1
|
Yadav B, Yadav P, Yadav S, Pandey AK. Role of long noncoding RNAs in the regulation of alternative splicing in glioblastoma. Drug Discov Today 2024; 29:104140. [PMID: 39168403 DOI: 10.1016/j.drudis.2024.104140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly severe primary brain tumor. Despite extensive research, effective treatments remain elusive. Long noncoding RNAs (lncRNAs) play a significant role in both cancer and normal biology. They influence alternative splicing (AS), which is crucial in cancer. Advances in lncRNA-specific microarrays and next-generation sequencing have enhanced understanding of AS. Abnormal AS contributes to cancer invasion, metastasis, apoptosis, therapeutic resistance, and tumor development, including glioma. lncRNA-mediated AS affects several cellular signaling pathways, promoting or suppressing cancer malignancy. This review discusses the lncRNAs regulating AS in glioblastoma and their mechanisms.
Collapse
Affiliation(s)
- Bhupender Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Pooja Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Sunita Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Amit Kumar Pandey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
2
|
Pokorná M, Černá M, Boussios S, Ovsepian SV, O’Leary VB. lncRNA Biomarkers of Glioblastoma Multiforme. Biomedicines 2024; 12:932. [PMID: 38790894 PMCID: PMC11117901 DOI: 10.3390/biomedicines12050932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNA molecules of 200 nucleotides or more in length that are not translated into proteins. Their expression is tissue-specific, with the vast majority involved in the regulation of cellular processes and functions. Many human diseases, including cancer, have been shown to be associated with deregulated lncRNAs, rendering them potential therapeutic targets and biomarkers for differential diagnosis. The expression of lncRNAs in the nervous system varies in different cell types, implicated in mechanisms of neurons and glia, with effects on the development and functioning of the brain. Reports have also shown a link between changes in lncRNA molecules and the etiopathogenesis of brain neoplasia, including glioblastoma multiforme (GBM). GBM is an aggressive variant of brain cancer with an unfavourable prognosis and a median survival of 14-16 months. It is considered a brain-specific disease with the highly invasive malignant cells spreading throughout the neural tissue, impeding the complete resection, and leading to post-surgery recurrences, which are the prime cause of mortality. The early diagnosis of GBM could improve the treatment and extend survival, with the lncRNA profiling of biological fluids promising the detection of neoplastic changes at their initial stages and more effective therapeutic interventions. This review presents a systematic overview of GBM-associated deregulation of lncRNAs with a focus on lncRNA fingerprints in patients' blood.
Collapse
Affiliation(s)
- Markéta Pokorná
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.Č.); (V.B.O.)
| | - Marie Černá
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.Č.); (V.B.O.)
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK;
- Faculty of Medicine, Health, and Social Care, Canterbury Christ Church University, Canterbury CT2 7PB, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
- Kent Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
| | - Saak V. Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent ME4 4TB, UK;
- Faculty of Medicine, Tbilisi State University, Tbilisi 0177, Georgia
| | - Valerie Bríd O’Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.Č.); (V.B.O.)
| |
Collapse
|
3
|
Liu X, Xiao X, Han X, Yao L, Lan W. Natural flavonoids alleviate glioblastoma multiforme by regulating long non-coding RNA. Biomed Pharmacother 2023; 161:114477. [PMID: 36931030 DOI: 10.1016/j.biopha.2023.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common primary malignant brain tumors in adults. Due to the poor prognosis of patients, the median survival time of GBM is often less than 1 year. Therefore, it is very necessary to find novel treatment options with a good prognosis for the treatment or prevention of GBM. In recent years, flavonoids are frequently used to treat cancer. It is a new attractive molecule that may achieve this promising treatment option. Flavonoids have been proved to have many biological functions, such as antioxidation, prevention of angiogenesis, anti-inflammation, inhibition of cancer cell proliferation, and protection of nerve cells. It has also shown the ability to regulate long non-coding RNA (LncRNA). Studies have confirmed that flavonoids can regulate epigenetic modification, transcription, and change microRNA (miRNA) expression of GBM through lncRNA at the gene level. It also found that flavonoids can induce apoptosis and autophagy of GBM cells by regulating lncRNA. Moreover, it can improve the metabolic abnormalities of GBM, interfere with the tumor microenvironment and related signaling pathways, and inhibit the angiogenesis of GBM cells. Eventually, flavonoids can block the tumor initiation, growth, proliferation, differentiation, invasion, and metastasis. In this review, we highlight the role of lncRNA in GBM cancer progression and the influence of flavonoids on lncRNA regulation. And emphasize their expected role in the prevention and treatment of GBM.
