1
|
Roterman I, Slupina M, Konieczny L. Protein folding: Funnel model revised. Comput Struct Biotechnol J 2024; 23:3827-3838. [PMID: 39525086 PMCID: PMC11550765 DOI: 10.1016/j.csbj.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The spatial structure of proteins, largely determined by their amino acid sequences, is also dependent on the environmental conditions under which the folding process takes place. In aqueous environments, exposure of polar amino acids is the driving factor, whereas protein stabilization in amphipathic membranes requires exposure to hydrophobic residues. This observation can be extended to all other environmental conditions under which proteins exhibit biological activity and, most importantly, to the folding process. The fuzzy oil drop (FOD) model assumes a centric location of hydrophobic residues (hydrophobic core) with exposure of polar residues towards the aqueous environment, as the influence of the aqueous environment is extended to include the contribution of other non-aqueous factors, enabling the assessment of their influence on protein structuring. The application of the modified FOD model (FOD-M) we have developed allows the environment to be represented as an external force field in the form of a continuum. The role of environmental conditions allows modification of the funnel model expressing the localization of the energy minimum as dependent on external conditions expressed by the K scale, where K measures the degree of other than polar water factors participating in folding process.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Medyczna 7, 30-688 Kraków, Poland
| | - Mateusz Slupina
- Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Medyczna 7, 30-688 Kraków, Poland
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, 31-034 Kraków, Poland
| |
Collapse
|
2
|
Roterman I, Stapor K, Dułak D, Konieczny L. Domain swapping: a mathematical model for quantitative assessment of structural effects. FEBS Open Bio 2024. [PMID: 39370305 DOI: 10.1002/2211-5463.13911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/14/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024] Open
Abstract
The domain-swapping mechanism involves the exchange of structural elements within a secondary or supersecondary structure between two (or more) proteins. The present paper proposes to interpret the domain-swapping mechanism using a model that assesses the structure of proteins (and complexes) based on building the structure of a common hydrophobic core in a micelle-like arrangement (a central hydrophobic core with a polar shell in contact with polar water), which has a considerable impact on the stabilisation of the domain structure built by domain swapping. Domains with a hydrophobicity system that is incompatible with the micelle-like structure have also been identified. This incompatibility is the form of structural codes related to biological function.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University - Medical College, Krakow, Poland
| | - Katarzyna Stapor
- Department of Applied Informatics, Silesian University of Technology, Gliwice, Poland
| | - Dawid Dułak
- ABB Business Services Sp. z o.o. ul, Warszawa, Poland
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Jagiellonian University - Medical College, Krakow, Poland
| |
Collapse
|
3
|
Roterman I, Slupina M, Stapor K, Konieczny L, Gądek K, Nowakowski P. Chameleon Sequences-Structural Effects in Proteins Characterized by Hydrophobicity Disorder. ACS OMEGA 2024; 9:38506-38522. [PMID: 39310170 PMCID: PMC11411663 DOI: 10.1021/acsomega.4c03658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024]
Abstract
Repeated protein folding processes both in vivo and in vitro leading to the same structure for a specific amino acid sequence prove that the amino acid sequence determines protein structuring. This is also evidenced by the variability of structuring, dependent on the introduced mutations. An important phenomenon in this regard is the presence of a differentiated secondary structure for chain fragments of identical sequence representing distinct forms of the secondary-order structure. Proteins termed chameleon proteins contain polypeptide chain fragments of identical sequence (length 6-12 aa) showing structural differentiation: helix versus β-structure. In the present paper, it was shown that these fragments represent components matching the structural status dictated by the physicochemical properties of the entire structural unit. This structural matching is related to achieving the goal of the biological function of the structural unit. The corresponding secondary structure represents a means to achieving this goal, not an end in itself. A selected set of proteins from the ChSeq database have been analyzed using a fuzzy oil drop model (FOD-M) identifying the uniqueness of the hydrophobicity distribution taken as a medium for recording the specificity of a given protein and a given chameleon section in particular. It was shown that in the vast majority, the status of chameleon sections turns out to be comparable regardless of the represented secondary structure.
