1
|
Sur S, Stewart C, Liddle TA, Monteiro AM, Denizli I, Majumdar G, Stevenson TJ. Molecular basis of photoinduced seasonal energy rheostasis in Japanese quail (Coturnix japonica). Mol Cell Endocrinol 2025; 595:112415. [PMID: 39561917 DOI: 10.1016/j.mce.2024.112415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Seasonal rhythms in photoperiod are a predictive cue used by many temperate-zone animals to time cycles of lipid accumulation. The neuroendocrine regulation of seasonal energy homeostasis and rheostasis are widely studied. However, the molecular pathways underlying tissue-specific adaptations remain poorly described. We conducted two experiments to examine long-term rheostatic changes in energy stability using the well-characterized photoperiodic response of the Japanese quail. In experiment 1, we exposed quails to photoperiodic transitions simulating the annual photic cycle and examined the morphology and fat deposition in liver, muscle, and adipose tissue. To identify changes in gene expression and molecular pathways during the vernal transition in lipid accumulation, we conducted transcriptomic analyses of adipose and liver tissues. Experiment 2 assessed whether the changes observed in Experiment 1 reflected constitutive levels or were due to time-of-day sampling. We identified increased expression of transcripts involved in adipocyte growth, such as Cysteine Rich Angiogenic Inducer 61 and Very Low-Density Lipoprotein Receptor, and in obesity-linked disease resistance, such as Insulin-Like Growth Factor Binding Protein 2 and Apolipoprotein D, in anticipation of body mass gain. Under long photoperiods, hepatic transcripts involved in fatty acid (FA) synthesis (FA Synthase, FA Desaturase 2) were down-regulated. Parallel upregulation of hepatic FA Translocase and Pyruvate Dehydrogenase Kinase 4 expression suggests increased FA uptake and inhibition of the pyruvate dehydrogenase complex. Our findings demonstrate tissue-specific biochemical and molecular changes that drive photoperiod-induced adipogenesis. These findings can be used to determine conserved pathways that enable animals to accumulate fat without developing metabolic diseases.
Collapse
Affiliation(s)
- Sayantan Sur
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | - Calum Stewart
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | - Timothy A Liddle
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | - Ana Maria Monteiro
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | - Irem Denizli
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | - Gaurav Majumdar
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom; Department of Zoology, University of Allahabad, Uttar Pradesh, 211002, India.
| | - Tyler J Stevenson
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
2
|
Liu L, Henry J, Liu Y, Jouve C, Hulot JS, Georges A, Bouatia-Naji N. LRP1 Repression by SNAIL Results in ECM Remodeling in Genetic Risk for Vascular Diseases. Circ Res 2024; 135:1084-1097. [PMID: 39355906 PMCID: PMC11542979 DOI: 10.1161/circresaha.124.325269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Genome-wide association studies implicate common genetic variations in the LRP1 (low-density lipoprotein receptor-related protein 1 gene) locus at risk for multiple vascular diseases and traits. However, the underlying biological mechanisms are unknown. METHODS Fine mapping analyses included Bayesian colocalization to identify the most likely causal variant. Human induced pluripotent stem cells were genome-edited using CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated protein 9) to delete or modify candidate enhancer regions and generate LRP1 knockout cell lines. Cells were differentiated into smooth muscle cells through a mesodermal lineage. Transcription regulation was assessed using luciferase reporter assay, transcription factor knockdown, and chromatin immunoprecipitation. Phenotype changes in cells were conducted using cellular assays, bulk RNA sequencing, and mass spectrometry. RESULTS Multitrait colocalization analyses pointed at rs11172113 as the most likely causal variant in LRP1 for fibromuscular dysplasia, migraine, pulse pressure, and spontaneous coronary artery dissection. We found the rs11172113-T allele to associate with higher LRP1 expression. Genomic deletion in induced pluripotent stem cell-derived smooth muscle cells supported rs11172113 to locate in an enhancer region regulating LRP1 expression. We found transcription factors MECP2 (methyl CpG binding protein 2) and SNAIL (Zinc Finger Protein SNAI1) to repress LRP1 expression through an allele-specific mechanism, involving SNAIL interaction with disease risk allele. LRP1 knockout decreased induced pluripotent stem cell-derived smooth muscle cell proliferation and migration. Differentially expressed genes were enriched for collagen-containing extracellular matrix and connective tissue development. LRP1 knockout and deletion of rs11172113 enhancer showed potentiated canonical TGF-β (transforming growth factor beta) signaling through enhanced phosphorylation of SMAD2/3 (Mothers against decapentaplegic homolog 2/3). Analyses of the protein content of decellularized extracts indicated partial extracellular matrix remodeling involving enhanced secretion of CYR61 (cystein rich angiogenic protein 61), a known LRP1 ligand involved in vascular integrity and TIMP3 (Metalloproteinase inhibitor 3), implicated in extracellular matrix maintenance and also known to interact with LRP1. CONCLUSIONS Our findings support allele-specific LRP1 expression repression by the endothelial-to-mesenchymal transition regulator SNAIL. We propose decreased LRP1 expression in smooth muscle cells to remodel the extracellular matrix enhanced by TGF-β as a potential mechanism of this pleiotropic locus for vascular diseases.
Collapse
Affiliation(s)
- Lu Liu
- Université Paris Cité, Inserm, PARCC, Paris, France
| | | | - Yingwei Liu
- Université Paris Cité, Inserm, PARCC, Paris, France
| | | | | | | | | |
Collapse
|
3
|
Rana P, Ujjainiya R, Bharti V, Maiti S, Ekka MK. IGF2BP1-Mediated Regulation of CCN1 Expression by Specific Binding to G-Quadruplex Structure in Its 3'UTR. Biochemistry 2024; 63:2166-2182. [PMID: 39133064 DOI: 10.1021/acs.biochem.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The intricate regulation of gene expression is fundamental to the biological complexity of higher organisms, and is primarily governed by transcriptional and post-transcriptional mechanisms. The 3'-untranslated region (3'UTR) of mRNA is rich in cis-regulatory elements like G-quadruplexes (G4s), and plays a crucial role in post-transcriptional regulation. G4s have emerged as significant gene regulators, impacting mRNA stability, translation, and localization. In this study, we investigate the role of a robust parallel G4 structure situated within the 3'UTR of CCN1 mRNA in post-transcriptional regulation. This G4 structure is proximal to the stop codon of human CCN1, and evolutionarily conserved. We elucidated its interaction with the insulin-like growth factor 2 binding protein 1 (IGF2BP1), a noncanonical RNA N6-methyladenosine (m6A) modification reader, revealing a novel interplay between RNA modifications and G-quadruplex structures. Knockdown experiments and mutagenesis studies demonstrate that IGF2BP1 binds specifically to the G4 structure, modulating CCN1 mRNA stability. Additionally, we unveil the role of IGF2BP1's RNA recognition motifs in G4 recognition, highlighting this enthalpically driven interaction. Our findings offer fresh perspectives on the complex mechanisms of post-transcriptional gene regulation mediated by G4 RNA secondary structures.
