1
|
Santamaria P, Jin Y, Ghuman M, Shoaie S, Spratt D, Troiano G, Nibali L. Microbiological and molecular profile of furcation defects in a population with untreated periodontitis. J Clin Periodontol 2024; 51:1421-1432. [PMID: 39109387 DOI: 10.1111/jcpe.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/03/2024] [Accepted: 06/10/2024] [Indexed: 10/19/2024]
Abstract
AIM To describe the microbiological composition of subgingival dental plaque and molecular profile of gingival crevicular fluid (GCF) of periodontal furcation-involved defects. MATERIALS AND METHODS Fifty-seven participants with periodontitis contributed with a degree II-III furcation involvement (FI), a non-furcation (NF) periodontal defect and a periodontally healthy site (HS). Subgingival plaque was analysed by sequencing the V3-V4 region of the 16S rRNA gene, and a multiplex bead immunoassay was carried out to estimate the GCF levels of 18 GCF biomarkers. Aiming to explore inherent patterns and the intrinsic structure of data, an AI-clustering method was also applied. RESULTS In total, 171 subgingival plaque and 84 GCF samples were analysed. Four microbiome clusters were identified and associated with FI, NF and HS. A reduced aerobic microbiota (p = .01) was detected in FI compared with NF; IL-6, MMP-3, MMP-8, BMP-2, SOST, EGF and TIMP-1 levels were increased in the GCF of FI compared with NF. CONCLUSIONS This is the first study to profile periodontal furcation defects from a microbiological and inflammatory standpoint using conventional and AI-based analyses. A reduced aerobic microbial biofilm and an increase of several inflammatory, connective tissue degradation and repair markers were detected compared with other periodontal defects.
Collapse
Affiliation(s)
- Pasquale Santamaria
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Yi Jin
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Mandeep Ghuman
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Saeed Shoaie
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - David Spratt
- Microbial Diseases, Eastman Dental Institute, University College London, London, UK
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigi Nibali
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
2
|
Al-Mutairi MA, Al-Salamah L, Nouri LA, Al-Marshedy BS, Al-Harbi NH, Al-Harabi EA, Al-Dosere HA, Tashkandi FS, Al-Shabib ZM, Altalhi AM. Microbial Changes in the Periodontal Environment Due to Orthodontic Appliances: A Review. Cureus 2024; 16:e64396. [PMID: 39130947 PMCID: PMC11317031 DOI: 10.7759/cureus.64396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Orthodontic appliances significantly influence the microbiological dynamics within the oral cavity, transforming symbiotic relationships into dysbiotic states that can lead to periodontal diseases. This review synthesizes current findings on how orthodontic treatments, particularly fixed and removable appliances, foster niches for bacterial accumulation and complicate oral hygiene maintenance. Advanced culture-independent methods were employed to identify shifts toward anaerobic and pathogenic bacteria, with fixed appliances showing a more pronounced impact compared to clear aligners. The study underscores the importance of meticulous oral hygiene practices and routine dental monitoring to manage these microbial shifts effectively. By highlighting the relationship between appliance type, surface characteristics, treatment duration, and microbial changes, this review aims to enhance dental professionals' understanding of periodontal risks associated with orthodontic appliances and strategies to mitigate these risks. The findings are intended to guide clinicians in optimizing orthodontic care to prevent plaque-associated diseases, ensuring better periodontal health outcomes for patients undergoing orthodontic treatment.
Collapse
|
3
|
Gerardi D, Bernardi S, Bruni A, Falisi G, Botticelli G. Characterization and morphological methods for oral biofilm visualization: where are we nowadays? AIMS Microbiol 2024; 10:391-414. [PMID: 38919718 PMCID: PMC11194622 DOI: 10.3934/microbiol.2024020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
The oral microbiome represents an essential component of the oral ecosystem whose symbiotic relationship contributes to health maintenance. The biofilm represents a state of living of microorganisms surrounding themselves with a complex and tridimensional organized polymeric support and defense matrix. The substrates where the oral biofilm adhere can suffer from damages due to the microbial community metabolisms. Therefore, microbial biofilm represents the main etiological factor of the two pathologies of dental interest with the highest incidence, such as carious pathology and periodontal pathology. The study, analysis, and understanding of the characteristics of the biofilm, starting from the macroscopic structure up to the microscopic architecture, appear essential. This review examined the morphological methods used through the years to identify species, adhesion mechanisms that contribute to biofilm formation and stability, and how the action of microbicidal molecules is effective against pathological biofilm. Microscopy is the primary technique for the morphological characterization of biofilm. Light microscopy, which includes the stereomicroscope and confocal laser microscopy (CLSM), allows the visualization of microbial communities in their natural state, providing valuable information on the spatial arrangement of different microorganisms within the biofilm and revealing microbial diversity in the biofilm matrix. The stereomicroscope provides a three-dimensional view of the sample, allowing detailed observation of the structure, thickness, morphology, and distribution of the various species in the biofilm while CLSM provides information on its three-dimensional architecture, microbial composition, and dynamic development. Electron microscopy, scanning (SEM) or transmission (TEM), allows the high-resolution investigation of the architecture of the biofilm, analyzing the bacterial population, the extracellular polymeric matrix (EPS), and the mechanisms of the physical and chemical forces that contribute to the adhesion of the biofilm to the substrates, on a nanometric scale. More advanced microscopic methodologies, such as scanning transmission electron microscopy (STEM), high-resolution transmission electron microscopy (HR-TEM), and correlative microscopy, have enabled the evaluation of antibacterial treatments, due to the potential to reveal the efficacy of different molecules in breaking down the biofilm. In conclusion, evidence based on scientific literature shows that established microscopic methods represent the most common tools used to characterize biofilm and its morphology in oral microbiology. Further protocols and studies on the application of advanced microscopic techniques are needed to obtain precise details on the microbiological and pathological aspects of oral biofilm.