Collapse
Affiliation(s)
- Xian Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Xinyu Xiao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610015, China
| | - Xue Han
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Lan Yao
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Wei Lan
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
4
|
Sisakht AK, Malekan M, Ghobadinezhad F, Firouzabadi SNM, Jafari A, Mirazimi SMA, Abadi B, Shafabakhsh R, Mirzaei H. Cellular Conversations in Glioblastoma Progression, Diagnosis and Treatment. Cell Mol Neurobiol 2023; 43:585-603. [PMID: 35411434 DOI: 10.1007/s10571-022-01212-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/07/2022] [Indexed: 12/22/2022]
Abstract
Glioblastoma (GBM) is the most frequent malignancy among primary brain tumors in adults and one of the worst 5-year survival rates (< 7%) among all human cancers. Till now, treatments that target particular cell or intracellular metabolism have not improved patients' survival. GBM recruits healthy brain cells and subverts their processes to create a microenvironment that contributes to supporting tumor progression. This microenvironment encompasses a complex network in which malignant cells interact with each other and with normal and immune cells to promote tumor proliferation, angiogenesis, metastasis, immune suppression, and treatment resistance. Communication can be direct via cell-to-cell contact, mainly through adhesion molecules, tunneling nanotubes, gap junctions, or indirect by conventional paracrine signaling by cytokine, neurotransmitter, and extracellular vesicles. Understanding these communication routes could open up new avenues for the treatment of this lethal tumor. Hence, therapeutic approaches based on glioma cells` communication have recently drawn attention. This review summarizes recent findings on the crosstalk between glioblastoma cells and their tumor microenvironment, and the impact of this conversation on glioblastoma progression. We also discuss the mechanism of communication of glioma cells and their importance as therapeutic targets and diagnostic and prognostic biomarkers. Overall, understanding the biological mechanism of specific interactions in the tumor microenvironment may help in predicting patient prognosis and developing novel therapeutic strategies to target GBM.
Collapse
Affiliation(s)
- Ali Karimi Sisakht
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Malekan
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farbod Ghobadinezhad
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Student Research Committee, Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyedeh Negar Mousavi Firouzabadi
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.,Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Banafshe Abadi
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
5
|
Sun Z, Wu Y, Gao F, Li H, Wang C, Du L, Dong L, Jiang Y. In situ detection of exosomal RNAs for cancer diagnosis. Acta Biomater 2023; 155:80-98. [PMID: 36343908 DOI: 10.1016/j.actbio.2022.10.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Exosomes are considered as biomarkers reflecting the physiological state of the human body. Studies have revealed that the expression levels of specific exosomal RNAs are closely associated with certain cancers. Thus, detection of exosomal RNA offers a new avenue for liquid biopsy of cancers. Many exosomal RNA detection methods based on various principles have been developed, and most of the methods detect the extracted RNAs after lysing exosomes. Besides complex and time-consuming extraction steps, a major drawback of this approach is the degradation of the extracted RNAs in the absence of plasma membrane and cytosol. In addition, there is considerable loss of RNAs during their extraction. In situ detection of exosomal RNAs can avoid these drawbacks, thus allowing higher diagnostic reliability. In this paper, in situ detection of exosomal RNAs was systematically reviewed from the perspectives of detection methods, transport methods of the probe systems, probe structures, signal amplification strategies, and involved functional materials. Furthermore, the limitations and possible improvements of the current in situ detection methods for exosomal RNAs towards the clinical diagnostic application are discussed. This review aims to provide a valuable reference for the development of in situ exosomal RNA detection strategies for non-invasive diagnosis of cancers. STATEMENT OF SIGNIFICANCE: Certain RNAs have been identified as valuable biomarkers for some cancers, and sensitive detection of cancer-related RNAs is expected to achieve better diagnostic efficacy. Currently, the detection of exosomal RNAs is receiving increasing attention due to their high stability and significant concentration differences between patients and healthy individuals. In situ detection of exosomal RNAs has greater diagnostic reliability due to the avoidance of RNA degradation and loss. However, this mode is still limited by some factors such as detection methods, transport methods of the probe systems, probe structures, signal amplification strategies, etc. This review focuses on the progress of in situ detection of exosomal RNAs and aims to promote the development of this field.