Collapse
Affiliation(s)
- Priya Rana
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajat Ujjainiya
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishal Bharti
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Souvik Maiti
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mary K Ekka
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Gündel B, Liu X, Pfützenreuter A, Engelsberger V, Weiskirchen R, Löhr JM, Heuchel R. The Crosstalk Analysis between mPSCs and Panc1 Cells Identifies CCN1 as a Positive Regulator of Gemcitabine Sensitivity in Pancreatic Cancer Cells. Int J Mol Sci 2024; 25:9369. [PMID: 39273316 PMCID: PMC11394772 DOI: 10.3390/ijms25179369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease that is almost entirely resistant to conventional chemotherapy and radiation therapy. A significant factor in this resistance appears to be the dense desmoplastic stroma, which contains various cancer-associated fibroblast (CAF) populations. However, our understanding of the communication between tumor cells and CAFs that contributes to this aggressive malignancy is still developing. Recently, we used an advanced three-dimensional heterospecies, heterospheroid co-culture model to investigate the signaling between human pancreatic tumor Panc1 cells and mouse pancreatic stellate cells (mPSCs) through global expression profiling. Upon discovering that CCN1 was significantly upregulated in Panc1 cells during co-culture, we decided to explore the role of CCN1 using CRISPR-Cas9 knockout technology. Panc1 cells lacking CCN1 showed reduced differentiation and decreased sensitivity to gemcitabine, primarily due to lower expression of genes involved in gemcitabine transport and metabolism. Additionally, we observed that stimulation with TGF-β1 and lysophosphatidic acid increased CCN1 expression in Panc1 cells and induced a shift in mPSCs towards a more myofibroblastic CAF-like phenotype.
Collapse
Affiliation(s)
- Beate Gündel
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, SE 141 86 Huddinge, Sweden
| | - Xinyuan Liu
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, SE 141 86 Huddinge, Sweden
| | - Anna Pfützenreuter
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, SE 141 86 Huddinge, Sweden
| | - Veronika Engelsberger
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, SE 141 86 Huddinge, Sweden
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - J-Matthias Löhr
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, SE 141 86 Huddinge, Sweden
| | - Rainer Heuchel
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, SE 141 86 Huddinge, Sweden
| |
Collapse
|
5
|
Zhong C, Lei Y, Zhang J, Zheng Q, Liu Z, Xu Y, Shan S, Ren T. Prognostic Function and Immunologic Landscape of a Predictive Model Based on Five Senescence-Related Genes in IPF Bronchoalveolar Lavage Fluid. Biomedicines 2024; 12:1246. [PMID: 38927453 PMCID: PMC11201203 DOI: 10.3390/biomedicines12061246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a type of interstitial lung disease characterized by unknown causes and a poor prognosis. Recent research indicates that age-related mechanisms, such as cellular senescence, may play a role in the development of this condition. However, the relationship between cellular senescence and clinical outcomes in IPF remains uncertain. METHODS Data from the GSE70867 database were meticulously analyzed in this study. The research employed differential expression analysis, as well as univariate and multivariate Cox regression analysis, to pinpoint senescence-related genes (SRGs) linked to prognosis and construct a prognostic risk model. The model's clinical relevance and its connection to potential biological processes were systematically assessed in training and testing datasets. Additionally, the expression location of prognosis-related SRGs was identified through immunohistochemical staining, and the correlation between SRGs and immune cell infiltration was deduced using the GSE28221 dataset. RESULT The prognostic risk model was constructed based on five SRGs (cellular communication network factor 1, CYR61, stratifin, SFN, megakaryocyte-associated tyrosine kinase, MATK, C-X-C motif chemokine ligand 1, CXCL1, LIM domain, and actin binding 1, LIMA1). Both Kaplan-Meier (KM) curves (p = 0.005) and time-dependent receiver operating characteristic (ROC) analysis affirmed the predictive accuracy of this model in testing datasets, with respective areas under the ROC curve at 1-, 2-, and 3-years being 0.721, 0.802, and 0.739. Furthermore, qRT-RCR analysis and immunohistochemical staining verify the differential expression of SRGs in IPF samples and controls. Moreover, patients in the high-risk group contained higher infiltration levels of neutrophils, eosinophils, and M1 macrophages in BALF, which appeared to be independent indicators of poor prognosis in IPF patients. CONCLUSION Our research reveals the effectiveness of the 5 SRGs model in BALF for risk stratification and prognosis prediction in IPF patients, providing new insights into the immune infiltration of IPF progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shan Shan
- Department of Respiratory Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200230, China; (C.Z.)
| | - Tao Ren
- Department of Respiratory Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200230, China; (C.Z.)
| |
Collapse
|
6
|
Khalenkow D, Brandsma CA, Timens W, Choy DF, Grimbaldeston MA, Rosenberger CM, Slebos DJ, Kerstjens HAM, Faiz A, Koppelman GH, Nawijn MC, van den Berge M, Guryev V. Alternative Splicing Is a Major Factor Shaping Transcriptome Diversity in Mild and Severe Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2024; 70:414-423. [PMID: 38315810 DOI: 10.1165/rcmb.2023-0296oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024] Open
Abstract
The role of alternative splicing in chronic obstructive pulmonary disease (COPD) is still largely unknown. We aimed to investigate the differences in alternatively splicing events between patients with mild-to-moderate and severe COPD compared with non-COPD control subjects and to identify splicing factors associated with aberrant alternative splicing in COPD. For this purpose, we performed genome-wide RNA-sequencing analysis of bronchial brushings from 23 patients with mild-to-moderate COPD, 121 with severe COPD, and 23 non-COPD control subjects. We found a significant difference in the frequency of alternative splicing events in patients with mild-to-moderate and severe COPD compared with non-COPD control subjects. There were from two to eight times (depending on event type) more differential alternative splicing events in the severe than in the mild-to-moderate stage. The severe COPD samples showed less intron retention and more exon skipping. It is interesting that the transcript levels of the top 10 differentially expressed splicing factors were significantly correlated with the percentage of many alternatively spliced transcripts in severe COPD. The aberrant alternative splicing in severe COPD was predicted to increase the overall protein-coding capacity of gene products. In conclusion, we observed large and significant differences in alternative splicing between bronchial samples of patients with COPD and control subjects, with more events observed in severe than in mild-to-moderate COPD. The changes in the expression of several splicing factors correlated with prevalence of alternative splicing in severe COPD. Alternative splicing can indirectly impact gene expression by changing the relative abundance of protein-coding isoforms potentially influencing pathophysiological changes. The results provide a better understanding of COPD-related alternative splicing changes.