Collapse
Affiliation(s)
- Davide Gerardi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Sara Bernardi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Angelo Bruni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Falisi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gianluca Botticelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
4
|
Hoefer KC, Weber LT, Barbe AG, Graf I, Thom S, Nowag A, Scholz CJ, Wisplinghoff H, Noack MJ, Jazmati N. The tongue microbiome of young patients with chronic kidney disease and their healthy mothers. Clin Oral Investig 2024; 28:110. [PMID: 38265670 PMCID: PMC10808353 DOI: 10.1007/s00784-024-05492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
OBJECTIVES Oral microbiome plays a crucial role in the incidence and development of oral diseases. An altered intestinal microbiome has been reported in adults with chronic kidney disease (CKD). This study aimed to characterize the tongue microbiome of young patients with CKD compared to their healthy mothers to identify the influence of CKD-associated factors on resilient tongue ecosystem. MATERIAL AND METHODS Thirty patients with CKD (mean age, 14.2 years; 16 males and 14 females) and generalized gingivitis were included in the study. Swabs of the posterior tongue were collected from the patients and 21 mothers (mean age 40.8 years). Next-generation sequencing of 16S rDNA genes was employed to quantitatively characterize microbial communities. RESULTS The bacterial communities were similar in terms of richness and diversity between patients and mothers (p > 0.05). In patients with CKD, 5 core phyla, 20 core genera, and 12 core species were identified. CONCLUSIONS The tongue microbiome of the study participants showed no relevant CKD-associated differences compared to their mothers and appears to be a highly preserved niche in the oral cavity. Differences observed in the abundance of individual species in this study could be attributed to the age rather than CKD, even after a mean disease duration of 11 years. CLINICAL RELEVANCE CKD and its associated metabolic changes appear to have no detectable impact on the resilient tongue microbiome observed in young patients.
Collapse
Affiliation(s)
- Karolin C Hoefer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Polyclinic for Operative Dentistry and Periodontology, Cologne, Germany.
| | - Lutz T Weber
- Children´s and Adolescents Hospital, Pediatric Nephrology, University Hospital of Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Anna Greta Barbe
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Polyclinic for Operative Dentistry and Periodontology, Cologne, Germany
| | - Isabelle Graf
- Department of Orthodontics, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | | | | | | | - Hilmar Wisplinghoff
- Wisplinghoff Laboratories, Cologne, Germany
- Institute for Virology and Microbiology, Witten/Herdecke University, Witten, Germany
| | - Michael J Noack
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Polyclinic for Operative Dentistry and Periodontology, Cologne, Germany
| | - Nathalie Jazmati
- Wisplinghoff Laboratories, Cologne, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Leonov GE, Varaeva YR, Livantsova EN, Starodubova AV. The Complicated Relationship of Short-Chain Fatty Acids and Oral Microbiome: A Narrative Review. Biomedicines 2023; 11:2749. [PMID: 37893122 PMCID: PMC10604844 DOI: 10.3390/biomedicines11102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The human oral microbiome has emerged as a focal point of research due to its profound implications for human health. The involvement of short-chain fatty acids in oral microbiome composition, oral health, and chronic inflammation is gaining increasing attention. In this narrative review, the results of early in vitro, in vivo, and pilot clinical studies and research projects are presented in order to define the boundaries of this new complicated issue. According to the results, the current research data are disputable and ambiguous. When investigating the role of SCFAs in human health and disease, it is crucial to distinguish between their local GI effects and the systemic influences. Locally, SCFAs are a part of normal oral microbiota metabolism, but the increased formation of SCFAs usually attribute to dysbiosis; excess SCFAs participate in the development of local oral diseases and in oral biota gut colonization and dysbiosis. On the other hand, a number of studies have established the positive impact of SCFAs on human health as a whole, including the reduction of chronic systemic inflammation, improvement of metabolic processes, and decrease of some types of cancer incidence. Thus, a complex and sophisticated approach with consideration of origin and localization for SCFA function assessment is demanded. Therefore, more research, especially clinical research, is needed to investigate the complicated relationship of SCFAs with health and disease and their potential role in prevention and treatment.