Collapse
Affiliation(s)
- Zhiwei Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Yanqiu Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Fucheng Gao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, China.
| | - Lun Dong
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan 250012, China.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China.
| |
Collapse
|
6
|
Kilanowska A, Ziółkowska A, Stasiak P, Gibas-Dorna M. cAMP-Dependent Signaling and Ovarian Cancer. Cells 2022; 11:cells11233835. [PMID: 36497095 PMCID: PMC9738761 DOI: 10.3390/cells11233835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
cAMP-dependent pathway is one of the most significant signaling cascades in healthy and neoplastic ovarian cells. Working through its major effector proteins-PKA and EPAC-it regulates gene expression and many cellular functions. PKA promotes the phosphorylation of cAMP response element-binding protein (CREB) which mediates gene transcription, cell migration, mitochondrial homeostasis, cell proliferation, and death. EPAC, on the other hand, is involved in cell adhesion, binding, differentiation, and interaction between cell junctions. Ovarian cancer growth and metabolism largely depend on changes in the signal processing of the cAMP-PKA-CREB axis, often associated with neoplastic transformation, metastasis, proliferation, and inhibition of apoptosis. In addition, the intracellular level of cAMP also determines the course of other pathways including AKT, ERK, MAPK, and mTOR, that are hypo- or hyperactivated among patients with ovarian neoplasm. With this review, we summarize the current findings on cAMP signaling in the ovary and its association with carcinogenesis, multiplication, metastasis, and survival of cancer cells. Additionally, we indicate that targeting particular stages of cAMP-dependent processes might provide promising therapeutic opportunities for the effective management of patients with ovarian cancer.
Collapse
Affiliation(s)
- Agnieszka Kilanowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
- Correspondence: ; Tel.: +48-683-283-148
| | - Agnieszka Ziółkowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Piotr Stasiak
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Magdalena Gibas-Dorna
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
7
|
Tang S, Yuan K, Chen L. Molecular biomarkers, network biomarkers, and dynamic network biomarkers for diagnosis and prediction of rare diseases. FUNDAMENTAL RESEARCH 2022; 2:894-902. [PMID: 38933388 PMCID: PMC11197705 DOI: 10.1016/j.fmre.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
The difficulty of converting scientific research findings into novel pharmacological treatments for rare and life-threatening diseases is enormous. Biomarkers related to multiple biological processes involved in cell growth, proliferation, and disease occurrence have been identified in recent years with the development of immunology, molecular biology, and genomics technologies. Biomarkers are capable of reflecting normal physiological processes, pathological processes, and the response to therapeutic intervention; as such, they play vital roles in disease diagnosis, prevention, drug response, and other aspects of biomedicine. The discovery of valuable biomarkers has become a focal point of current research. Numerous studies have identified molecular biomarkers based on the differential expression/concentration of molecules (e.g., genes/proteins) for disease state diagnosis, characterization, and treatment. Although technological breakthroughs in molecular analysis platforms have enabled the identification of a large number of candidate biomarkers for rare diseases, only a small number of these candidates have been properly validated for use in patient treatment. The traditional molecular biomarkers may lose vital information by ignoring molecular associations/interactions, and thus the concept of network biomarkers based on differential associations/correlations of molecule pairs has been established. This approach promises to be more stable and reliable in diagnosing disease states. Furthermore, the newly-emerged dynamic network biomarkers (DNBs) based on differential fluctuations/correlations of molecular groups are able to recognize pre-disease states or critical states instead of disease states, thereby achieving rare disease prediction or predictive/preventative medicine and providing deep insight into the dynamic characteristics of disease initiation and progression.