Collapse
Affiliation(s)
- Dmitry Khalenkow
- European Research Institute for the Biology of Ageing
- Groningen Research Institute for Asthma and COPD
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital
| | - Corry-Anke Brandsma
- Groningen Research Institute for Asthma and COPD
- Department of Pathology and Medical Biology
| | - Wim Timens
- Groningen Research Institute for Asthma and COPD
- Department of Pathology and Medical Biology
| | - David F Choy
- Genentech, Inc., South San Francisco, California; and
| | | | | | | | - Huib A M Kerstjens
- Department of Pulmonology and Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alen Faiz
- Faculty of Science, Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - Gerard H Koppelman
- Groningen Research Institute for Asthma and COPD
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital
| | - Martijn C Nawijn
- Groningen Research Institute for Asthma and COPD
- Department of Pathology and Medical Biology
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD
- Department of Pulmonary Diseases, and
| | - Victor Guryev
- European Research Institute for the Biology of Ageing
| |
Collapse
|
7
|
Li W, Huang L, Qi N, Zhang Q, Qin Z. Upregulation of CALD1 predicted a poor prognosis for platinum-treated ovarian cancer and revealed it as a potential therapeutic resistance target. BMC Genomics 2024; 25:183. [PMID: 38365611 PMCID: PMC10870461 DOI: 10.1186/s12864-024-10056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/27/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) has the worst prognosis among gynecological malignancies, most of which are found to be in advanced stage. Cell reduction surgery based on platinum-based chemotherapy is the current standard of treatment for OC, but patients are prone to relapse and develop drug resistance. The objective of this study was to identify a specific molecular target responsible for platinum chemotherapy resistance in OC. RESULTS We screened the protein-coding gene Caldesmon (CALD1), expressed in cisplatin-resistant OC cells in vitro. The prognostic value of CALD1 was evaluated using survival curve analysis in OC patients treated with platinum therapy. The diagnostic value of CALD1 was verified by drawing a Receiver Operating Characteristic (ROC) curve using clinical samples from OC patients. This study analyzed data from various databases including Gene Expression Omnibus (GEO), Human Protein Atlas (HPA), The Cancer Cell Line Encyclopedia (CCLE), The Cancer Genome Atlas (TCGA), GEPIA 2, UALCAN, Kaplan-Meier (KM) plotter, LinkedOmics database, and String. Different expression genes (DEGs) between cisplatin-sensitive and cisplatin-resistant cells were acquired respectively from 5 different datasets of GEO. CALD1 was selected as a common gene from 5 groups DEGs. Online data analysis of HPA and CCLE showed that CALD1 was highly expressed in both normal ovarian tissue and OC. In TCGA database, high expression of CALD1 was associated with disease stage and venous invasion in OC. Patients with high CALD1 expression levels had a worse prognosis under platinum drug intervention, according to Kaplan-Meier (KM) plotter analysis. Analysis of clinical sample data from GEO showed that CALD1 had superior diagnostic value in distinguishing patients with platinum "resistant" and platinum "sensitive" (AUC = 0.816), as well as patients with worse progression-free survival (AUC = 0.741), and those with primary and omental metastases (AUC = 0.811) in ovarian tumor. At last, CYR61 was identified as a potential predictive molecule that may play an important role alongside CALD1 in the development of platinum resistance in OC. CONCLUSIONS CALD1, as a member of cytoskeletal protein, was associated with poor prognosis of platinum resistance in OC, and could be used as a target protein for mechanism study of platinum resistance in OC.
Collapse
Affiliation(s)
- Wei Li
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China
| | - Limei Huang
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China
| | - Nana Qi
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China
| | - Qinle Zhang
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China.
| | - Zailong Qin
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China.
| |
Collapse
|
8
|
Zeyada MS, Eraky SM, El-Shishtawy MM. Trigonelline mitigates bleomycin-induced pulmonary inflammation and fibrosis: Insight into NLRP3 inflammasome and SPHK1/S1P/Hippo signaling modulation. Life Sci 2024; 336:122272. [PMID: 37981228 DOI: 10.1016/j.lfs.2023.122272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/31/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
AIMS Pulmonary fibrosis (PF) is a chronic interstitial lung disease with an increasing incidence following the COVID-19 outbreak. Pirfenidone (Pirf), an FDA-approved pulmonary anti-fibrotic drug, is poorly tolerated and exhibits limited efficacy. Trigonelline (Trig) is a natural plant alkaloid with diverse pharmacological actions. We investigated the underlying prophylactic and therapeutic mechanisms of Trig in ameliorating bleomycin (BLM)-induced PF and the possible synergistic antifibrotic activity of Pirf via its combination with Trig. MATERIALS AND METHODS A single dose of BLM was administered intratracheally to male Sprague-Dawley rats for PF induction. In the prophylactic study, Trig was given orally 3 days before BLM and then for 28 days. In the therapeutic study, Trig and/or Pirf were given orally from day 8 after BLM until the 28th day. Biochemical assay, histopathology, qRT-PCR, ELISA, and immunohistochemistry were performed on lung tissues. KEY FINDINGS Trig prophylactically and therapeutically mitigated the inflammatory process via targeting NF-κB/NLRP3/IL-1β signaling. Trig activated the autophagy process which in turn attenuated alveolar epithelial cells apoptosis and senescence. Remarkably, Trig attenuated lung SPHK1/S1P axis and its downstream Hippo targets, YAP-1, and TAZ, with a parallel decrease in YAP/TAZ profibrotic genes. Interestingly, Trig upregulated lung miR-375 and miR-27a expression. Consequently, epithelial-mesenchymal transition in lung tissues was reversed upon Trig administration. These results were simultaneously associated with profound improvement in lung histological alterations. SIGNIFICANCE The current study verifies Trig's prophylactic and antifibrotic effects against BLM-induced PF via targeting multiple signaling. Trig and Pirf combination may be a promising approach to synergize Pirf antifibrotic effect.
Collapse
Affiliation(s)
- Menna S Zeyada
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Salma M Eraky
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mamdouh M El-Shishtawy
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
9
|
Solyeyko OV, Chernykh MO, Iliuk IA, Baranova IV, Romash IB, Berezovskyi AM, Soleiko LP. Asthma in patients with the syndrome of undifferentiated dysplasia of connective tissue: peculiarities of the course or mutually aggravating mechanisms? WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2024; 77:821-827. [PMID: 38865642 DOI: 10.36740/wlek202404130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
OBJECTIVE Aim: To analyse laboratory and biochemical features of the severe persistent course of asthma in patients with undifferentiated connective tissue dysplasia (UCTD) syndrome, and their phenotypic and visceral stigmas of dysembryogenesis. PATIENTS AND METHODS Materials and Methods: We enrolled 60 male patients with asthma, aged from 23 to 62 years (mean age (46.83 ±0.85) years): 30 patients with the background of UCTD, and 30 - without UCTD. We analysed clinical, somatometric, surveying (original questionnaire based on the phenotypic map of Glesby), instrumental (spirography, echocardiography, endoscopy, esophagofibrogastroduodenoscopy) and laboratory (including eosinophilic granulocytes and aldosterone levels) data. RESULTS Results: Correlations were found in men with UCTD between the number of UCTD markers and rate of earlobe diagonal fold (r=+0.75; р<0.05), asthenic constitution (r=+0.72; р<0.05), easy bruising (r=+0.7; p<0.05) and straight abdominal line hernia (r=+0.52; p<0.05). Average aldosterone serum level in patients with UCTD (176,10 ±11,22) was significantly higher than in those without UCTD (142,77 ±9,43), (p<0.05), as well as average eosinophils levels (1.3 ±0.25 vs. 0.57 ±0.12, p<0.05). In the absolute majority of patients with UCTD (93.3%) asthma onset was confirmed after pneumonia, and their age of asthma manifestation was significantly higher (37.2 ±1.21) than in patients without UCTD (21.4 ±1.13). Also, in patients with UCTD there was a high number of severe exacerbations during the last year (2.7 ±0.12 per year) on the background of high doses of combined inhaled glucocorticosteroids use. CONCLUSION Conclusions: Identified "phenotypic profile", clinical and biochemical features of patients with asthma on the background of UCTD syndrome, which determine the severe course and early formation of asthma complications, will further accelerate the diagnosis of this asthma phenotype and improve approaches to the selection of treatment regimens for these patients.