Collapse
Affiliation(s)
- Irena Roterman
- Department
of Bioinformatics and Telemedicine, Jagiellonian
University—Medical College, Medyczna 7, 30-688 Krakow, Poland
| | - Mateusz Slupina
- ALSTOM
ZWUS Sp. z o.o., Modelarska
12, 40-142 Katowice, Poland
| | - Katarzyna Stapor
- Faculty
of Automatic, Electronics and Computer Science, Department of Applied
Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Leszek Konieczny
- Chair
of Medical Biochemistry, Jagiellonian University—Medical
College, Kopernika 7, 31-034 Krakow, Poland
| | - Krzysztof Gądek
- AGH
Cyfronet, SANO SCIENCE, Nawojki 11, 30-950 Kraków, Poland
| | | |
Collapse
|
4
|
Cai W, Peng S, Tian Y, Bao Y, Liu Q, Dong Y, Liang Z, Liu Q, Ren Y, Ding P, Liu J, Xu T, Li Y. Hydrophobic core evolution of major histocompatibility complex class I chain-related protein A for dramatic enhancing binding affinity. Int J Biol Macromol 2024; 271:132588. [PMID: 38788878 DOI: 10.1016/j.ijbiomac.2024.132588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Interface residues at sites of protein-protein interaction (PPI) are the focus for affinity optimisation. However, protein hydrophobic cores (HCs) play critical roles and shape the protein surface. We hypothesise that manipulating protein HCs can enhance PPI interaction affinities. A cell stress molecule, major histocompatibility complex class I chain-related protein A (MICA), binds to the natural killer group 2D (NKG2D) homodimer to form three molecule interactions. MICA was used as a study subject to support our hypothesis. We redesigned MICA HCs by directed mutagenesis and isolated high-affinity variants through a newly designed partial-denature panning (PDP) method. A few mutations in MICA HCs increased the NKG2D-MICA interaction affinity by 325-5613-fold. Crystal structures of the NKG2D-MICA variant complexes indicated that mutagenesis of MICA HCs stabilised helical elements for decreasing intermolecular interactive free energy (ΔG) of the NKG2D-MICA heterotrimer. The repacking of MICA HC mutants maintained overall surface residues and the authentic binding specificity of MICA. In conclusion, this study provides a new method for MICA redesign and affinity optimisation through HC manipulation without mutating PPI interface residues. Our study introduces a novel approach to protein manipulation, potentially expanding the toolkit for protein affinity optimisation.
Collapse
Affiliation(s)
- Wenxuan Cai
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; TIOC Therapeutics Limited, Hangzhou 310018, China
| | - Siqi Peng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Tian
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; TIOC Therapeutics Limited, Hangzhou 310018, China
| | - Yifeng Bao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qiang Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yan Dong
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhaoduan Liang
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510530, China
| | - Qi Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; TIOC Therapeutics Limited, Hangzhou 310018, China
| | - Yuefei Ren
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Peng Ding
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Tingting Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Yi Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; TIOC Therapeutics Limited, Hangzhou 310018, China; University of Chinese Academy of Sciences, Beijing 100049, China; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510530, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
5
|
Roterman I, Stapor K, Konieczny L. Transmembrane proteins-Different anchoring systems. Proteins 2024; 92:593-609. [PMID: 38062872 DOI: 10.1002/prot.26646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/03/2023] [Accepted: 11/17/2023] [Indexed: 04/13/2024]
Abstract
Transmembrane proteins are active in amphipathic environments. To stabilize the protein in such surrounding the exposure of hydrophobic residues on the protein surface is required. Transmembrane proteins are responsible for the transport of various molecules. Therefore, they often represent structures in the form of channels. This analysis focused on the stability and local flexibility of transmembrane proteins, particularly those related to their biological activity. Different forms of anchorage were identified using the fuzzy oil-drop model (FOD) and its modified form, FOD-M. The mainly helical as well as β-barrel structural forms are compared with respect to the mechanism of stabilization in the cell membrane. The different anchoring system was found to stabilize protein molecules with possible local fluctuation.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University-Medical College, Krakow, Poland
| | - Katarzyna Stapor
- Faculty of Automatic, Electronics and Computer Science, Department of Applied Informatics, Silesian University of Technology, Gliwice, Poland
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Jagiellonian University-Medical College, Krakow, Poland
| |
Collapse
|
6
|
Roterman I, Stapor K, Dułak D, Konieczny L. External Force Field for Protein Folding in Chaperonins-Potential Application in In Silico Protein Folding. ACS OMEGA 2024; 9:18412-18428. [PMID: 38680295 PMCID: PMC11044213 DOI: 10.1021/acsomega.4c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
The present study discusses the influence of the TRiC chaperonin involved in the folding of the component of reovirus mu1/σ3. The TRiC chaperone is treated as a provider of a specific external force field in the fuzzy oil drop model during the structural formation of a target folded protein. The model also determines the status of the final product, which represents the structure directed by an external force field in the form of a chaperonin. This can be used for in silico folding as the process is environment-dependent. The application of the model enables the quantitative assessment of the folding dependence of an external force field, which appears to have universal application.
