1
|
Panda S, Rout L, Mohanty N, Satpathy A, Sankar Satapathy B, Rath S, Gopinath D. Exploring the photosensitizing potential of Nanoliposome Loaded Improved Toluidine Blue O (NLITBO) Against Streptococcus mutans: An in-vitro feasibility study. PLoS One 2024; 19:e0312521. [PMID: 39475963 PMCID: PMC11524459 DOI: 10.1371/journal.pone.0312521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Streptococcus mutans is a major contributor to dental caries due to its ability to produce acid and survive in biofilms. Microbial resistance towards common antimicrobial agents like chlorhexidine and triclosan has shifted the research towards antimicrobial Photodynamic therapy (PDT). In this context, Toluidine Blue O (TBO) is being explored for its photosensitizing properties against Streptococcus mutans. There is a huge variation in the effective concentration of TBO among the current studies owing to the differences in source of and delivery system TBO as well as the time, power and energy densities of light. OBJECTIVE The primary objectives of this study are to encapsulate improved Toluidine Blue O (ITBO) in nanoliposomes (NLITBO), characterize it, and evaluate its antibacterial photosensitizing potential against Streptococcus mutans suspensions in vitro. METHOD ITBO was synthesised as per Indian patent (number -543908). NLITBO was prepared using the thin-film hydration method. Dynamic light scattering experiment determined the vesicle size, polydispersity index (PDI), and zeta potential. Surface features were characterized by Scanning and Transmission Electron microscopy. ITBO release from NLITBO was assessed using the extrapolation method. The antibacterial activity of the NLITBO was determined by evaluating the zone of inhibition (ZOI) in the Streptococcus mutans culture and comparing with 2% chlorhexidine gluconate. The minimum inhibitory concentration (MIC) of NLITBO as a photosensitizer with red light (wavelength 650nm, power density 0.1 W/cm2, energy density 9-9.1 J/ cm2, 90seconds time) was evaluated against Streptococcus mutans cells by colorimetric method in 96 well plate. RESULTS Percentage drug loading, loading efficiency, yield percentage, vesicle size, PDI, Zeta potential of NLTBO was reported as 9.3±0.4%, 84.4±7.6%, 73.5%, 123.52 nm, 0.57, -39.54mV respectively. Clusters of uni-lamellar nanovesicles with smooth non-perforated surfaces were observed in SEM and TEM. The size of the vesicle was within 100 nm. At 24 hours, a cumulative 79.81% of ITBO was released from NLITBO. Mean ZOI and MIC of NLITBO (1 μg /ml) were found to be 0.7±0.2 mm, 0.6μg/ml respectively. CONCLUSION We have synthesized and encapsulated improved Toluidine Blue O (ITBO) in nanoliposomes (NLITBO) and thoroughly characterized the formulation. The antibacterial efficacy of NLITBO without light was demonstrated by ZOI which is similar to 2% chlorhexidine gluconate. MIC of NLITBO as a photosensitiser along with the optimal light parameter was also proposed in this study. These findings suggested that NLITBO could serve as an effective alternative to conventional antibacterial treatments in managing Streptococcus mutans rich biofilms. It can have potential pharmaceutical application in oral health care.
Collapse
Affiliation(s)
- Swagatika Panda
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Siksha’O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Lipsa Rout
- Institute of Dental Sciences, Siksha’O’Anusandhan Deemed to be University. Bhubaneswar, Odisha, India
| | - Neeta Mohanty
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Siksha’O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Anurag Satpathy
- Department of Periodontics and Implantology, Institute of Dental Sciences, Siksha’O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | | | - Shakti Rath
- Department of Microbiology & Research, Institute of Dental Sciences, Siksha’O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Divya Gopinath
- Basic Medical and Dental Sciences Dept, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences and Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
2
|
Karuppan Perumal MK, Rajan Renuka R, Manickam Natarajan P. Evaluating the potency of laser-activated antimicrobial photodynamic therapy utilizing methylene blue as a treatment approach for chronic periodontitis. FRONTIERS IN ORAL HEALTH 2024; 5:1407201. [PMID: 38872983 PMCID: PMC11169725 DOI: 10.3389/froh.2024.1407201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Chronic periodontitis is a ubiquitous inflammatory disease in dental healthcare that is challenging to treat due to its impact on bone and tooth loss. Conventional mechanical debridement has been challenging in eliminating complex subgingival biofilms. Hence, adjunctive approaches like low-level laser antimicrobial photodynamic therapy (A-PDT) utilising methylene blue (MB) have been emerging approaches in recent times. This review evaluates the latest research on the use of MB-mediated A-PDT to decrease microbial count and enhance clinical results in chronic periodontitis. Studies have shown the interaction between laser light and MB generates a phototoxic effect thereby, eliminating pathogenic bacteria within periodontal pockets. Moreover, numerous clinical trials have shown that A-PDT using MB can reduce probing depths, improve clinical attachment levels, and decrease bleeding during probing in comparison to traditional treatment approaches. Notably, A-PDT shows superior antibiotic resistance compared to conventional antibiotic treatments. In conclusion, the A-PDT using MB shows promise as an adjunctive treatment for chronic periodontitis. Additional research is required to standardize treatment protocols and assess long-term outcomes of A-PDT with MB in the treatment of periodontitis.