Collapse
Affiliation(s)
| | | | - Iryna A Iliuk
- NATIONAL PIROGOV MEMORIAL MEDICAL UNIVERSITY, VINNYTSIA, UKRAINE
| | - Iryna V Baranova
- NATIONAL PIROGOV MEMORIAL MEDICAL UNIVERSITY, VINNYTSIA, UKRAINE
| | - Iryna B Romash
- IVANO-FRANKIVSK NATIONAL MEDICAL UNIVERSITY, IVANO-FRANKIVSK. UKRAINE
| | | | - Larysa P Soleiko
- NATIONAL PIROGOV MEMORIAL MEDICAL UNIVERSITY, VINNYTSIA, UKRAINE
| |
Collapse
|
10
|
Velázquez-Enríquez JM, Reyes-Avendaño I, Santos-Álvarez JC, Reyes-Jiménez E, Vásquez-Garzón VR, Baltiérrez-Hoyos R. Identification of Hub Genes in Idiopathic Pulmonary Fibrosis and Their Association with Lung Cancer by Bioinformatics Analysis. Adv Respir Med 2023; 91:407-431. [PMID: 37887075 PMCID: PMC10604190 DOI: 10.3390/arm91050032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible disease with a high mortality rate worldwide. However, the etiology and pathogenesis of IPF have not yet been fully described. Moreover, lung cancer is a significant complication of IPF and is associated with increased mortality. Nevertheless, identifying common genes involved in developing IPF and its progression to lung cancer remains an unmet need. The present study aimed to identify hub genes related to the development of IPF by meta-analysis. In addition, we analyzed their expression and their relationship with patients' progression in lung cancer. METHOD Microarray datasets GSE24206, GSE21369, GSE110147, GSE72073, and GSE32539 were downloaded from Gene Expression Omnibus (GEO). Next, we conducted a series of bioinformatics analysis to explore possible hub genes in IPF and evaluated the expression of hub genes in lung cancer and their relationship with the progression of different stages of cancer. RESULTS A total of 1888 differentially expressed genes (DEGs) were identified, including 1105 upregulated and 783 downregulated genes. The 10 hub genes that exhibited a high degree of connectivity from the PPI network were identified. Analysis of the KEGG pathways showed that hub genes correlate with pathways such as the ECM-receptor interaction. Finally, we found that these hub genes are expressed in lung cancer and are associated with the progression of different stages of lung cancer. CONCLUSIONS Based on the integration of GEO microarray datasets, the present study identified DEGs and hub genes that could play an essential role in the pathogenesis of IPF and its association with the development of lung cancer in these patients, which could be considered potential diagnostic biomarkers or therapeutic targets for the disease.
Collapse
Affiliation(s)
- Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca 68020, Mexico; (J.M.V.-E.); (I.R.-A.); (J.C.S.-Á.); (E.R.-J.); (V.R.V.-G.)
| | - Itayetzi Reyes-Avendaño
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca 68020, Mexico; (J.M.V.-E.); (I.R.-A.); (J.C.S.-Á.); (E.R.-J.); (V.R.V.-G.)
| | - Jovito Cesar Santos-Álvarez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca 68020, Mexico; (J.M.V.-E.); (I.R.-A.); (J.C.S.-Á.); (E.R.-J.); (V.R.V.-G.)
| | - Edilburga Reyes-Jiménez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca 68020, Mexico; (J.M.V.-E.); (I.R.-A.); (J.C.S.-Á.); (E.R.-J.); (V.R.V.-G.)
| | - Verónica Rocío Vásquez-Garzón
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca 68020, Mexico; (J.M.V.-E.); (I.R.-A.); (J.C.S.-Á.); (E.R.-J.); (V.R.V.-G.)
- CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca 68020, Mexico
| | - Rafael Baltiérrez-Hoyos
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca 68020, Mexico; (J.M.V.-E.); (I.R.-A.); (J.C.S.-Á.); (E.R.-J.); (V.R.V.-G.)
- CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca 68020, Mexico
| |
Collapse
|
11
|
Lingappan K, Olutoye OO, Cantu A, Cantu Gutierrez ME, Cortes-Santiago N, Hammond JD, Gilley J, Quintero JR, Li H, Polverino F, Gleghorn JP, Keswani SG. Molecular insights using spatial transcriptomics of the distal lung in congenital diaphragmatic hernia. Am J Physiol Lung Cell Mol Physiol 2023; 325:L477-L486. [PMID: 37605849 PMCID: PMC10639013 DOI: 10.1152/ajplung.00154.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/11/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
Abnormal pulmonary vascular development and function in congenital diaphragmatic hernia (CDH) is a significant factor leading to pulmonary hypertension. The lung is a very heterogenous organ and has marked cellular diversity that is differentially responsive to injury and therapeutic agents. Spatial transcriptomics provides the unmatched capability of discerning the differences in the transcriptional signature of these distinct cell subpopulations in the lung with regional specificity. We hypothesized that the distal lung parenchyma (selected as a region of interest) would show a distinct transcriptomic profile in the CDH lung compared with control (normal lung). We subjected lung sections obtained from male and female CDH and control neonates to spatial transcriptomics using the Nanostring GeoMx platform. Spatial transcriptomic analysis of the human CDH and control lung revealed key differences in the gene expression signature. Increased expression of alveolar epithelial-related genes (SFTPA1 and SFTPC) and angiogenesis-related genes (EPAS1 and FHL1) was seen in control lungs compared with CDH lungs. Response to vitamin A was enriched in the control lungs as opposed to abnormality of the coagulation cascade and TNF-alpha signaling via NF-kappa B in the CDH lung parenchyma. In male patients with CDH, higher expression of COL1A1 (ECM remodeling) and CD163 was seen. Increased type 2 alveolar epithelial cells (AT-2) and arterial and lung capillary endothelial cells were seen in control lung samples compared with CDH lung samples. To the best of our knowledge, this is the first use of spatial transcriptomics in patients with CDH that identifies the contribution of different lung cellular subpopulations in CDH pathophysiology and highlights sex-specific differences.NEW & NOTEWORTHY This is the first use of spatial transcriptomics in patients with congenital diaphragmatic hernia (CDH) that identifies the contribution of different lung cellular subpopulations in CDH pathophysiology and highlights sex-specific differences.