Collapse
Affiliation(s)
- Shijie Tang
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Yuan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Sun J, Xu H, Lei Z, Li Z, Zhu H, Deng Z, Yu X, Jin X, Yang Z. The lncRNA CASC2 Modulates Hepatocellular Carcinoma Cell Sensitivity and Resistance to TRAIL Through Apoptotic and Non-Apoptotic Signaling. Front Oncol 2022; 11:726622. [PMID: 35145900 PMCID: PMC8823509 DOI: 10.3389/fonc.2021.726622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/09/2021] [Indexed: 12/23/2022] Open
Abstract
The immune cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been widely concerned as a tumor therapy because of its ability of selective triggering cancer cell apoptosis; nevertheless, hepatocellular carcinoma (HCC) exhibits acquired resistance to TRAIL-induced apoptosis. In the present study, tumor-suppressive lncRNA cancer susceptibility candidate 2 (CASC2) was downregulated in HCC tissues and cell lines; HCC patients with lower CASC2 expression predicted a shorter overall survival rate. In vitro, CASC2 overexpression dramatically repressed HCC cell proliferation and inhibited cell apoptosis; in vivo, CASC2 overexpression inhibited subcutaneous xenotransplant tumor growth. CASC2 affected the caspase cascades and NF-κB signaling in TRAIL-sensitive [Huh-7 (S) and HCCLM3 (S)] or TRAIL-resistant cell lines [Huh-7 (R) and HCCLM3 (R)] in different ways. In Huh-7 (S) and HCCLM3 (S) cells, CASC2 affected cell apoptosis through the miR-24/caspase-8 and miR-221/caspase-3 axes and the caspase cascades. miR-18a directly targeted CASC2 and RIPK1. In Huh-7 (R) and HCCLM3 (R) cells, CASC2 affected cell proliferation through the miR-18a/RIPK1 axis and the NF-κB signaling. RELA bound to CASC2 promoter region and inhibited CASC2 transcription. In conclusion, CASC2 affects cell growth mainly via the miR-24/caspase-8 and miR-221/caspase-3 axes in TRAIL-sensitive HCC cells; while in TRAIL-resistant HCC cells, CASC2 affects cell growth mainly via miR-18a/RIPK1 axis and the NF-κB signaling. These outcomes foreboded that CASC2 could be a novel therapeutic target for further study of HCC-related diseases.
Collapse
Affiliation(s)
- Jichun Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongbo Xu
- Department of Vascular Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhao Lei
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhiqiang Li
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongwei Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhen Deng
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxin Jin
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaoxin Jin, ; Zhi Yang,
| | - Zhi Yang
- Department of Colorectal & Anal Surgery, General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaoxin Jin, ; Zhi Yang,
| |
Collapse
|
9
|
Protein profiling reveals potential isomiR-associated cross-talks among RNAs in cholangiocarcinoma. Comput Struct Biotechnol J 2021; 19:5722-5734. [PMID: 34745457 PMCID: PMC8551523 DOI: 10.1016/j.csbj.2021.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 12/04/2022] Open
Abstract
Protein profiling identified crucial genes that were used to screen related ncRNAs. Both miRNAs and isomiRs were involved in coding-non-coding RNA regulatory network. IsomiR-associated ceRNA networks implied the complex interactions among RNAs.
Cholangiocarcinomas (CCAs) are tumors that arise from the cholangiocytes. Although some genes have been shown with important roles in pathological process, interactions or cross-talks among different RNAs are important to understand the detailed molecular mechanisms in cancer development, especially discussing cross-talks among isomiRs and other RNAs. Herein, to characterize crucial genes in CCA, the protein expression profile was performed to survey potential crucial mRNAs and related non-coding RNAs (ncRNAs) in mRNA-ncRNA network, mainly including miRNAs/isomiRs and lncRNAs. Deregulated mRNAs were firstly obtained if consistent expression patterns were found at protein and mRNA levels, and related miRNAs/isomiRs were screened according to regulatory relationships. Diverse isomiRs from a given miRNA locus also contributed to interactions between the small RNAs and target mRNAs, and miRNAs were further used to survey related lncRNAs to expand the interactions. Thus, several groups of RNAs were constructed as candidate competitive endogenous RNA (ceRNA) networks. Finally, we found that RAB11FIP1:miR-101-3p:MIR3142HG may be a potential ceRNA network, and the interactions among them may be more complex due to variety of isomiRs. Simultaneously, RAB11FIP1 and miR-194-5p were also detected other related lncRNAs (FBXL19-AS1, SNHG1 and PVT1) that may be crucial in coding-non-coding RNA regulatory network. Our results show that diverse isomiRs with sequence and expression heterogeneities contribute to ceRNA regulatory network that may have crucial roles in CCA, which will expand our understanding of interactions among diverse RNAs and their contributions in cancer development.