Collapse
Affiliation(s)
- Manoj Kumar Karuppan Perumal
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Remya Rajan Renuka
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, College of Dentistry, Centre of Medical and Bio-Allied Health Sciences and Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
3
|
Ashtiani AS, Jafari Z, Chiniforush N, Afrasiabi S. In vitro antibiofilm effect of different irradiation doses in infected root canal model. Photodiagnosis Photodyn Ther 2024; 46:104053. [PMID: 38499277 DOI: 10.1016/j.pdpdt.2024.104053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/25/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Eradication of endodontic biofilms from the infected root canal system is still the main concern in endodontics. In this study, the role of the power density parameter in the efficacy of antimicrobial photodynamic therapy (PDT) with toluidine blue O (TBO) and phycocyanin (PC) activated by a 635 nm diode laser (DL) against Enterococcus faecalis biofilm in the root canal model was investigated. MATERIALS AND METHODS The E. faecalis biofilm in the root canal was treated with TBO and PC with different power densities (636, 954, 1273, and 1592 W/cm2). The untreated biofilm represented the control group. After the treatments, the biofilms were analyzed based on the number of colonies per milliliter. RESULTS TBO and PC activated with 635 nm DL with a power density of 1592 W/cm2 were more efficient in removing E. faecalis biofilms within the root canals than those with a power density of 636 W/cm2 (p = 0.00). CONCLUSION The light power density optimized the bacterial reduction of E. faecalis biofilms in the root canal spaces. These results provide information on the decisive parameters for performing PDT on intracanal biofilms.
Collapse
Affiliation(s)
| | - Zahra Jafari
- Department of Endodontics, School of Dentistry, Shahed University, Tehran, Iran
| | - Nasim Chiniforush
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV, Genoa, Italy.
| | - Shima Afrasiabi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Arshad M, Joshan F, Chiniforush N, Afrasiabi S. Comparative study of the effect of different exposure parameters of 635nm diode laser and toluidine blue O in eliminating Aggregatibacter actinomycetemcomitans biofilm from titanium implant surfaces. Photodiagnosis Photodyn Ther 2024; 45:104012. [PMID: 38346465 DOI: 10.1016/j.pdpdt.2024.104012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND The aim of this study was to investigate the effects of antimicrobial photodynamic therapy (PDT) using 635 nm diode laser irradiation with an energy density of 6 to 30 J/cm2 and toluidine blue O (TBO) as a photosensitizer on the viability of Aggregatibacter actinomycetemcomitans attached to the surface of titanium implants. MATERIALS AND METHODS Titanium implants contaminated with A. actinomycetemcomitans were treated with TBO alone or in combination with different exposure parameters (light doses of 6 - 30 J/cm2 at 635 nm) and 0.2 % chlorhexidine (CHX). After treatment, colony forming units (CFUs)/ml were determined to assess PDT efficacy. The structure of the biofilm of A. actinomycetemcomitans was analyzed by field emission scanning electron microscopy (FESEM). RESULTS Under optimal conditions, the colony count was reduced by ∼90 %. Treatment with CHX was somewhat more effective (colony formation was reduced by ∼95 %), but this agent has adverse effects that can be avoided with PDT. CONCLUSION This study confirms the efficacy of PDT against A. actinomycetemcomitans depending on the light dose. Treatment with TBO + 635 nm diode laser has an effect that may be equivalent to that of CHX, but perhaps with fewer adverse effects.