Collapse
Affiliation(s)
- Georgy E Leonov
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Yurgita R Varaeva
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Elena N Livantsova
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Antonina V Starodubova
- Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
- Therapy Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
6
|
Du G, Deng Y, Pan L, Han X, Tang G, Yu S. Preliminary analysis of mucosal and salivary bacterial communities in oral lichen planus. Oral Dis 2023; 29:2710-2722. [PMID: 36587396 DOI: 10.1111/odi.14493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To characterize the bacterial community from different oral niches (buccal mucosa and saliva) in oral lichen planus (OLP) patients. SUBJECTS AND METHODS This preliminary study analyzed site-specific (mucosa and saliva) microbial landscape of 20 OLP patients and 10 healthy controls. RESULTS The microbial diversity was similar between OLP patients and healthy controls in both salivary and mucosal communities. However, the topological properties of co-occurrence networks of salivary and mucosal microbiome were different between healthy controls and OLP patients. SparCC analysis inferred three and five keystone taxa in the salivary and mucosal microbial networks of healthy controls, respectively. However, in the salivary and mucosal bacterial networks of OLP patients, only one hub OTU and three OTUs were identified as keystone taxa, respectively. In addition, analysis of community cohesion revealed that mucosal microbial community in OLP patients had lower stability than that in healthy controls. In final, correlation assay showed that the clinical severity of OLP was positively associated with the relative abundance of Rothia in saliva but negatively associated with that of Porphyromonas on mucosa. CONCLUSIONS The salivary and mucosal bacterial communities of OLP patients differ in terms of composition, the genera associated with OLP severity, and co-occurrence patterns.
Collapse
Affiliation(s)
- Guanhuan Du
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yiwen Deng
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Lei Pan
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xiaozhe Han
- Department of Oral Science and Translational Research, Nova Southeastern University College of Dental Medicine, Fort Lauderdale, Florida, USA
| | - Guoyao Tang
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shiyan Yu
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Rouzi M, Zhang X, Jiang Q, Long H, Lai W, Li X. Impact of Clear Aligners on Oral Health and Oral Microbiome During Orthodontic Treatment. Int Dent J 2023; 73:603-611. [PMID: 37105789 PMCID: PMC10509397 DOI: 10.1016/j.identj.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
The demand for clear aligners has risen over the past decade because they satisfy patients' desire for less noticeable and more comfortable orthodontic appliances. Because clear aligners are increasingly used in orthodontics, there is a big push to learn more about the physiologic and microbial changes that occur during treatment. The present work highlighted further links between clear aligners and changes in oral health and the oral microbiome and provided plaque control methods for clear aligner trays. Existing literature revealed that clear aligners have no significant influence on the structure of the oral microbiome during orthodontic therapy. Clear aligner treatment demonstrated promising results in terms of controlling plaque index, gingival health, and the prevalence of white spot lesions. Nevertheless, grooves, ridges, microcracks, and abrasions on the aligner surface would provide a prime environment for bacterial adherence and the development of plaque biofilms. A combination of mechanical and chemical methods seems to be a successful approach for removing plaque biofilm from aligners whilst also preventing pigment adsorption.
Collapse
Affiliation(s)
- Maierdanjiang Rouzi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoqi Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Qingsong Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Hu Long
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenli Lai
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Xiaolong Li
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Seidel CL, Strobel K, Weider M, Tschaftari M, Unertl C, Willershausen I, Weber M, Hoerning A, Morhart P, Schneider M, Beckmann MW, Bogdan C, Gerlach RG, Gölz L. Orofacial clefts alter early life oral microbiome maturation towards higher levels of potentially pathogenic species: A prospective observational study. J Oral Microbiol 2023; 15:2164147. [PMID: 36632344 PMCID: PMC9828641 DOI: 10.1080/20002297.2022.2164147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Orofacial clefts (OFC) present different phenotypes with a postnatal challenge for oral microbiota development. In order to investigate the impact of OFC on oral microbiota, smear samples from 15 neonates with OFC and 17 neonates without OFC were collected from two oral niches (tongue, cheek) at two time points, i.e. after birth (T0: Ø3d OFC group; Ø2d control group) and 4-5 weeks later (T1: Ø32d OFC group; Ø31d control group). Subsequently, the samples were analyzed using next-generation sequencing. We detected a significant increase of alpha diversity and anaerobic and Gram-negative species from T0 to T1 in both groups. Further, we found that at T1 OFC neonates presented a significantly lower alpha diversity (lowest values for high cleft severity) and significantly higher levels of Enterobacteriaceae (Citrobacter, Enterobacter, Escherichia-Shigella, Klebsiella), Enterococcus, Bifidobacterium, Corynebacterium, Lactocaseibacillus, Staphylococcus, Acinetobacter and Lawsonella compared to controls. Notably, neonates with unilateral and bilateral cleft lip and palate (UCLP/BCLP) presented similarities in beta diversity and a mixture with skin microbiota. However, significant differences were seen in neonates with cleft palate only compared to UCLP/BCLP with higher levels of anaerobic species. Our findings revealed an influence of OFC as well as cleft phenotype and severity on postnatal oral microbiota maturation.