Collapse
Key Words
- BLCA, bladder urothelial carcinoma
- BRCA, breast invasive carcinoma
- CHOL, cholangiocarcinoma
- COAD, colon adenocarcinoma
- Cholangiocarcinoma (CCA)
- Cross-talk
- ESCA, esophageal carcinoma
- HNSC, head and neck squamous cell carcinoma
- KICH, kidney chromophobe
- KIRC, Kidney renal clear cell carcinoma
- KIRP, kidney renal papillary cell carcinoma
- LIHC, liver hepatocellular carcinoma
- LUAD, lung adenocarcinoma
- LUSC, lung squamous cell carcinoma
- Long non-coding RNA (lncRNA)
- PRAD, prostate adenocarcinoma
- Protein profiling
- STAD, stomach adenocarcinoma
- THCA, thyroid carcinoma
- UCEC, uterine corpus endometrial carcinoma
- isomiR
- microRNA (miRNA)
Collapse
|
10
|
Momtazmanesh S, Rezaei N. Long Non-Coding RNAs in Diagnosis, Treatment, Prognosis, and Progression of Glioma: A State-of-the-Art Review. Front Oncol 2021; 11:712786. [PMID: 34322395 PMCID: PMC8311560 DOI: 10.3389/fonc.2021.712786] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioma is the most common malignant central nervous system tumor with significant mortality and morbidity. Despite considerable advances, the exact molecular pathways involved in tumor progression are not fully elucidated, and patients commonly face a poor prognosis. Long non-coding RNAs (lncRNAs) have recently drawn extra attention for their potential roles in different types of cancer as well as non-malignant diseases. More than 200 lncRNAs have been reported to be associated with glioma. We aimed to assess the roles of the most investigated lncRNAs in different stages of tumor progression and the mediating molecular pathways in addition to their clinical applications. lncRNAs are involved in different stages of tumor formation, invasion, and progression, including regulating the cell cycle, apoptosis, autophagy, epithelial-to-mesenchymal transition, tumor stemness, angiogenesis, the integrity of the blood-tumor-brain barrier, tumor metabolism, and immunological responses. The well-known oncogenic lncRNAs, which are upregulated in glioma, are H19, HOTAIR, PVT1, UCA1, XIST, CRNDE, FOXD2-AS1, ANRIL, HOXA11-AS, TP73-AS1, and DANCR. On the other hand, MEG3, GAS5, CCASC2, and TUSC7 are tumor suppressor lncRNAs, which are downregulated. While most studies reported oncogenic effects for MALAT1, TUG1, and NEAT1, there are some controversies regarding these lncRNAs. Expression levels of lncRNAs can be associated with tumor grade, survival, treatment response (chemotherapy drugs or radiotherapy), and overall prognosis. Moreover, circulatory levels of lncRNAs, such as MALAT1, H19, HOTAIR, NEAT1, TUG1, GAS5, LINK-A, and TUSC7, can provide non-invasive diagnostic and prognostic tools. Modulation of expression of lncRNAs using antisense oligonucleotides can lead to novel therapeutics. Notably, a profound understanding of the underlying molecular pathways involved in the function of lncRNAs is required to develop novel therapeutic targets. More investigations with large sample sizes and increased focus on in-vivo models are required to expand our understanding of the potential roles and application of lncRNAs in glioma.
Collapse
Affiliation(s)
- Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Abstract
There is no single global definition of a rare disease, and for different geographical areas the definition is based on the disease occurrence in that population [...].
Collapse
Affiliation(s)
- Bridget E Bax
- Institute of Molecular and Clinical Sciences, St. George's University of London, London SW17 0RE, UK
| |
Collapse
|