Collapse
Affiliation(s)
- Mahnaz Arshad
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Prosthodontics, School of Dentistry, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Faraz Joshan
- International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Chiniforush
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV, Genoa, Italy.
| | - Shima Afrasiabi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Li Y, Sun G, Xie J, Xiao S, Lin C. Antimicrobial photodynamic therapy against oral biofilm: influencing factors, mechanisms, and combined actions with other strategies. Front Microbiol 2023; 14:1192955. [PMID: 37362926 PMCID: PMC10288113 DOI: 10.3389/fmicb.2023.1192955] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Oral biofilms are a prominent cause of a wide variety of oral infectious diseases which are still considered as growing public health problems worldwide. Oral biofilms harbor specific virulence factors that would aggravate the infectious process and present resistance to some traditional therapies. Antimicrobial photodynamic therapy (aPDT) has been proposed as a potential approach to eliminate oral biofilms via in situ-generated reactive oxygen species. Although numerous types of research have investigated the effectiveness of aPDT, few review articles have listed the antimicrobial mechanisms of aPDT on oral biofilms and new methods to improve the efficiency of aPDT. The review aims to summarize the virulence factors of oral biofilms, the progress of aPDT in various oral biofilm elimination, the mechanism mediated by aPDT, and combinatorial approaches of aPDT with other traditional agents.
Collapse
Affiliation(s)
- Yijun Li
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Guanwen Sun
- Department of Stomatology, Fujian Medical University Xiamen Humanity Hospital, Xiamen, China
| | - Jingchan Xie
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Suli Xiao
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Chen Lin
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| |
Collapse
|
6
|
Toluidine blue O directly and photodynamically impairs the bioenergetics of liver mitochondria: a potential mechanism of hepatotoxicity. Photochem Photobiol Sci 2023; 22:279-302. [PMID: 36152272 DOI: 10.1007/s43630-022-00312-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Toluidine blue O (TBO) is a phenothiazine dye that, due to its photochemical characteristics and high affinity for biomembranes, has been revealed as a new photosensitizer (PS) option for antimicrobial photodynamic therapy (PDT). This points to a possible association with membranous organelles like mitochondrion. Therefore, here we investigated its effects on mitochondrial bioenergetic functions both in the dark and under photostimulation. Two experimental systems were utilized: (a) isolated rat liver mitochondria and (b) isolated perfused rat liver. Our data revealed that, independently of photostimulation, TBO presented affinity for mitochondria. Under photostimulation, TBO increased the protein carbonylation and lipid peroxidation levels (up to 109.40 and 119.87%, respectively) and decreased the reduced glutathione levels (59.72%) in mitochondria. TBO also uncoupled oxidative phosphorylation and photoinactivated the respiratory chain complexes I, II, and IV, as well as the FoF1-ATP synthase complex. Without photostimulation, TBO caused uncoupling of oxidative phosphorylation and loss of inner mitochondrial membrane integrity and inhibited very strongly succinate oxidase activity. TBO's uncoupling effect was clearly seen in intact livers where it stimulated oxygen consumption at concentrations of 20 and 40 μM. Additionally, TBO (40 μM) reduced cellular ATP levels (52.46%) and ATP/ADP (45.98%) and ATP/AMP (74.17%) ratios. Consequently, TBO inhibited gluconeogenesis and ureagenesis whereas it stimulated glycogenolysis and glycolysis. In conclusion, we have revealed for the first time that the efficiency of TBO as a PS may be linked to its ability to photodynamically inhibit oxidative phosphorylation. In contrast, TBO is harmful to mitochondrial energy metabolism even without photostimulation, which may lead to adverse effects when used in PDT.