Collapse
Affiliation(s)
- Corinna L. Seidel
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany,CONTACT Corinna L. Seidel Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg, Glückstraße 11, Erlangen91054, Germany
| | - Karin Strobel
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Weider
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Marco Tschaftari
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Unertl
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Ines Willershausen
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Manuel Weber
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - André Hoerning
- Department of Pediatric and Adolescent Medicine, Universitätsklinikum Erlangen Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Patrick Morhart
- Department of Pediatrics, Universitätsklinikum Erlangen Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Schneider
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center (CCC) Erlangen-EMN, Universitätsklinikum Erlangen Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center (CCC) Erlangen-EMN, Universitätsklinikum Erlangen Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Roman G. Gerlach
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany,Roman G. Gerlach Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene Friedrich-Alexander-Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, Erlangen91054, Germany
| | - Lina Gölz
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany,Lina Gölz Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg, Glückstraße 11, Erlangen91054, Germany
| |
Collapse
|
9
|
Bessa LJ, Botelho J, Machado V, Alves R, Mendes JJ. Managing Oral Health in the Context of Antimicrobial Resistance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16448. [PMID: 36554332 PMCID: PMC9778414 DOI: 10.3390/ijerph192416448] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 05/25/2023]
Abstract
The oral microbiome plays a major role in shaping oral health/disease state; thus, a main challenge for dental practitioners is to preserve or restore a balanced oral microbiome. Nonetheless, when pathogenic microorganisms install in the oral cavity and are incorporated into the oral biofilm, oral infections, such as gingivitis, dental caries, periodontitis, and peri-implantitis, can arise. Several prophylactic and treatment approaches are available nowadays, but most of them have been antibiotic-based. Given the actual context of antimicrobial resistance (AMR), antibiotic stewardship in dentistry would be a beneficial approach to optimize and avoid inappropriate or even unnecessary antibiotic use, representing a step towards precision medicine. Furthermore, the development of new effective treatment options to replace the need for antibiotics is being pursued, including the application of photodynamic therapy and the use of probiotics. In this review, we highlight the advances undergoing towards a better understanding of the oral microbiome and oral resistome. We also provide an updated overview of how dentists are adapting to better manage the treatment of oral infections given the problem of AMR.
Collapse
Affiliation(s)
- Lucinda J. Bessa
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| | - João Botelho
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Clinical Research Unit (CRU), CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Evidence-Based Hub, CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| | - Vanessa Machado
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Clinical Research Unit (CRU), CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Evidence-Based Hub, CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| | - Ricardo Alves
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Clinical Research Unit (CRU), CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| | - José João Mendes
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Clinical Research Unit (CRU), CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
- Evidence-Based Hub, CiiEM, Egas Moniz—Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| |
Collapse
|
10
|
Seidel CL, Percivalle E, Tschaftari M, Weider M, Strobel K, Willershausen I, Unertl C, Schmetzer HM, Weber M, Schneider M, Frey B, Gaipl US, Beckmann MW, Gölz L. Orofacial clefts lead to increased pro-inflammatory cytokine levels on neonatal oral mucosa. Front Immunol 2022; 13:1044249. [PMID: 36466891 PMCID: PMC9714580 DOI: 10.3389/fimmu.2022.1044249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/20/2022] [Indexed: 07/30/2023] Open
Abstract
Orofacial clefts (OFC) are frequent congenital malformations characterized by insufficient separation of oral and nasal cavities and require presurgical infant orthopedics and surgical interventions within the first year of life. Wound healing disorders and higher prevalence of gingivitis and plaque levels are well-known challenges in treatment of children with OFC. However, oral inflammatory mediators were not investigated after birth using non-invasive sampling methods so far. In order to investigate the impact of OFC on oral cytokine levels, we collected tongue smear samples from 15 neonates with OFC and 17 control neonates at two time points (T), T0 at first consultation after birth, and T1, 4 to 5 weeks later. The samples were analyzed using multiplex immunoassay. Overall, we found significantly increased cytokine levels (TNF, IL-1β/-2/-6/-8/-10) in tongue smear samples from neonates with OFC compared to controls, especially at T0. The increase was even more pronounced in neonates with a higher cleft severity. Further, we detected a significant positive correlation between cleft severity score and distinct pro-inflammatory mediators (GM-CSF, IL-1β, IL-6, IL-8) at T0. Further, we found that breast-milk (bottle) feeding was associated with lower levels of pro-inflammatory cytokines (IL-6/-8) in neonates with OFC compared to formula-fed neonates. Our study demonstrated that neonates with OFC, especially with high cleft severity, are characterized by markedly increased inflammatory mediators in tongue smear samples within the first weeks of life potentially presenting a risk for oral inflammatory diseases. Therefore, an inflammatory monitoring of neonates with (severe) OFC and the encouragement of mother to breast-milk (bottle) feed might be advisable after birth and/or prior to cleft surgery.
