms is a major challenge in the medical and industrial sectors. In a pharmaceutical laboratory, contamination of medical products may lead to severe health risks for patients, such as sepsis. In the specific case of advanced therapy medicinal products, contamination must be detected as early as possible to avoid late production stop and unnecessary costs. Unfortunately, the conventional methods used to detect microorganisms are based on time-consuming and labor-intensive approaches. Therefore, it is important to find new tools to detect microorganisms in a shorter time frame. This review sums up the current methods and represents the evolution in techniques for microorganism detection. First, there is a focus on promising ligands, such as aptamers and antimicrobial peptides, cheaper to produce and with a broader spectrum of detection. Then, we describe methods achieving low limits of detection, thanks to Raman spectroscopy or precise handling of samples through microfluids devices. The last part is dedicated to techniques in real-time, such as surface plasmon resonance, preventing the risk of contamination. Detection of pathogens in complex biological fluids remains a scientific challenge, and this review points toward important areas for future research.
Collapse
|
18
|
Bellotto O, Semeraro S, Bandiera A, Tramer F, Pavan N, Marchesan S. Polymer Conjugates of Antimicrobial Peptides (AMPs) with d-Amino Acids (d-aa): State of the Art and Future Opportunities. Pharmaceutics 2022; 14:pharmaceutics14020446. [PMID: 35214178 PMCID: PMC8879212 DOI: 10.3390/pharmaceutics14020446] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
In recent years, antimicrobial peptides (AMPs) have enjoyed a renaissance, as the world is currently facing an emergency in terms of severe infections that evade antibiotics’ treatment. This is due to the increasing emergence and spread of resistance mechanisms. Covalent conjugation with polymers is an interesting strategy to modulate the pharmacokinetic profile of AMPs and enhance their biocompatibility profile. It can also be an effective approach to develop active coatings for medical implants and devices, and to avoid biofilm formation on their surface. In this concise review, we focus on the last 5 years’ progress in this area, pertaining in particular to AMPs that contain d-amino acids, as well as their role, and the advantages that may arise from their introduction into AMPs.
Collapse
Affiliation(s)
- Ottavia Bellotto
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (O.B.); (S.S.)
| | - Sabrina Semeraro
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (O.B.); (S.S.)
| | - Antonella Bandiera
- Life Sciences Department, University of Trieste, 34127 Trieste, Italy; (A.B.); (F.T.)
| | - Federica Tramer
- Life Sciences Department, University of Trieste, 34127 Trieste, Italy; (A.B.); (F.T.)
| | - Nicola Pavan
- Medical, Surgical and Health Sciences Department, University of Trieste, 34127 Trieste, Italy;
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (O.B.); (S.S.)
- Correspondence:
| |
Collapse
|
19
|
Chang Z, Jiang D, Zhang S, Pei D, Zhang Z, Zhang L, Cai J, Cao J. Genetic association of the epidermal growth factor gene polymorphisms with peri-implantitis risk in Chinese population. Bioengineered 2021; 12:8468-8475. [PMID: 34592884 PMCID: PMC8806989 DOI: 10.1080/21655979.2021.1983976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Peri-implant disease is an inflammatory disease and is related to genetic heterogeneity. Considering the genetic association of epidermal growth factor (EGF) gene polymorphisms with the susceptibility of periodontitis, its genetic association with peri-implantitis risk in a Chinese Han population was explored. Three hundred individuals who underwent dental implants were recruited, and divided into healthy implant group and peri-implantitis group. The genotype and allele distribution of EGF gene rs2237051 and rs4444903 polymorphisms were analyzed via direct sequencing and the frequencies were compared between the two groups using chi-square test. No significant difference was detected for the clinical information between healthy implant group and peri-implantitis group, including lifestyle habits platform type and position, peri-implant phenotype, brushing time, dental floss, and mouth washing frequencies. Individuals with peri-implantitis had poor periodontal status. The GG genotype and G allele of rs2237051 showed significant increasing trend in peri-implantitis group compared with the healthy implant group. Compared with the AA genotype carriers, rs2237051 GG genotype carriers showed lower risk to suffer from peri-implantitis (OR = 0.236, 95%CI = 0.089–0.624), and possessed low values of gingival index, plaque index and calculus index, peri-implant pocket depth (PPD) and clinical attachment level (CAL). But there was no significant difference for the rs4444903 genotype distributions between the case and control groups. In summary, EGF rs2237051 polymorphism showed close association with the genetic background of peri-implantitis. Rs2237051 GG genotype and G allele might be protective factors for the onset of peri-implantitis.