Collapse
|
7
|
Utkina EI, Gorbatova MA, Grjibovski AM, Gorbatova LN, Simakova AA. [Potentialities of photoactivated disinfection in dentistry]. STOMATOLOGIIA 2023; 102:84-90. [PMID: 37144773 DOI: 10.17116/stomat202310202184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Infection control is an essential part of dental practice. Oral antiseptics should be highly effective against the most common oral pathogens without causing microbial resistance, biocompatible with the human tissues with no interaction with fillings materials. Photoactivated disinfection (PAD) is based on activation of photosensitizers - specific substances releasing active oxygen forms after absorption of the light. The active oxygen forms destroy bacterial cell structures without affecting human cells. The overwhelming majority of Russian and international researchers have reported high effectiveness of PAD in periodontics, implantology and endodontics, whereas the use of PAD in caries treatment and prevention is not so fully understood yet. Earlier studies have demonstrated high sensitivity of cariogenic bacteria to PAD, suggesting it as an additional minimally invasive caries therapy improving treatment effectiveness. PAD spares dental tissues without reduction in the effectiveness of disinfection. It is particularly important in treatment of deep carious lesions and disinfection of thin dentine layer near the pulp. Effectiveness of PAD in caries treatment has been demonstrated for both permanent and deciduous dentition. PAD doesn't affect bond strength to fillings, improves plasticity of dental pulp and dental hard tissues mineralization in children. Effective control of a wide range of bacteria without causing resistance makes PAD a prospective method of treatment and prevention of caries.
Collapse
Affiliation(s)
- E I Utkina
- Northern State Medical University, Arkhangelsk, Russia
| | - M A Gorbatova
- Northern State Medical University, Arkhangelsk, Russia
| | - A M Grjibovski
- Northern State Medical University, Arkhangelsk, Russia
- West Kazakhstan Marat Ospanov Medical University, Aktobe, Republic of Kazakhstan
- Ammosov North-Eastern Federal University, Yakutsk, Russia
| | - L N Gorbatova
- Northern State Medical University, Arkhangelsk, Russia
| | - A A Simakova
- Northern State Medical University, Arkhangelsk, Russia
| |
Collapse
|
8
|
Brenes-Alvarado A, Soto-Montero J, Farias-da-Silva FF, Benine-Warlet J, Ribeiro AF, Groppo FC, Steiner-Oliveira C. Does potassium iodide help in the microbial reduction of oral microcosm biofilms after photodynamic therapy with methylene blue and red laser? Photodiagnosis Photodyn Ther 2022; 40:103123. [PMID: 36115559 DOI: 10.1016/j.pdpdt.2022.103123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/13/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To evaluate the efficacy of methylene blue (MB)-mediated antimicrobial photodynamic therapy (aPDT) doped with potassium iodide (KI) against oral microcosms biofilms cultured in dentin. METHODS A saliva-glycerol stock formed from pooled human saliva was diluted in McBain artificial saliva with 1% sucrose (1:1), inoculated on bovine dentin blocks, and refreshed daily for 5 days. The biofilms were divided (n = 9/group) and treated with 0.9% NaCl (C), 0.2% chlorhexidine (CX), 0.01% MB + low-power laser 15 J, 88 mW, 180 s (PL), and 0.01% MB + 50 mM KI + laser (PKIL). Serial dilution was performed, and cellular viability (CFU/mL) was evaluated for total microorganisms, total lactobacilli, total streptococci, and S. mutans. Additional biofilms were cultured and treated (n = 4) for biomass determination (%BMR). The microscopic structure of the biofilms was observed by SEM. One-way ANOVA and Tukey tests were conducted (α=5%). RESULTS Total microorganisms and total streptococci significantly reduced in biofilms treated with CX and PKIL when compared to C, but the CX, PKIL, and PL treatments did not differ from each other. Total lactobacilli and S. mutans showed a significant reduction in the CX, PL, and PKIL groups when compared to C, but with no difference between them. Biomass analysis showed a significantly reduction for CX and PKIL compared to C. SEM micrographs showed noticeable changes in bacterial membrane integrity for the PKIL and CX groups. CONCLUSION The addition of KI to methylene blue-mediated aPDT in microcosm biofilms was effective in reducing oral microorganisms, but the effect was group dependent.