Collapse
Affiliation(s)
- Krithika Lingappan
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Oluyinka O Olutoye
- Department of Pediatric Surgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States
| | - Abiud Cantu
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Manuel Eliezer Cantu Gutierrez
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Nahir Cortes-Santiago
- Department of Pathology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States
| | - J D Hammond
- Division of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States
| | - Jamie Gilley
- Division of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States
| | - Joselyn Rojas Quintero
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Hui Li
- Department of Pediatric Surgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States
| | - Francesca Polverino
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States
| | - Sundeep G Keswani
- Department of Pediatric Surgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States
| |
Collapse
|
12
|
Frommer ML, Langridge BJ, Awad L, Jasionowska S, Denton CP, Abraham DJ, Abu-Hanna J, Butler PEM. Single-Cell Analysis of ADSC Interactions with Fibroblasts and Endothelial Cells in Scleroderma Skin. Cells 2023; 12:1784. [PMID: 37443817 PMCID: PMC10341100 DOI: 10.3390/cells12131784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) as part of autologous fat grafting have anti-fibrotic and anti-inflammatory effects, but the exact mechanisms of action remain unknown. By simulating the interaction of ADSCs with fibroblasts and endothelial cells (EC) from scleroderma (SSc) skin in silico, we aim to unravel these mechanisms. Publicly available single-cell RNA sequencing data from the stromal vascular fraction of 3 lean patients and biopsies from the skin of 10 control and 12 patients with SSc were obtained from the GEO and analysed using R and Seurat. Differentially expressed genes were used to compare the fibroblast and EC transcriptome between controls and SSc. GO and KEGG functional enrichment was performed. Ligand-receptor interactions of ADSCs with fibroblasts and ECs were explored with LIANA. Pro-inflammatory and extracellular matrix (ECM) interacting fibroblasts were identified in SSc. Arterial, capillary, venous and lymphatic ECs showed a pro-fibrotic and pro-inflammatory transcriptome. Most interactions with both cell types were based on ECM proteins. Differential interactions identified included NTN1, VEGFD, MMP2, FGF2, and FNDC5. The ADSC secretome may disrupt vascular and perivascular inflammation hubs in scleroderma by promoting angiogenesis and especially lymphangiogenesis. Key phenomena observed after fat grafting remain unexplained, including modulation of fibroblast behaviour.
Collapse
Affiliation(s)
- Marvin L. Frommer
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK; (B.J.L.); (J.A.-H.); (P.E.M.B.)
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Benjamin J. Langridge
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK; (B.J.L.); (J.A.-H.); (P.E.M.B.)
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Laura Awad
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK; (B.J.L.); (J.A.-H.); (P.E.M.B.)
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Sara Jasionowska
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK; (B.J.L.); (J.A.-H.); (P.E.M.B.)
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| | - Christopher P. Denton
- Centre for Rheumatology, Department of Inflammation, Division of Medicine, University College London, London NW3 2QG, UK
| | - David J. Abraham
- Centre for Rheumatology, Department of Inflammation, Division of Medicine, University College London, London NW3 2QG, UK
| | - Jeries Abu-Hanna
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK; (B.J.L.); (J.A.-H.); (P.E.M.B.)
- Division of Medical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Peter E. M. Butler
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London NW3 2QG, UK; (B.J.L.); (J.A.-H.); (P.E.M.B.)
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK
- Department of Plastic Surgery, Royal Free Hospital, London NW3 2QG, UK
| |
Collapse
|
13
|
Wang WJ, Peng K, Lu X, Zhu YY, Li Z, Qian QH, Yao YX, Fu L, Wang Y, Huang YC, Zhao H, Wang H, Xu DX, Tan ZX. Long-term cadmium exposure induces chronic obstructive pulmonary disease-like lung lesions in a mouse model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163073. [PMID: 36965727 DOI: 10.1016/j.scitotenv.2023.163073] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023]
Abstract
Accumulating evidences demonstrate that long-term exposure to atmospheric fine particles and air pollutants elevates the risk of chronic obstructive pulmonary disease (COPD). Cadmium (Cd) is one of the important toxic substances in atmospheric fine particles and air pollutants. In this study, we aimed to establish a mouse model to evaluate whether respiratory Cd exposure induces COPD-like lung injury. Adult male C57BL/6 mice were exposed to CdCl2 (10 mg/L, 4 h per day) by inhaling aerosol for either 10 weeks (short-term) or 6 months (long-term). The mean serum Cd concentration was 6.26 μg/L in Cd-exposed mice. Lung weight and coefficient were elevated in long-term Cd-exposed mice. Pathological scores and alveolar destructive indices were increased in long-term Cd-exposed mouse lungs. Mean linear intercept and airway wall thickness were accordingly elevated in Cd-exposed mice. Inflammatory cell infiltration was obvious and inflammatory cytokines, including TNF-α, IL-1β, IL-6, IL-8, IL-10 and TGF-β, were up-regulated in Cd-exposed mouse lungs. α-SMA, N-cadherin and vimentin, epithelial-mesenchymal transition markers, and extracellular matrix collagen deposition around small airway, determined by Masson's trichrome staining, were shown in Cd-exposed mouse lungs. COPD-characteristic lung function decline was observed in long-term Cd-exposed mice. These outcomes show that long-term respiratory exposure to Cd induces COPD-like lung lesions for the first time.
Collapse
Affiliation(s)
- Wen-Jing Wang
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Kun Peng
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xue Lu
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yan-Yan Zhu
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Zhao Li
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Qing-Hua Qian
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Ya-Xin Yao
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lin Fu
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yi-Chao Huang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Hui Zhao
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Zhu-Xia Tan
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China.
| |
Collapse
|
14
|
Yeger H. CCN proteins: opportunities for clinical studies-a personal perspective. J Cell Commun Signal 2023:10.1007/s12079-023-00761-y. [PMID: 37195381 DOI: 10.1007/s12079-023-00761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/01/2023] [Indexed: 05/18/2023] Open
Abstract
The diverse members of the CCN family now designated as CCN1(CYR61), CCN2 (CTGF), CCN3(NOV), CCN4(WISP1), CCN5(WISP2), CCN6(WISP3) are a conserved matricellular family of proteins exhibiting a spectrum of functional properties throughout all organs in the body. Interaction with cell membrane receptors such as integrins trigger intracellular signaling pathways. Proteolytically cleaved fragments (constituting the active domains) can be transported to the nucleus and perform transcriptional relevant functional activities. Notably, as also found in other protein families some members act opposite to others creating a system of functionally relevant checks and balances. It has become apparent that these proteins are secreted into the circulation, are quantifiable, and can serve as disease biomarkers. How they might also serve as homeostatic regulators is just becoming appreciated. In this review I have attempted to highlight the most recent evidence under the subcategories of cancer and non-cancer relevant that could lead to potential therapeutic approaches or ideas that can be factored into clinical advances. I have added my own personal perspective on feasibility.