Collapse
Affiliation(s)
- Irena Roterman
- Department
of Bioinformatics and Telemedicine, Jagiellonian
University—Medical College, Medyczna 7, Kraków 30-688, Poland
| | - Katarzyna Stapor
- Faculty
of Automatic, Electronics and Computer Science, Department of Applied
Informatics, Silesian University of Technology, Akademicka 16, Gliwice 44-100, Poland
| | - Dawid Dułak
- ABB
Business Services Sp. z o.o, ul Żegańska 1, Warszawa 04-713, Poland
| | - Leszek Konieczny
- Chair
of Medical Biochemistry—Jagiellonian University—Medical
College, Kopernika 7, Kraków 31-034, Poland
| |
Collapse
|
7
|
Roterman I, Stapor K, Konieczny L. Model of the external force field for the protein folding process-the role of prefoldin. Front Chem 2024; 12:1342434. [PMID: 38595701 PMCID: PMC11002104 DOI: 10.3389/fchem.2024.1342434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/20/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction: The protein folding process is very sensitive to environmental conditions. Many possibilities in the form of numerous pathways for this process can-if an incorrect one is chosen-lead to the creation of forms described as misfolded. The aqueous environment is the natural one for the protein folding process. Nonetheless, other factors such as the cell membrane and the presence of specific molecules (chaperones) affect this process, ensuring the correct expected structural form to guarantee biological activity. All these factors can be considered components of the external force field for this process. Methods: The fuzzy oil drop-modified (FOD-M) model makes possible the quantitative evaluation of the modification of the external field, treating the aqueous environment as a reference. The FOD-M model (tested on membrane proteins) includes the component modifying the water environment, allowing the assessment of the external force field generated by prefoldin. Results: In this work, prefoldin was treated as the provider of a specific external force field for actin and tubulin. The discussed model can be applied to any folding process simulation, taking into account the changed external conditions. Hence, it can help simulate the in silico protein folding process under defined external conditions determined by the respective external force field. In this work, the structures of prefoldin and protein folded with the participation of prefoldin were analyzed. Discussion: Thus, the role of prefoldin can be treated as a provider of an external field comparable to other environmental factors affecting the protein folding process.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University–Medical College, Krakow, Poland
| | - Katarzyna Stapor
- Department of Applied Informatics, Faculty of Automatic, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Jagiellonian University–Medical College, Krakow, Poland
| |
Collapse
|
8
|
Roterman I, Konieczny L, Stapor K, Słupina M. Hydrophobicity-Based Force Field In Enzymes. ACS OMEGA 2024; 9:8188-8203. [PMID: 38405467 PMCID: PMC10882594 DOI: 10.1021/acsomega.3c08728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/05/2024] [Accepted: 01/25/2024] [Indexed: 02/27/2024]
Abstract
The biocatalysis process takes place with the participation of enzymes, which, depending on the reaction carried out, require, apart from the appropriate arrangement of catalytic residues, an appropriate external force field. It is generated by the protein body. The relatively small size of the part directly involved in the process itself is supported by the presence of an often complex structure of the protein body, the purpose of which is to provide an appropriate local force field, eliminating the influence of water. Very often, the large size of the enzyme is an expression of the complex form of this field. In this paper, a comparative analysis of arbitrarily selected enzymes, representatives of different enzyme classes, was carried out, focusing on the measurement of the diversity of the force field provided by a given protein. This analysis was based on the fuzzy oil drop model (FOD) and its modified version (FOD-M), which takes into account the participation of nonaqueous external factors in shaping the structure and thus the force field within the protein. The degree and type of ordering of the hydrophobicity distribution in the protein molecule is the result of the influence of the environment but also the supplier of the local environment for a given process, including the catalysis process in particular. Determining the share of a nonaqueous environment is important due to the ubiquity of polar water, whose participation in processes with high specificity requires control. It can be assumed that some enzymes in their composition have a permanently built-in part, the role of which is reduced to that of a permanent chaperone. It provides a specific external force field needed for the process. The proposed model, generalized to other types of proteins, may also provide a form of recording the environment model for the simulation of the in silico protein folding process, taking into account the impact of its differentiation.