Collapse
Affiliation(s)
- Corinna L. Seidel
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Elena Percivalle
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Marco Tschaftari
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Weider
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Karin Strobel
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Ines Willershausen
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Unertl
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Helga M. Schmetzer
- Med III, University Hospital of Munich, Workgroup: Immune modulation, Munich, Germany
| | - Manuel Weber
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Schneider
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center (CCC) Erlangen-EMN, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Udo S. Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center (CCC) Erlangen-EMN, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Lina Gölz
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
11
|
Li S, He M, Lei Y, Liu Y, Li X, Xiang X, Wu Q, Wang Q. Oral Microbiota and Tumor-A New Perspective of Tumor Pathogenesis. Microorganisms 2022; 10:2206. [PMID: 36363799 PMCID: PMC9692822 DOI: 10.3390/microorganisms10112206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 09/11/2023] Open
Abstract
Microorganisms have long been known to play key roles in the initiation and development of tumors. The oral microbiota and tumorigenesis have been linked in epidemiological research relating to molecular pathology. Notably, some bacteria can impact distal tumors by their gastrointestinal or blood-borne transmission under pathological circumstances. Certain bacteria drive tumorigenesis and progression through direct or indirect immune system actions. This review systemically discusses the recent advances in the field of oral microecology and tumor, including the oncogenic role of oral microbial abnormalities and various potential carcinogenesis mechanisms (excessive inflammatory response, host immunosuppression, anti-apoptotic activity, and carcinogen secretion) to introduce future directions for effective tumor prevention.
Collapse
Affiliation(s)
- Simin Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Mingxin He
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yumeng Lei
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yang Liu
- Wuhan Asia General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xinquan Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
12
|
Seidel CL, Gerlach RG, Weider M, Wölfel T, Schwarz V, Ströbel A, Schmetzer H, Bogdan C, Gölz L. Influence of probiotics on the periodontium, the oral microbiota and the immune response during orthodontic treatment in adolescent and adult patients (ProMB Trial): study protocol for a prospective, double-blind, controlled, randomized clinical trial. BMC Oral Health 2022; 22:148. [PMID: 35477563 PMCID: PMC9044659 DOI: 10.1186/s12903-022-02180-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Orthodontic treatment with fixed appliances is often necessary to correct malocclusions in adolescence or adulthood. However, oral hygiene is complicated by appliances, and prior studies indicate that they may trigger oral inflammation and dysbiosis of the oral microbiota, especially during the first 3 months after insertion, and, thus, may present a risk for inflammatory oral diseases. In recent periodontal therapeutic studies, probiotics have been applied to improve clinical parameters and reduce local inflammation. However, limited knowledge exists concerning the effects of probiotics in orthodontics. Therefore, the aim of our study is to evaluate the impact of probiotics during orthodontic treatment. METHODS This study is a monocentric, randomized, double blind, controlled clinical study to investigate the effectiveness of daily adjuvant use of Limosilactobacillus reuteri (Prodentis®-lozenges, DSM 17938, ATCC PTA 5289) versus control lozenges during the first three months of orthodontic treatment with fixed appliances. Following power analysis, a total of 34 adolescent patients (age 12-17) and 34 adult patients (18 years and older) undergoing orthodontic treatment at the University Hospital Erlangen will be assigned into 2 parallel groups using a randomization plan for each age group. The primary outcome measure is the change of the gingival index after 4 weeks. Secondary outcomes include the probing pocket depth, the modified plaque index, the composition of the oral microbiota, the local cytokine expression and-only for adults-serum cytokine levels and the frequencies of cells of the innate and adaptive immune system in peripheral blood. DISCUSSION Preventive strategies in everyday orthodontic practice include oral hygiene instructions and regular dental cleaning. Innovative methods, like adjuvant use of oral probiotics, are missing. The aim of this study is to analyse, whether probiotics can improve clinical parameters, reduce inflammation and prevent dysbiosis of the oral microbiota during orthodontic treatment. If successful, this study will provide the basis for a new strategy of prophylaxis of oral dysbiosis-related diseases during treatment with fixed appliances. TRIAL REGISTRATION This trial is registered at ClinicalTrials.gov in two parts under the number NCT04598633 (Adolescents, registration date 10/22/2020), and NCT04606186 (Adults, registration date 10/28/2020).