Collapse
Affiliation(s)
- Alejandra Brenes-Alvarado
- Department of Health Sciences and Pediatric Dentistry, Piracicaba Dental School, University of Campinas - UNICAMP, Av. Limeira, 901 - Areião, Piracicaba, SP 13414-903, Brazil; Department of Pediatric Dentistry and Orthodontics, School of Dentistry, University of Costa Rica, Instalaciones Deportivas, Montes de Oca, San José 11501-2060, Costa Rica
| | - Jorge Soto-Montero
- Department of Restorative Dentistry, School of Dentistry, University of Costa Rica, Instalaciones Deportivas, Montes de Oca, San José 11501-2060, Costa Rica
| | - Felipe Fabrício Farias-da-Silva
- Department of Health Sciences and Pediatric Dentistry, Piracicaba Dental School, University of Campinas - UNICAMP, Av. Limeira, 901 - Areião, Piracicaba, SP 13414-903, Brazil
| | - Juliana Benine-Warlet
- Department of Health Sciences and Pediatric Dentistry, Piracicaba Dental School, University of Campinas - UNICAMP, Av. Limeira, 901 - Areião, Piracicaba, SP 13414-903, Brazil
| | - Andreza Ferraz Ribeiro
- Department of Health Sciences and Pediatric Dentistry, Piracicaba Dental School, University of Campinas - UNICAMP, Av. Limeira, 901 - Areião, Piracicaba, SP 13414-903, Brazil
| | - Francisco Carlos Groppo
- Department of Biosciences, Piracicaba Dental School, University of Campinas - UNICAMP, Av. Limeira, 901 - Areião, Piracicaba, SP 3414-903, Brazil
| | - Carolina Steiner-Oliveira
- Department of Health Sciences and Pediatric Dentistry, Piracicaba Dental School, University of Campinas - UNICAMP, Av. Limeira, 901 - Areião, Piracicaba, SP 13414-903, Brazil.
| |
Collapse
|
9
|
Li Y, Du J, Huang S, Wang S, Wang Y, Lei L, Zhang C, Huang X. Antimicrobial Photodynamic Effect of Cross-Kingdom Microorganisms with Toluidine Blue O and Potassium Iodide. Int J Mol Sci 2022; 23:11373. [PMID: 36232675 PMCID: PMC9569606 DOI: 10.3390/ijms231911373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Streptococcus mutans (S. mutans) and Candida albicans (C. albicans) are prominent microbes associated with rapid and aggressive caries. In the present study, we investigated the antimicrobial efficacy, cytotoxicity, and mechanism of toluidine blue O (TBO)-mediated antimicrobial photodynamic therapy (aPDT) and potassium iodide (KI). The dependence of KI concentration, TBO concentration and light dose on the antimicrobial effect of aPDT plus KI was determined. The cytotoxicity of TBO-mediated aPDT plus KI was analyzed by cell counting kit-8 (CCK-8) assay. A singlet oxygen (1O2) probe test, time-resolved 1O2 detection, and a 1O2 quencher experiment were performed to evaluate the role of 1O2 during aPDT plus KI. The generation of iodine and hydrogen peroxide (H2O2) were analyzed by an iodine starch test and Amplex red assay. The anti-biofilm effect of TBO-mediated aPDT plus KI was also evaluated by counting forming unit (CFU) assay. KI could potentiate TBO-mediated aPDT against S. mutans and C. albicans in planktonic and biofilm states, which was safe for human dental pulp cells. 1O2 measurement showed that KI could quench 1O2 signals, implicating that 1O2 may act as a principal mediator to oxidize excess iodide ions to form iodine and H2O2. KI could highly potentiate TBO-mediated aPDT in eradicating S. mutans and C. albicans due to the synergistic effect of molecular iodine and H2O2.
Collapse
Affiliation(s)
- Yijun Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Jingyun Du
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Shan Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Shaofeng Wang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Yanhuang Wang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Lishan Lei
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Chengfei Zhang
- Restorative Dental Sciences (Endodontics), Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School of Stomatology, Fujian Medical University, Fuzhou 350002, China
| |
Collapse
|
10
|
The results of the index comparative evaluation of photodynamic therapy and ultraviolet irradiation in the treatment of chronic gingivitis. BIOMEDICAL PHOTONICS 2022. [DOI: 10.24931/2413-9432-2022-11-1-13-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this clinical study, the effect of photodynamic therapy and ultraviolet radiation on the effectiveness of the treatment of periodontal diseases was examined according to the results of an index assessment. Clinical examination of 95 patients of both sexes aged from 18 to 32 years revealed chronic generalized catarrhal gingivitis (K05.1). The main index criteria for comparative parameters in all study groups were: simplified OHI-S hygiene index, Mullemann-Cowell bleeding index, PMA index. The indices were measured before and after treatment with subsequent control examinations in 1 month, 3 months, 6 months. The patients were divided into three groups and each group underwent standard periodontal treatment aimed at stopping the inflammatory process and preventing its further development. In the first group, the treatment was supplemented with the use of the FotoSan LED lamp with a wavelength of 630 nm, in the second the “Quasar” ultraviolet irradiator was used, in the third (control) group, the complex of therapeutic measures was carried out without physiotherapeutic procedures. According to the results of the study, the use of photodynamic therapy significantly accelerates the regenerative processes of periodontal epithelial tissue and reduces the number of treatment sessions.