Collapse
Affiliation(s)
- Irena Roterman
- Department
of Bioinformatics and Telemedicine, Jagiellonian
University—Medical College, Medyczna 7, 30-688 Kraków, Poland
| | - Leszek Konieczny
- Chair
of Medical Biochemistry, Jagiellonian University—Medical
College, Kopernika 7, 31-034 Kraków, Poland
| | - Katarzyna Stapor
- Faculty
of Automatic, Electronics and Computer Science, Department of Applied
Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Mateusz Słupina
- ALSTOM
ZWUS Sp. z o.o, Modelarska
12, 40-142 Katowice, Poland
| |
Collapse
|
9
|
Roterman I, Stapor K, Konieczny L. Role of environmental specificity in CASP results. BMC Bioinformatics 2023; 24:425. [PMID: 37950210 PMCID: PMC10638730 DOI: 10.1186/s12859-023-05559-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Recently, significant progress has been made in the field of protein structure prediction by the application of artificial intelligence techniques, as shown by the results of the CASP13 and CASP14 (Critical Assessment of Structure Prediction) competition. However, the question of the mechanism behind the protein folding process itself remains unanswered. Correctly predicting the structure also does not solve the problem of, for example, amyloid proteins, where a polypeptide chain with an unaltered sequence adopts a different 3D structure. RESULTS This work was an attempt at explaining the structural variation by considering the contribution of the environment to protein structuring. The application of the fuzzy oil drop (FOD) model to assess the validity of the selected models provided in the CASP13, CASP14 and CASP15 projects reveals the need for an environmental factor to determine the 3D structure of proteins. Consideration of the external force field in the form of polar water (Fuzzy Oil Drop) and a version modified by the presence of the hydrophobic compounds, FOD-M (FOD-Modified) reveals that the protein folding process is environmentally dependent. An analysis of selected models from the CASP competitions indicates the need for structure prediction as dependent on the consideration of the protein folding environment. CONCLUSIONS The conditions governed by the environment direct the protein folding process occurring in a certain environment. Therefore, the variation of the external force field should be taken into account in the models used in protein structure prediction.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University - Medical College, Medyczna 7, 30-688, Krakow, Poland.
| | - Katarzyna Stapor
- Faculty of Automatic, Electronics and Computer Science, Department of Applied, Informatics, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Leszek Konieczny
- Jagiellonian University - Medical College, Kopernika 7, 31-034, Krakow, Poland
| |
Collapse
|
10
|
Roterman I, Stapor K, Konieczny L. Ab initio protein structure prediction: the necessary presence of external force field as it is delivered by Hsp40 chaperone. BMC Bioinformatics 2023; 24:418. [PMID: 37932669 PMCID: PMC10629080 DOI: 10.1186/s12859-023-05545-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The aqueous environment directs the protein folding process towards the generation of micelle-type structures, which results in the exposure of hydrophilic residues on the surface (polarity) and the concentration of hydrophobic residues in the center (hydrophobic core). Obtaining a structure without a hydrophobic core requires a different type of external force field than those generated by a water. The examples are membrane proteins, where the distribution of hydrophobicity is opposite to that of water-soluble proteins. Apart from these two extreme examples, the process of protein folding can be directed by chaperones, resulting in a structure devoid of a hydrophobic core. RESULTS The current work presents such example: DnaJ Hsp40 in complex with alkaline phosphatase PhoA-U (PDB ID-6PSI)-the client molecule. The availability of WT form of the folding protein-alkaline phosphatase (PDB ID-1EW8) enables a comparative analysis of the structures: at the stage of interaction with the chaperone and the final, folded structure of this biologically active protein. The fuzzy oil drop model in its modified FOD-M version was used in this analysis, taking into account the influence of an external force field, in this case coming from a chaperone. CONCLUSIONS The FOD-M model identifies the external force field introduced by chaperon influencing the folding proces. The identified specific external force field can be applied in Ab Initio protein structure prediction as the environmental conditioning the folding proces.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University - Medical College, Medyczna 7, 30-688, Krakow, Poland.