Collapse
Affiliation(s)
- Corinna L Seidel
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Glückstr. 11, 91054, Erlangen, Germany.
| | - Roman G Gerlach
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054, Erlangen, Germany
| | - Matthias Weider
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Glückstr. 11, 91054, Erlangen, Germany
| | - Theresa Wölfel
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Glückstr. 11, 91054, Erlangen, Germany
| | - Vincent Schwarz
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Glückstr. 11, 91054, Erlangen, Germany
| | - Armin Ströbel
- Center for Clinical Studies (CCS), Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Helga Schmetzer
- Med III, University Hospital of Munich, Workgroup: Immune Modulation, Marchioninistraße 15, 81377, Munich, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Lina Gölz
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Glückstr. 11, 91054, Erlangen, Germany
| |
Collapse
|
13
|
Bacali C, Vulturar R, Buduru S, Cozma A, Fodor A, Chiș A, Lucaciu O, Damian L, Moldovan ML. Oral Microbiome: Getting to Know and Befriend Neighbors, a Biological Approach. Biomedicines 2022; 10:671. [PMID: 35327473 PMCID: PMC8945538 DOI: 10.3390/biomedicines10030671] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
The oral microbiome, forming a biofilm that covers the oral structures, contains a high number of microorganisms. Biofilm formation starts from the salivary pellicle that allows bacterial adhesion-colonization-proliferation, co-aggregation and biofilm maturation in a complex microbial community. There is a constant bidirectional crosstalk between human host and its oral microbiome. The paper presents the fundamentals regarding the oral microbiome and its relationship to modulator factors, oral and systemic health. The modern studies of oral microorganisms and relationships with the host benefits are based on genomics, transcriptomics, proteomics and metabolomics. Pharmaceuticals such as antimicrobials, prebiotics, probiotics, surface active or abrasive agents and plant-derived ingredients may influence the oral microbiome. Many studies found associations between oral dysbiosis and systemic disorders, including autoimmune diseases, cardiovascular, diabetes, cancers and neurodegenerative disorders. We outline the general and individual factors influencing the host-microbial balance and the possibility to use the analysis of the oral microbiome in prevention, diagnosis and treatment in personalized medicine. Future therapies should take in account the restoration of the normal symbiotic relation with the oral microbiome.
Collapse
Affiliation(s)
- Cecilia Bacali
- Department of Prosthodontics and Dental Materials, “Iuliu Hatieganu” University of Medicine and Pharmacy, 32 Clinicilor St., 400006 Cluj-Napoca, Romania; (C.B.); (S.B.)
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 6 Pasteur St., 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 30 Fântânele St., 400294 Cluj-Napoca, Romania
| | - Smaranda Buduru
- Department of Prosthodontics and Dental Materials, “Iuliu Hatieganu” University of Medicine and Pharmacy, 32 Clinicilor St., 400006 Cluj-Napoca, Romania; (C.B.); (S.B.)
| | - Angela Cozma
- 4th Medical Department, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj-Napoca, 18 Republicii St., 400015 Cluj-Napoca, Romania;
| | - Adriana Fodor
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 2-4 Clinicilor St., 400012 Cluj-Napoca, Romania;
| | - Adina Chiș
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 6 Pasteur St., 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 30 Fântânele St., 400294 Cluj-Napoca, Romania
| | - Ondine Lucaciu
- Department of Oral Health, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania;
| | - Laura Damian
- Department of Rheumatology, Emergency Clinical County Hospital Cluj, Centre for Rare Autoimmune and Autoinflammatory Diseases, 2-4 Clinicilor St., 400006 Cluj-Napoca, Romania;
- CMI Reumatologie Dr. Damian, 6-8 Petru Maior St., 400002 Cluj-Napoca, Romania
| | - Mirela Liliana Moldovan
- Department of Dermopharmacy and Cosmetics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 12, I. Creanga St., 400010 Cluj-Napoca, Romania;
| |
Collapse
|
14
|
Souza JG, Costa RC, Sampaio AA, Abdo VL, Nagay BE, Castro N, Retamal-Valdes B, Shibli JA, Feres M, Barão VA, Bertolini M. Cross-kingdom microbial interactions in dental implant-related infections: is Candida albicans a new villain? iScience 2022; 25:103994. [PMID: 35313695 PMCID: PMC8933675 DOI: 10.1016/j.isci.2022.103994] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Candida albicans, an oral fungal opportunistic pathogen, has shown the ability to colonize implant surfaces and has been frequently isolated from biofilms associated with dental implant-related infections, possibly due to its synergistic interactions with certain oral bacteria. Moreover, evidence suggests that this cross-kingdom interaction on implant can encourage bacterial growth, leading to increased fungal virulence and mucosal damage. However, the role of Candida in implant-related infections has been overlooked and not widely explored or even considered by most microbiological analyses and therapeutic approaches. Thus, we summarized the scientific evidence regarding the ability of C. albicans to colonize implant surfaces, interact in implant-related polymicrobial biofilms, and its possible role in peri-implant infections as far as biologic plausibility. Next, a systematic review of preclinical and clinical studies was conducted to identify the relevance and the gap in the existing literature regarding the role of C. albicans in the pathogenesis of peri-implant infections.