Collapse
Affiliation(s)
- Herman Yeger
- Developmental and Stem Cell Biology, Research Institute, SickKids, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
15
|
Kang T, Liu L, Tan F, Zhang D, Yu L, Jiang H, Qian W, Hua J, Zheng Z. Inhibition of YTHDF1 prevents hypoxia-induced pulmonary artery smooth muscle cell proliferation by regulating Foxm1 translation in an m6A-dependent manner. Exp Cell Res 2023; 424:113505. [PMID: 36736607 DOI: 10.1016/j.yexcr.2023.113505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disease characterized by pulmonary vascular remodeling. It refers to the abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs), and hypoxia is an important risk factor for this progression. The present study aims to investigate the role of YTHDF1 in the regulation of hypoxic PASMC proliferation and the underlying mechanism. Human PASMCs were transfected with si-YTHDF1/2/3 followed by treatment of hypoxia, and the PASMC proliferation and Foxm1 expression were detected. Through RNA pull-down, RNA immunoprecipitation, and protein synthesis assay, the mechanism of YTHDF1 regulating Foxm1 was explored. Next, Foxm1 was inhibited by thiostrepton, and cell proliferation was detected. In vivo, mice received a tail vein injection of adenovirus containing si-YTHDF1 and were exposed to hypoxia treatment. Pulmonary vascular changes, right ventricular systolic pressure (RVSP), and genes involving proliferation were analyzed. YTHDF1 silencing reduced more hypoxic PASMC proliferation and Foxm1 protein level than YTHDF2/3 silencing. Mechanical results showed that YTHDF1 interacted with Foxm1 mRNA and up-regulated Foxm1 protein level by enhancing the translation efficiency in an m6A-dependent manner. Furthermore, YTHDF1 facilitated hypoxic PASMC proliferation and proliferation marker expressions through up-regulation of Foxm1 in an m6A-dependent manner. In vivo, the YTHDF1 silencing alleviated pulmonary vascular changes and fibrosis, reduced RVSP, inhibited the interaction of YTHDF1 and Foxm1, and reduced proliferation marker levels, as compared to the PAH group. In conclusion, YTHDF1 silencing inhibits hypoxic PASMC proliferation by regulating Foxm1 translation in an m6A-dependent manner.
Collapse
Affiliation(s)
- Ting Kang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Lijuan Liu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Feng Tan
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Dinghong Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Lvhong Yu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Haiyan Jiang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Wei Qian
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jinghai Hua
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Zeqi Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
16
|
Liu Y, Tang BL, Lu ML, Wang HX. Astragaloside IV improves pulmonary arterial hypertension by increasing the expression of CCN1 and activating the ERK1/2 pathway. J Cell Mol Med 2023; 27:622-633. [PMID: 36762748 PMCID: PMC9983322 DOI: 10.1111/jcmm.17681] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 02/11/2023] Open
Abstract
The aim of the present study was to investigate the underlying mechanism of AS-IV and CCN1 in PAH and to evaluate whether the protective effect of AS-IV against PAH is associated with CCN1 and its related signalling pathway. In vivo, male SD rats were intraperitoneally injected with monocrotaline (MCT, 60 mg/kg) or exposed to hypoxia (10% oxygen) and gavaged with AS-IV (20, 40 and 80 mg/kg/day) to create a PAH model. In vitro, human pulmonary artery endothelial cells (hPAECs) were exposed to hypoxia (3% oxygen) or monocrotaline pyrrole (MCTP, 60 μg/mL) and treated with AS-IV (10, 20 and 40 μM), EGF (10 nM, ERK agonist), small interfering CCN1 (CCN1 siRNA) and recombinant CCN1 protein (rCCN1, 100 ng/mL). We identified the differences in the expression of genes in the lung tissues of PAH rats by proteomics. At the same time, we dynamically detected the expression of CCN1 by Western blot both in vivo and in vitro. The Western blot experimental results showed that the expression of CCN1 increased in the early stage of PAH and decreased in the advanced stage of PAH. The results showed that compared with the control group, MCT- and hypoxia-induced increased the hemodynamic parameters and apoptosis. AS-IV can improve PAH, as characterized by decreased hemodynamic parameters, vascular wall area ratio (WA%), vascular wall thickness ratio (WT%) and α-SMA expression and inhibition of cell apoptosis. Moreover, the improvement of PAH by AS-IV was accompanied by increased CCN1 expression, which activated the ERK1/2 signalling pathway. Meanwhile, CCN1 and p-ERK1/2 were inhibited by siCCN1 and promoted by rCCN1. EGF not only activated the ERK1/2 signalling pathway but also induced the expression of CCN1. In conclusion, AS-IV improves PAH by increasing the expression of CCN1 and activating the ERK1/2 signalling pathway. The results of our study provide a theoretical basis for additional study on the protective effect of AS-IV against PAH.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Bai-Lin Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Mei-Li Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Hong-Xin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
17
|
Luo C, Zhu Y, Zhou J, Sun X, Zhang S, Tan S, Li Z, Lin H, Zhang W. Increased CYR61 expression activates CCND1/c-Myc pathway to promote nasal epithelial cells proliferation in chronic rhinosinusitis with nasal polyps. Clin Immunol 2023; 247:109235. [PMID: 36681101 DOI: 10.1016/j.clim.2023.109235] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/20/2023]
Abstract
PURPOSE Chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) is a chronic sinonasal inflammatory disease characterized histologically by hyperplastic nasal epithelium and epithelial cells proliferation. Cysteine-rich angiogenic inducer 61 (CYR61) acts as a positive regulator of cell cycle process. Cyclin D1 (CCND1) and c-Myc play key roles in the processes of cell cycle and cell growth. The purpose of our research was to explore the expression and roles of CYR61, CCND1 and c-Myc in CRSwNP. METHODS FeaturePlot and vlnPlot functions embedded in the seurat package (version 4.1.1) of R software (version 4.2.0) were applied to explore the cellular distribution of CYR61, CCND1 and c-Myc in the single-cell RNA sequencing (scRNA-seq) dataset of nasal tissue samples. CYR61, CCND1 and c-Myc immunolabeling and mRNA levels in nasal tissue samples were assessed by immunohistochemistry and real-time PCR. Co-localization of CYR61, CCND1 and c-Myc with basal epithelial cell marker P63 was assayed using double-label immunofluorescence staining. Furthermore, we collected and cultured human nasal epithelial cells (HNEC) to assess the regulation and role of CYR61 in vitro study. RESULTS CYR61, CCND1 and c-Myc were primarily expressed by nasal epithelial cells. Significant upregulation of CYR61, CCND1 and c-Myc positive cells and increased levels of CYR61, CCND1 and c-Myc mRNA were found in nasal polyps in comparison to control samples. Of note, CYR61 mRNA and protein levels were altered by SEB, LPS, IFN-γ, IL-13, IL-17A and TGF-β1 in HNEC. In addition, CYR61 intervention could increase CCND1 and c-Myc mRNA and protein levels to promote HNEC proliferation, and siRNA against ITGA2 (si-ITGA2) could reverse CYR61 induced upregulation of CCND1 and c-Myc mRNA and protein levels in HNEC and cell proliferation of HNEC. CONCLUSIONS CYR61, CCND1 and c-Myc were primarily expressed by epithelial cells in nasal mucosa. CYR61, CCND1 and c-Myc expression levels were increased in CRSwNP compared with controls. CYR61 could interact with ITGA2 to enhance HNEC proliferation via upregulating CCND1 and c-Myc levels in the HNEC, leading to hyperplastic nasal epithelium in CRSwNP.