| | - Katarzyna Stapor
- Department of Applied Informatics, Silesian University of Technology, Gliwice, Poland
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Jagiellonian University - Medical College, Kopernika 7, 31-034, Krakow, Poland
| |
Collapse
|
11
|
Roterman I, Konieczny L. Protein Is an Intelligent Micelle. ENTROPY (BASEL, SWITZERLAND) 2023; 25:850. [PMID: 37372194 DOI: 10.3390/e25060850] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/22/2023] [Accepted: 04/28/2023] [Indexed: 06/29/2023]
Abstract
Interpreting biological phenomena at the molecular and cellular levels reveals the ways in which information that is specific to living organisms is processed: from the genetic record contained in a strand of DNA, to the translation process, and then to the construction of proteins that carry the flow and processing of information as well as reveal evolutionary mechanisms. The processing of a surprisingly small amount of information, i.e., in the range of 1 GB, contains the record of human DNA that is used in the construction of the highly complex system that is the human body. This shows that what is important is not the quantity of information but rather its skillful use-in other words, this facilitates proper processing. This paper describes the quantitative relations that characterize information during the successive steps of the "biological dogma", illustrating a transition from the recording of information in a DNA strand to the production of proteins exhibiting a defined specificity. It is this that is encoded in the form of information and that determines the unique activity, i.e., the measure of a protein's "intelligence". In a situation of information deficit at the transformation stage of a primary protein structure to a tertiary or quaternary structure, a particular role is served by the environment as a supplier of complementary information, thus leading to the achievement of a structure that guarantees the fulfillment of a specified function. Its quantitative evaluation is possible via using a "fuzzy oil drop" (FOD), particularly with respect to its modified version. This can be achieved when taking into account the participation of an environment other than water in the construction of a specific 3D structure (FOD-M). The next step of information processing on the higher organizational level is the construction of the proteome, where the interrelationship between different functional tasks and organism requirements can be generally characterized by homeostasis. An open system that maintains the stability of all components can be achieved exclusively in a condition of automatic control that is realized by negative feedback loops. This suggests a hypothesis of proteome construction that is based on the system of negative feedback loops. The purpose of this paper is the analysis of information flow in organisms with a particular emphasis on the role of proteins in this process. This paper also presents a model introducing the component of changed conditions and its influence on the protein folding process-since the specificity of proteins is coded in their structure.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University-Medical College, Medyczna 7, 30-688 Kraków, Poland
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Jagiellonian University-Medical College, Kopernika 7, 31-034 Kraków, Poland
| |
Collapse
|
12
|
Roterman I, Stapor K, Konieczny L. New insights on the catalytic center of proteins from peptidylprolyl isomerase group based on the FOD-M model. J Cell Biochem 2023. [PMID: 37139783 DOI: 10.1002/jcb.30407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023]
Abstract
Generating the structure of the hydrophobic core is based on the orientation of hydrophobic residues towards the central part of the protein molecule with the simultaneous exposure of polar residues. Such a course of the protein folding process takes place with the active participation of the polar water environment. While the self-assembly process leading to the formation of micelles concerns freely moving bi-polar molecules, bipolar amino acids in polypeptide chain have limited mobility due to the covalent bonds. Therefore, proteins form a more or less perfect micelle-like structure. The criterion is the hydrophobicity distribution, which to a greater or lesser extent reproduces the distribution expressed by the 3D Gaussian function on the protein body. The vast majority of proteins must ensure solubility, so a certain part of it-as it is expected-should reproduce the structuring of micelles. The biological activity of proteins is encoded in the part that does not reproduce the micelle-like system. The location and quantitative assessment of the contribution of orderliness to disorder is of critical importance for the determination of biological activity. The form of maladjustment to the 3D Gauss function may be varied-hence the obtained high diversity of specific interactions with strictly defined molecules: ligands or substrates. The correctness of this interpretation was verified on the basis of the group of enzymes Peptidylprolyl isomerase-E.C.5.2.1.8. In proteins representing this class of enzymes, zones responsible for solubility-micelle-like hydrophobicity system-the location and specificity of the incompatible part in which the specific activity of the enzyme is located and coded were identified. The present study showed that the enzymes of the discussed group show two different schemes of the structure of catalytic center (taking into account the status as defined by the fuzzy oil drop model).