Collapse
Affiliation(s)
- João G.S. Souza
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil
- Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais 39401-303, Brazil
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
- Corresponding author
| | - Raphael C. Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Aline A. Sampaio
- Department of Clinic, Pathology and Dental Surgery, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Victória L. Abdo
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil
| | - Bruna E. Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Nidia Castro
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil
| | - Belén Retamal-Valdes
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil
| | - Jamil A. Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil
| | - Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil
| | - Valentim A.R. Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
- Corresponding author
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
15
|
DeClercq V, Nearing JT, Langille MGI. Investigation of the impact of commonly used medications on the oral microbiome of individuals living without major chronic conditions. PLoS One 2021; 16:e0261032. [PMID: 34882708 PMCID: PMC8659300 DOI: 10.1371/journal.pone.0261032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Commonly used medications produce changes in the gut microbiota, however, the impact of these medications on the composition of the oral microbiota is understudied. METHODS Saliva samples were obtained from 846 females and 368 males aged 35-69 years from a Canadian population cohort, the Atlantic Partnership for Tomorrow's Health (PATH). Samples were analyzed by 16S rRNA gene sequencing and differences in microbial community compositions between nonusers, single-, and multi-drug users as well as the 3 most commonly used medications (thyroid hormones, statins, and proton pump inhibitors (PPI)) were examined. RESULTS Twenty-six percent of participants were taking 1 medication and 21% were reported taking 2 or more medications. Alpha diversity indices of Shannon diversity, Evenness, Richness, and Faith's phylogenetic diversity were similar among groups, likewise beta diversity as measured by Bray-Curtis dissimilarity (R2 = 0.0029, P = 0.053) and weighted UniFrac distances (R2 = 0.0028, P = 0.161) were non-significant although close to our alpha value threshold (P = 0.05). After controlling for covariates (sex, age, BMI), six genera (Saprospiraceae uncultured, Bacillus, Johnsonella, Actinobacillus, Stenotrophomonas, and Mycoplasma) were significantly different from non-medication users. Thyroid hormones, HMG-CoA reductase inhibitors (statins) and PPI were the most reported medications. Shannon diversity differed significantly among those taking no medication and those taking only thyroid hormones, however, there were no significant difference in other measures of alpha- or beta diversity with single thyroid hormone, statin, or PPI use. Compared to participants taking no medications, the relative abundance of eight genera differed significantly in participants taking thyroid hormones, six genera differed in participants taking statins, and no significant differences were observed with participants taking PPI. CONCLUSION The results from this study show negligible effect of commonly used medications on microbial diversity and small differences in the relative abundance of specific taxa, suggesting a minimal influence of commonly used medication on the salivary microbiome of individuals living without major chronic conditions.
Collapse
Affiliation(s)
- Vanessa DeClercq
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| | - Jacob T. Nearing
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Morgan G. I. Langille
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
16
|
Buchbender M, Fehlhofer J, Proff P, Möst T, Ries J, Hannig M, Neurath MF, Gund M, Atreya R, Kesting M. Expression of inflammatory mediators in biofilm samples and clinical association in inflammatory bowel disease patients-a preliminary study. Clin Oral Investig 2021; 26:1217-1228. [PMID: 34383142 PMCID: PMC8816497 DOI: 10.1007/s00784-021-04093-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Inflammatory bowel disease (IBD) has multiple impacts on soft and hard tissues in the oral cavity. The aim of this study was to analyze the expression of cytokines in biofilm samples from patients suffering from IBD and compare them to healthy patients. It was hypothesized that different cytokine expression levels and clinical associations might be drawn. MATERIAL AND METHODS A total of 56 biofilm samples from three different patient cohorts (group 0 = healthy, HC n = 30; group 1 = Crohn's disease, CD, n = 19; group 2 = ulcerative colitis, UC, n = 7) were examined for the expression levels of the cytokine interleukins IL-2, -6, and -10; matrix metalloproteinases 7 and 9; and surface antigens CD90/CD11a by quantitative real-time PCR and according to clinical parameters (plaque index, BOP, PD, DMFT, CAL). Relative gene expression was determined using the ∆∆CT method. RESULTS The mean BOP values (p = 0.001) and PD (p = 0.000) were significantly higher in the CD group compared to controls. Expression of IL-10 was significantly higher in the CD (p = 0.004) and UC groups (p = 0.022). Expression of MMP-7 was significantly higher in the CD group (p = 0.032). IBD patients treated with TNF inhibitors (p = 0.007) or other immunosuppressants (p = 0.014) showed significant overexpression of IL-10 compared to controls. CONCLUSION Different expression levels of IL-10 and MMP-7 were detected in plaque samples from IBD patients. As only BOP was significantly increased, we conclude that no clinical impairment of periodontal tissue occurred in IBD patients. CLINICAL RELEVANCE With the worldwide increasing incidence of IBD, it is important to obtain insights into the effects of the disease on the oral cavity. The study was registered (01.09.2020) at the German clinical trial registry (DRKS00022956). CLINICAL TRIAL REGISTRATION The study is registered at the German clinical trial registry (DRKS00022956).