Collapse
Affiliation(s)
- Chunyu Luo
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Ying Zhu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Jiayao Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Xiwen Sun
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shiyao Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shaolin Tan
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China; Postgraduate Training Base of Shanghai Sixth People's Hospital, Jinzhou Medical University, Shanghai, China
| | - Zhipeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Hai Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.
| | - Weitian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.
| |
Collapse
|
18
|
Piskorz WM, Cechowska-Pasko M. Senescence of Tumor Cells in Anticancer Therapy—Beneficial and Detrimental Effects. Int J Mol Sci 2022; 23:ijms231911082. [PMID: 36232388 PMCID: PMC9570404 DOI: 10.3390/ijms231911082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence process results in stable cell cycle arrest, which prevents cell proliferation. It can be induced by a variety of stimuli including metabolic stress, DNA damage, telomeres shortening, and oncogenes activation. Senescence is generally considered as a process of tumor suppression, both by preventing cancer cells proliferation and inhibiting cancer progression. It can also be a key effector mechanism for many types of anticancer therapies such as chemotherapy and radiotherapy, both directly and through bioactive molecules released by senescent cells that can stimulate an immune response. Senescence is characterized by a senescence-associated secretory phenotype (SASP) that can have both beneficial and detrimental impact on cancer progression. Despite the negatives, attempts are still being made to use senescence to fight cancer, especially when it comes to senolytics. There is a possibility that a combination of prosenescence therapy—which targets tumor cells and causes their senescence—with senotherapy—which targets senescent cells, can be promising in cancer treatment. This review provides information on cellular senescence, its connection with carcinogenesis and therapeutic possibilities linked to this process.
Collapse
|
19
|
Paul S, Ruiz-Manriquez LM, Ambriz-Gonzalez H, Medina-Gomez D, Valenzuela-Coronado E, Moreno-Gomez P, Pathak S, Chakraborty S, Srivastava A. Impact of smoking-induced dysregulated human miRNAs in chronic disease development and their potential use in prognostic and therapeutic purposes. J Biochem Mol Toxicol 2022; 36:e23134. [PMID: 35695328 DOI: 10.1002/jbt.23134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 04/20/2022] [Accepted: 05/29/2022] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are evolutionary conserved small noncoding RNA molecules with a significant ability to regulate gene expression at the posttranscriptional level either through translation repression or messenger RNA degradation. miRNAs are differentially expressed in various pathophysiological conditions, affecting the course of the disease by modulating several critical target genes. As the persistence of irreversible molecular changes caused by cigarette smoking is central to the pathogenesis of various chronic diseases, several studies have shown its direct correlation with the dysregulation of different miRNAs, affecting numerous essential biological processes. This review provides an insight into the current status of smoking-induced miRNAs dysregulation in chronic diseases such as COPD, atherosclerosis, pulmonary hypertension, and different cancers and explores the diagnostic/prognostic potential of miRNA-based biomarkers and their efficacy as therapeutic targets.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Luis M Ruiz-Manriquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Hector Ambriz-Gonzalez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Daniel Medina-Gomez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Estefania Valenzuela-Coronado
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Paloma Moreno-Gomez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, India
| | - Samik Chakraborty
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aashish Srivastava
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
20
|
Zhou H, Zhang Y, Wang J, Yan Y, Liu Y, Shi X, Zhang Q, Xu X. The CREB and AP-1-Dependent Cell Communication Network Factor 1 Regulates Porcine Epidemic Diarrhea Virus-Induced Cell Apoptosis Inhibiting Virus Replication Through the p53 Pathway. Front Microbiol 2022; 13:831852. [PMID: 35418961 PMCID: PMC8996185 DOI: 10.3389/fmicb.2022.831852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) infection causes severe diarrhea, dehydration, and high mortality in sick pigs, causing huge economic losses to the pig industry. However, the relationship between cell communication network factor 1 (CCN1) and PEDV infection has not been reported. In this study, we showed that the expression of CCN1 was enhanced by PEDV infection, and we observed that PEDV promotes the CREB and AP-1 activation to promote CCN1 expression. The PKA and p38 inhibitors significantly suppress CCN1 expression, indicating that PEDV-induced CCN1 expression may be through PKA and p38 pathway. Further tests confirmed that CREB and AP-1 are regulated by PKA and p38, respectively. Overexpression of CCN1 decreased the replication of PEDV, whereas knockdown of CCN1 increased the replication of PEDV. We proved that the overexpression of CCN1 increased the phosphorylation level of p53, promoted the expresion of Bax and the cleavage of caspase 9 and caspase 3, and inhibited the production of Bcl-2. CCN1 knockdown decreased the phosphorylation level of p53, inhibited the production of Bax and the cleavage of caspase 9 and caspase 3, and promoted the expression of Bcl-2. The treatment of PFT-α (p53 inhibitor) significantly suppressed the expression of cleaved caspase 9 and caspase 3, leading to the decrease of apoptosis. Together, these studies showed that PEDV promotes the activation of CREB and AP-1 to increase the expression of CCN1. Overexpression of CCN1 promotes apoptosis by elevating p53 protein phosphorylation and inhibits PEDV replication, and knockdown of CCN1 inhibits apoptosis by decreasing p53 protein phosphorylation and promotes PEDV replication. Our study could provide some reference for the molecular mechanisms of PEDV-induced CCN1 induction and supply a new therapeutic target for PEDV.