Collapse
Affiliation(s)
- Zhongfu Chang
- Department of Stomatology, Shanghai Pudong New Area People's Hospital, Shanghai China
| | - Dandan Jiang
- Department of Stomatology, Shanghai Pudong New Area People's Hospital, Shanghai China
| | - Shikun Zhang
- Department of Stomatology, Shanghai Pudong New Area People's Hospital, Shanghai China
| | - Dongdong Pei
- Department of Stomatology, Shanghai Pudong New Area People's Hospital, Shanghai China
| | - Zhirong Zhang
- Department of Hemodialysis, Shanghai Pudong New Area People's Hospital, Shanghai China
| | - Lihua Zhang
- Department of Stomatology, Shanghai Pudong New Area People's Hospital, Shanghai China
| | - Jianying Cai
- Department of Stomatology, Shanghai Pudong New Area People's Hospital, Shanghai China
| | - Jun Cao
- Department of Stomatology, Shanghai Pudong New Area People's Hospital, Shanghai China
| |
Collapse
|
20
|
Marrazzo P, Pizzuti V, Zia S, Sargenti A, Gazzola D, Roda B, Bonsi L, Alviano F. Microfluidic Tools for Enhanced Characterization of Therapeutic Stem Cells and Prediction of Their Potential Antimicrobial Secretome. Antibiotics (Basel) 2021; 10:750. [PMID: 34206190 PMCID: PMC8300685 DOI: 10.3390/antibiotics10070750] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance is creating enormous attention on the development of new antibiotic-free therapy strategies for bacterial diseases. Mesenchymal stromal stem cells (MSCs) are the most promising candidates in current clinical trials and included in several cell-therapy protocols. Together with the well-known immunomodulatory and regenerative potential of the MSC secretome, these cells have shown direct and indirect anti-bacterial effects. However, the low reproducibility and standardization of MSCs from different sources are the current limitations prior to the purification of cell-free secreted antimicrobial peptides and exosomes. In order to improve MSC characterization, novel label-free functional tests, evaluating the biophysical properties of the cells, will be advantageous for their cell profiling, population sorting, and quality control. We discuss the potential of emerging microfluidic technologies providing new insights into density, shape, and size of live cells, starting from heterogeneous or 3D cultured samples. The prospective application of these technologies to studying MSC populations may contribute to developing new biopharmaceutical strategies with a view to naturally overcoming bacterial defense mechanisms.
Collapse
Affiliation(s)
- Pasquale Marrazzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (L.B.); (F.A.)
| | - Valeria Pizzuti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (L.B.); (F.A.)
| | - Silvia Zia
- Stem Sel S.r.l., 40127 Bologna, Italy; (S.Z.); (B.R.)
| | | | - Daniele Gazzola
- Cell Dynamics i.S.r.l., 40129 Bologna, Italy; (A.S.); (D.G.)
| | - Barbara Roda
- Stem Sel S.r.l., 40127 Bologna, Italy; (S.Z.); (B.R.)
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy
| | - Laura Bonsi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (L.B.); (F.A.)
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (L.B.); (F.A.)
| |
Collapse
|
21
|
Wątły J, Miller A, Kozłowski H, Rowińska-Żyrek M. Peptidomimetics - An infinite reservoir of metal binding motifs in metabolically stable and biologically active molecules. J Inorg Biochem 2021; 217:111386. [PMID: 33610030 DOI: 10.1016/j.jinorgbio.2021.111386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
The involvement of metal ions in interactions with therapeutic peptides is inevitable. They are one of the factors able to fine-tune the biological properties of antimicrobial peptides, a promising group of drugs with one large drawback - a problematic metabolic stability. Appropriately chosen, proteolytically stable peptidomimetics seem to be a reasonable solution of the problem, and the use of D-, β-, γ-amino acids, unnatural amino acids, azapeptides, peptoids, cyclopeptides and dehydropeptides is an infinite reservoir of metal binding motifs in metabolically stable, well-designed, biologically active molecules. Below, their specific structural features, metal-chelating abilities and antimicrobial potential are discussed.
Collapse
Affiliation(s)
- Joanna Wątły
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland.
| | - Adriana Miller
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland; Department of Health Sciences, University of Opole, Katowicka 68, Opole 45-060, Poland
| | | |
Collapse
|