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University-Medical College, Kraków, Poland
| | - Katarzyna Stapor
- Department of Applied Informatics, Faculty of Automatic, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Jagiellonian University-Medical College, Kraków, Poland
| |
Collapse
|
13
|
Roterman I, Stapor K, Konieczny L. Structural Specificity of Polymorphic Forms of α-Synuclein Amyloid. Biomedicines 2023; 11:biomedicines11051324. [PMID: 37238996 DOI: 10.3390/biomedicines11051324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The structural transformation producing amyloids is a phenomenon that sheds new light on the protein folding problem. The analysis of the polymorphic structures of the α-synuclein amyloid available in the PDB database allows analysis of the amyloid-oriented structural transformation itself, but also the protein folding process as such. The polymorphic amyloid structures of α-synuclein analyzed employing the hydrophobicity distribution (fuzzy oil drop model) reveal a differentiation with a dominant distribution consistent with the micelle-like system (hydrophobic core with polar shell). This type of ordering of the hydrophobicity distribution covers the entire spectrum from the example with all three structural units (single chain, proto-fibril, super-fibril) exhibiting micelle-like form, through gradually emerging examples of local disorder, to structures with an extremely different structuring pattern. The water environment directing protein structures towards the generation of ribbon micelle-like structures (concentration of hydrophobic residues in the center of the molecule forming a hydrophobic core with the exposure of polar residues on the surface) also plays a role in the amyloid forms of α-synuclein. The polymorphic forms of α-synuclein reveal local structural differentiation with a common tendency to accept the micelle-like structuralization in certain common fragments of the polypeptide chain of this protein.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University-Medical College, Medyczna 7, 30-688 Krakow, Poland
| | - Katarzyna Stapor
- Department of Applied Informatics, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Leszek Konieczny
- Medical Biochemistry, Jagiellonian University-Medical College, Kopernika 7, 31-034 Krakow, Poland
| |
Collapse
|
14
|
Dependence of Protein Structure on Environment: FOD Model Applied to Membrane Proteins. MEMBRANES 2021; 12:membranes12010050. [PMID: 35054576 PMCID: PMC8778870 DOI: 10.3390/membranes12010050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022]
Abstract
The natural environment of proteins is the polar aquatic environment and the hydrophobic (amphipathic) environment of the membrane. The fuzzy oil drop model (FOD) used to characterize water-soluble proteins, as well as its modified version FOD-M, enables a mathematical description of the presence and influence of diverse environments on protein structure. The present work characterized the structures of membrane proteins, including those that act as channels, and a water-soluble protein for contrast. The purpose of the analysis was to verify the possibility that an external force field can be used in the simulation of the protein-folding process, taking into account the diverse nature of the environment that guarantees a structure showing biological activity.