Collapse
Affiliation(s)
- Hongchao Zhou
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yuting Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jingjing Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yuchao Yan
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yi Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xiaojie Shi
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|
21
|
Quan X, Zhang Z, Qin Y, Gai X, Tian Q, Guo Y, Qian J, Yao J. Expression of Shh, Gli1, and Cyr61 in Gastric Cancer Predicts Overall Survival of Patients: A Retrospective Study. Cancer Control 2022; 29:10732748221134398. [PMID: 36346167 PMCID: PMC9647287 DOI: 10.1177/10732748221134398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 10/05/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate the expression levels of Shh, Gli1, and Cyr61 proteins in gastric cancer tissues and analyze the relationship between these three proteins and the clinicopathological factors and prognosis of patients. METHODS This was a retrospective study. Four hundred gastric cancer tissue specimens from patients who underwent radical gastrectomy in Zhangye People's Hospital affiliated to Hexi University between February 2013 and February 2021 underwent immunohistochemical analysis. RESULTS The positive expression rates of Shh, Gli1, and Cyr61 in gastric cancer tissues were 55.5%, 56.5%, and 64.5%, respectively. The expressions of Shh, Gli1, and Cyr61 in gastric cancer tissues were significantly correlated with tumor size, depth of invasion, and degree of differentiation (P < .05). The expression of Shh protein was positively correlated with the expression of Gli1 protein (P < .01), and the expression of Gli1 protein was positively correlated with the expression of Cyr61 protein (P < .01). Univariate and multivariate analyses showed that the expression of Shh, Gli1, and Cyr61 could predict the prognosis of patients (P < .05). Receiver operating characteristic curve analysis combined with TNM staging could better predict the three-year overall survival of patients (P < .05). CONCLUSION Shh, Gli1, and Cyr61 proteins are significantly expressed in gastric cancer tissues and are risk factors for the prognosis of patients with gastric cancer.
Collapse
Affiliation(s)
- Xiaoling Quan
- NHC Key Laboratory of Diagnosis and
Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou Gansu,
China
- Department of Pathology, Hexi
University affiliated Zhangye People’s Hospital, Zhangye Gansu, China
| | - Zhenming Zhang
- NHC Key Laboratory of Diagnosis and
Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou Gansu,
China
- Department of General Surgery II,
Hexi University Affiliated Zhangye People’s Hospital, Zhangye Gansu, China
| | - Yujie Qin
- NHC Key Laboratory of Diagnosis and
Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou Gansu,
China
- Department of Endoscopy Center,
Hexi University Affiliated Zhangye People’s Hospital, Zhangye Gansu, China
| | - Xin Gai
- Hexi University School of Medicine,
Zhangye Gansu, China
| | - Qiling Tian
- Hexi University School of Medicine,
Zhangye Gansu, China
| | - Yaqiong Guo
- Hexi University School of Medicine,
Zhangye Gansu, China
| | - Jun Qian
- NHC Key Laboratory of Diagnosis and
Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou Gansu,
China
- Department of Urology, Institute of
Urology, Hexi University, Zhangye Gansu, China
| | - Jiaxi Yao
- NHC Key Laboratory of Diagnosis and
Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou Gansu,
China
- Department of Urology, Institute of
Urology, Hexi University, Zhangye Gansu, China
| |
Collapse
|
22
|
Tan ZX, Fu L, Wang WJ, Zhan P, Zhao H, Wang H, Xu DX. Serum CYR61 Is Associated With Airway Inflammation and Is a Potential Biomarker for Severity in Chronic Obstructive Pulmonary Disease. Front Med (Lausanne) 2021; 8:781596. [PMID: 34917638 PMCID: PMC8669148 DOI: 10.3389/fmed.2021.781596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Cysteine-rich 61 (CYR61) and inflammation was upregulated in the lungs of patients with chronic obstructive pulmonary disease (COPD). However, the association between CYR61 and inflammation was unclear in COPD patients. This study aimed to analyze the association of serum CYR61 with pulmonary inflammation and lung function indexes in COPD patients. Methods: One hundred and fifty COPD patients and 150 control subjects were enrolled. Serum and pulmonary CYR61 was detected. Lung function indexes were evaluated in COPD patients. Results: Serum CYR61 level was elevated and pulmonary CYR61 expression was upregulated in COPD patients. An increased CYR61 was associated with decreased pulmonary function indexes in COPD patients. Further analyses showed that nuclear factor-kappa B (NF-κB) p65-positive nuclei was elevated in the lungs of COPD patients with high level of CYR61. Accordingly, serum monocyte chemotactic protein (MCP)-1 and tumor necrosis factor α (TNF-α), two downstream inflammatory cytokines of NF-κB pathway, were increased in parallel with CYR61, among which serum MCP-1 and TNF-α were the highest in COPD patients with high level of CYR61. Moreover, a positive correlation, determined by multivariate regression that excluded the influence of age, gender and smoking, was observed between serum CYR61 and inflammatory cytokines in COPD patients. Conclusion: These results provide evidence that an increased CYR61 is associated with pulmonary inflammation and COPD progression. Inflammatory cytokines may be the mediators between CYR61 elevation and COPD progression.
Collapse
Affiliation(s)
- Zhu-Xia Tan
- Department of Toxicology, Anhui Medical University, Hefei, China
- Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lin Fu
- Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Wen-Jing Wang
- Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Ping Zhan
- Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Hui Zhao
- Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, China
| |
Collapse
|
23
|
Ac Kar L, Casjens S, Andreas A, Raiko I, Brüning T, Geffken M, Peine S, Kollmeier J, Johnen G, Bartkowiak K, Weber DG, Pantel K. Blood-based detection of lung cancer using cysteine-rich angiogenic inducer 61 (CYR61) as a circulating protein biomarker: a pilot study. Mol Oncol 2021; 15:2877-2890. [PMID: 34510714 PMCID: PMC8564649 DOI: 10.1002/1878-0261.13099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/27/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is the most often diagnosed cancer and the main cause of cancer deaths in the world compared with other tumor entities. To date, the only screening method for high‐risk lung cancer patients is low‐dosed computed tomography which still suffers from high false‐positive rates and overdiagnosis. Therefore, there is an obvious need to identify biomarkers for the detection of lung cancer that could be used to guide the use of low‐dosed computed tomography or other imaging procedures. We aimed to assess the performance of the protein cysteine‐rich angiogenic inducer 61 (CYR61) as a circulating biomarker for the detection of lung cancer. CYR61 concentrations in plasma were significantly elevated in 87 lung cancer patients (13.7 ± 18.6 ng·mL−1) compared with 150 healthy controls (0.29 ± 0.22 ng·mL−1). Subset analysis stratified by sex revealed increased CYR61 concentrations for adenocarcinoma and squamous cell carcinoma in men compared with women. For male lung cancer patients versus male healthy controls, the sensitivity was 84% at a specificity of 100%, whereas for females, the sensitivity was 27% at a specificity of 99%. The determination of circulating CYR61 protein in plasma might improve the detection of lung cancer in men. The findings of this pilot study support further verification of CYR61 as a biomarker for lung cancer detection in men. Additionally, CYR61 is significantly elevated in women but sensitivity and specificity for CYR61 are too low for the improvement of the detection of lung cancer in women.
Collapse
Affiliation(s)
- Lucija Ac Kar
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Swaantje Casjens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Germany
| | - Antje Andreas
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Irina Raiko
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Germany
| | - Maria Geffken
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Sven Peine
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Jens Kollmeier
- Lungenklinik Heckeshorn, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Georg Johnen
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Germany
| | - Kai Bartkowiak
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Daniel Gilbert Weber
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|