Collapse
|
11
|
Balhaddad AA, Xia Y, Lan Y, Mokeem L, Ibrahim MS, Weir MD, Xu HHK, Melo MAS. Magnetic-Responsive Photosensitizer Nanoplatform for Optimized Inactivation of Dental Caries-Related Biofilms: Technology Development and Proof of Principle. ACS NANO 2021; 15:19888-19904. [PMID: 34878250 DOI: 10.1021/acsnano.1c07397] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conventional antibiotic therapies for biofilm-trigged oral diseases are becoming less efficient due to the emergence of antibiotic-resistant bacterial strains. Antimicrobial photodynamic therapy (aPDT) is hampered by restricted access to bacterial communities embedded within the dense extracellular matrix of mature biofilms. Herein, a versatile photosensitizer nanoplatform (named MagTBO) was designed to overcome this obstacle by integrating toluidine-blue ortho (TBO) photosensitizer and superparamagnetic iron oxide nanoparticles (SPIONs) via a microemulsion method. In this study, we reported the preparation, characterization, and application of MagTBO for aPDT. In the presence of an external magnetic field, the MagTBO microemulsion can be driven and penetrate deep sites inside the biofilms, resulting in an improved photodynamic disinfection effect compared to using TBO alone. Besides, the obtained MagTBO microemulsions revealed excellent water solubility and stability over time, enhanced the aPDT performance against S. mutans and saliva-derived multispecies biofilms, and improved the TBO's biocompatibility. Such results demonstrate a proof-of-principle for using microemulsion as a delivery vehicle and magnetic field as a navigation approach to intensify the antibacterial action of currently available photosensitizers, leading to efficient modulation of pathogenic oral biofilms.
Collapse
Affiliation(s)
- Abdulrahman A Balhaddad
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Department of Restorative Dental Sciences, Imam Abdulrahman Bin Faisal University, College of Dentistry, Dammam 31441, Saudi Arabia
| | - Yang Xia
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yucheng Lan
- Department of Physics and Engineering Physics, Morgan State University, 1700 East Cold Spring Lane, Baltimore, Maryland 21251, United States
| | - Lamia Mokeem
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Maria S Ibrahim
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Department of Preventive Dental Sciences, Imam Abdulrahman Bin Faisal University, College of Dentistry, Dammam 31441, Saudi Arabia
| | - Michael D Weir
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Hockin H K Xu
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Mary Anne S Melo
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Division of Operative Dentistry, Dept. of General Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| |
Collapse
|
12
|
Chen X, Daliri EBM, Tyagi A, Oh DH. Cariogenic Biofilm: Pathology-Related Phenotypes and Targeted Therapy. Microorganisms 2021; 9:microorganisms9061311. [PMID: 34208588 PMCID: PMC8234214 DOI: 10.3390/microorganisms9061311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/06/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023] Open
Abstract
The initiation and development of cariogenic (that is, caries-related) biofilms are the result of the disruption of homeostasis in the oral microenvironment. There is a daily accumulation of dental biofilm on the surface of teeth and its matrix of extracellular polymers supports the host in its defense against invading microbes, thus helping to achieve oral microbial homeostasis. However, the homeostasis can be broken down under certain circumstances such as during long-term exposure to a low pH environment which results in the dominance of acidogenic and acid-tolerating species in the dental biofilm and, thus, triggers the shift of harmless biofilm to an acidic one. This work aims to explore microbial diversity and the quorum sensing of dental biofilm and their important contributions to oral health and disease. The complex and multispecies ecosystems of the cariogenic biofilm pose significant challenges for the modulation of the oral microenvironment. Promising treatment strategies are those that target cariogenic niches with high specificity without disrupting the balance of the surrounding oral microbiota. Here, we summarized the recent advances in modulating cariogenic biofilm and/or controlling its pathogenic traits.
Collapse
|