Collapse
|
15
|
Roterman I, Stapor K, Gądek K, Gubała T, Nowakowski P, Fabian P, Konieczny L. On the Dependence of Prion and Amyloid Structure on the Folding Environment. Int J Mol Sci 2021; 22:ijms222413494. [PMID: 34948291 PMCID: PMC8707753 DOI: 10.3390/ijms222413494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 01/22/2023] Open
Abstract
Currently available analyses of amyloid proteins reveal the necessity of the existence of radical structural changes in amyloid transformation processes. The analysis carried out in this paper based on the model called fuzzy oil drop (FOD) and its modified form (FOD-M) allows quantifying the role of the environment, particularly including the aquatic environment. The starting point and basis for the present presentation is the statement about the presence of two fundamentally different methods of organizing polypeptides into ordered conformations—globular proteins and amyloids. The present study shows the source of the differences between these two paths resulting from the specificity of the external force field coming from the environment, including the aquatic and hydrophobic one. The water environment expressed in the fuzzy oil drop model using the 3D Gauss function directs the folding process towards the construction of a micelle-like system with a hydrophobic core in the central part and the exposure of polarity on the surface. The hydrophobicity distribution of membrane proteins has the opposite characteristic: Exposure of hydrophobicity at the surface of the membrane protein with an often polar center (as in the case of ion channels) is expected. The structure of most proteins is influenced by a more or less modified force field generated by water through the appropriate presence of a non-polar (membrane-like) environment. The determination of the proportion of a factor different from polar water enables the assessment of the protein status by indicating factors favoring the structure it represents.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, 31-034 Kopernika 7, 30-688 Krakow, Poland
- Correspondence:
| | - Katarzyna Stapor
- Department of Applied Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland;
| | - Krzysztof Gądek
- Sano Centre for Computation Medicine, Czarnowiejska 36, 30-054 Kraków, Poland; (K.G.); (T.G.); (P.N.)
| | - Tomasz Gubała
- Sano Centre for Computation Medicine, Czarnowiejska 36, 30-054 Kraków, Poland; (K.G.); (T.G.); (P.N.)
| | - Piotr Nowakowski
- Sano Centre for Computation Medicine, Czarnowiejska 36, 30-054 Kraków, Poland; (K.G.); (T.G.); (P.N.)
| | - Piotr Fabian
- Department of Algorithmics and Software, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland;
| | - Leszek Konieczny
- Department of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Kopernika 7, 31-034 Krakow, Poland;
| |
Collapse
|
16
|
Diana D, Di Stasi R, García-Viñuales S, De Rosa L, Isernia C, Malgieri G, Milardi D, D'Andrea LD, Fattorusso R. Structural characterization of the thermal unfolding pathway of human VEGFR1 D2 domain. FEBS J 2021; 289:1591-1602. [PMID: 34689403 PMCID: PMC9299094 DOI: 10.1111/febs.16246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 11/27/2022]
Abstract
Folding stability is a crucial feature of protein evolution and is essential for protein functions. Thus, the comprehension of protein folding mechanisms represents an important complement to protein structure and function, crucial to determine the structural basis of protein misfolding. In this context, thermal unfolding studies represent a useful tool to get a molecular description of the conformational transitions governing the folding/unfolding equilibrium of a given protein. Here, we report the thermal folding/unfolding pathway of VEGFR1D2, a member of the immunoglobulin superfamily by means of a high-resolution thermodynamic approach that combines differential scanning calorimetry with atomic-level unfolding monitored by NMR. We show how VEGFR1D2 folding is driven by an oxidatively induced disulfide pairing: the key event in the achievement of its functional structure is the formation of a small hydrophobic core that surrounds a disulfide bridge. Such a 'folding nucleus' induces the cooperative transition to the properly folded conformation supporting the hypothesis that a disulfide bond can act as a folding nucleus that eases the folding process.
Collapse
Affiliation(s)
| | | | | | - Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy
| | - Carla Isernia
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Gaetano Malgieri
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania 'Luigi Vanvitelli', Caserta, Italy
| | | | - Luca D D'Andrea
- Istituto di Scienze e Tecnologie Chimiche 'Giulio Natta', CNR, Milano, Italy
| | - Roberto Fattorusso
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania 'Luigi Vanvitelli', Caserta, Italy
| |
Collapse
|
17
|
Roterman I, Stapor K, Fabian P, Konieczny L. In Silico Modeling of the Influence of Environment on Amyloid Folding Using FOD-M Model. Int J Mol Sci 2021; 22:10587. [PMID: 34638925 PMCID: PMC8508659 DOI: 10.3390/ijms221910587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022] Open
Abstract
The role of the environment in amyloid formation based on the fuzzy oil drop model (FOD) is discussed here. This model assumes that the hydrophobicity distribution within a globular protein is consistent with a 3D Gaussian (3DG) distribution. Such a distribution is interpreted as the idealized effect of the presence of a polar solvent-water. A chain with a sequence of amino acids (which are bipolar molecules) determined by evolution recreates a micelle-like structure with varying accuracy. The membrane, which is a specific environment with opposite characteristics to the polar aquatic environment, directs the hydrophobic residues towards the surface. The modification of the FOD model to the FOD-M form takes into account the specificity of the cell membrane. It consists in "inverting" the 3DG distribution (complementing the Gaussian distribution), which expresses the exposure of hydrophobic residues on the surface. It turns out that the influence of the environment for any protein (soluble or membrane-anchored) is the result of a consensus factor expressing the participation of the polar environment and the "inverted" environment. The ratio between the proportion of the aqueous and the "reversed" environment turns out to be a characteristic property of a given protein, including amyloid protein in particular. The structure of amyloid proteins has been characterized in the context of prion, intrinsically disordered, and other non-complexing proteins to cover a wider spectrum of molecules with the given characteristics based on the FOD-M model.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Medyczna 7, 30-688 Kraków, Poland
| | - Katarzyna Stapor
- Institute of Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; (K.S.); (P.F.)
| | - Piotr Fabian
- Institute of Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; (K.S.); (P.F.)
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Medical College, Jagiellonian University, Kopernika 7, 31-034 Kraków, Poland;
| |
Collapse
|
18
|
Ptak-Kaczor M, Banach M, Stapor K, Fabian P, Konieczny L, Roterman I. Solubility and Aggregation of Selected Proteins Interpreted on the Basis of Hydrophobicity Distribution. Int J Mol Sci 2021; 22:ijms22095002. [PMID: 34066830 PMCID: PMC8125953 DOI: 10.3390/ijms22095002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 11/30/2022] Open
Abstract
Protein solubility is based on the compatibility of the specific protein surface with the polar aquatic environment. The exposure of polar residues to the protein surface promotes the protein’s solubility in the polar environment. The aquatic environment also influences the folding process by favoring the centralization of hydrophobic residues with the simultaneous exposure to polar residues. The degree of compatibility of the residue distribution, with the model of the concentration of hydrophobic residues in the center of the molecule, with the simultaneous exposure of polar residues is determined by the sequence of amino acids in the chain. The fuzzy oil drop model enables the quantification of the degree of compatibility of the hydrophobicity distribution observed in the protein to a form fully consistent with the Gaussian 3D function, which expresses an idealized distribution that meets the preferences of the polar water environment. The varied degrees of compatibility of the distribution observed with the idealized one allow the prediction of preferences to interactions with molecules of different polarity, including water molecules in particular. This paper analyzes a set of proteins with different levels of hydrophobicity distribution in the context of the solubility of a given protein and the possibility of complex formation.
Collapse
Affiliation(s)
- Magdalena Ptak-Kaczor
- Department of Bioinformatics and Telemedicine, Jagiellonian University—Medical College, Medyczna 7, 30-688 Kraków, Poland; (M.P.-K.); (M.B.)
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Mateusz Banach
- Department of Bioinformatics and Telemedicine, Jagiellonian University—Medical College, Medyczna 7, 30-688 Kraków, Poland; (M.P.-K.); (M.B.)
| | - Katarzyna Stapor
- Institute of Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; (K.S.); (P.F.)
| | - Piotr Fabian
- Institute of Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; (K.S.); (P.F.)
| | - Leszek Konieczny
- Chair of Medical Biochemistry—Jagiellonian University—Medical College, Kopernika 7, 31-034 Kraków, Poland;
| | - Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University—Medical College, Medyczna 7, 30-688 Kraków, Poland; (M.P.-K.); (M.B.)
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Correspondence:
| |
Collapse
|