Collapse
Affiliation(s)
- Mayte Buchbender
- Department of Oral and Maxillofacial Surgery, University of Erlangen- Nuremberg, Glückstrasse 11, 91054, Erlangen, Germany.
| | - Jakob Fehlhofer
- Department of Oral and Maxillofacial Surgery, University of Erlangen- Nuremberg, Glückstrasse 11, 91054, Erlangen, Germany
| | - Peter Proff
- Head of the Department of Orthodontics, University of Regensburg, Regensburg, Germany
| | - Tobias Möst
- Department of Oral and Maxillofacial Surgery, University of Erlangen- Nuremberg, Glückstrasse 11, 91054, Erlangen, Germany
| | - Jutta Ries
- Department of Oral and Maxillofacial Surgery, University of Erlangen- Nuremberg, Glückstrasse 11, 91054, Erlangen, Germany
| | - Matthias Hannig
- Head of Department of Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - Markus F Neurath
- Department of Medicine, University of Erlangen-Nuremberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie DZI, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Madline Gund
- Department of Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - Raja Atreya
- Department of Medicine, University of Erlangen-Nuremberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie DZI, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Marco Kesting
- Department of Oral and Maxillofacial Surgery, University of Erlangen- Nuremberg, Glückstrasse 11, 91054, Erlangen, Germany
| |
Collapse
|
17
|
Rojas C, García MP, Polanco AF, González-Osuna L, Sierra-Cristancho A, Melgar-Rodríguez S, Cafferata EA, Vernal R. Humanized Mouse Models for the Study of Periodontitis: An Opportunity to Elucidate Unresolved Aspects of Its Immunopathogenesis and Analyze New Immunotherapeutic Strategies. Front Immunol 2021; 12:663328. [PMID: 34220811 PMCID: PMC8248545 DOI: 10.3389/fimmu.2021.663328] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Periodontitis is an oral inflammatory disease in which the polymicrobial synergy and dysbiosis of the subgingival microbiota trigger a deregulated host immune response, that leads to the breakdown of tooth-supporting tissues and finally tooth loss. Periodontitis is characterized by the increased pathogenic activity of T helper type 17 (Th17) lymphocytes and defective immunoregulation mediated by phenotypically unstable T regulatory (Treg), lymphocytes, incapable of resolving the bone-resorbing inflammatory milieu. In this context, the complexity of the immune response orchestrated against the microbial challenge during periodontitis has made the study of its pathogenesis and therapy difficult and limited. Indeed, the ethical limitations that accompany human studies can lead to an insufficient etiopathogenic understanding of the disease and consequently, biased treatment decision-making. Alternatively, animal models allow us to manage these difficulties and give us the opportunity to partially emulate the etiopathogenesis of periodontitis by inoculating periodontopathogenic bacteria or by placing bacteria-accumulating ligatures around the teeth; however, these models still have limited translational application in humans. Accordingly, humanized animal models are able to emulate human-like complex networks of immune responses by engrafting human cells or tissues into specific strains of immunodeficient mice. Their characteristics enable a viable time window for the study of the establishment of a specific human immune response pattern in an in vivo setting and could be exploited for a wider study of the etiopathogenesis and/or treatment of periodontitis. For instance, the antigen-specific response of human dendritic cells against the periodontopathogen Porphyromonas gingivalis favoring the Th17/Treg response has already been tested in humanized mice models. Hypothetically, the proper emulation of periodontal dysbiosis in a humanized animal could give insights into the subtle molecular characteristics of a human-like local and systemic immune response during periodontitis and support the design of novel immunotherapeutic strategies. Therefore, the aims of this review are: To elucidate how the microbiota-elicited immunopathogenesis of periodontitis can be potentially emulated in humanized mouse models, to highlight their advantages and limitations in comparison with the already available experimental periodontitis non-humanized animal models, and to discuss the potential translational application of using these models for periodontitis immunotherapeutics.
Collapse
Affiliation(s)
- Carolina Rojas
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Michelle P García
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Alan F Polanco
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Luis González-Osuna
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Alfredo Sierra-Cristancho
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Faculty of Dentistry, Universidad Andres Bello, Santiago, Chile
| | - Samanta Melgar-Rodríguez
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Emilio A Cafferata
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Perú
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Hollingsworth BA, Cassatt DR, DiCarlo AL, Rios CI, Satyamitra MM, Winters TA, Taliaferro LP. Acute Radiation Syndrome and the Microbiome: Impact and Review. Front Pharmacol 2021; 12:643283. [PMID: 34084131 PMCID: PMC8167050 DOI: 10.3389/fphar.2021.643283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Study of the human microbiota has been a centuries-long endeavor, but since the inception of the National Institutes of Health (NIH) Human Microbiome Project in 2007, research has greatly expanded, including the space involving radiation injury. As acute radiation syndrome (ARS) is multisystemic, the microbiome niches across all areas of the body may be affected. This review highlights advances in radiation research examining the effect of irradiation on the microbiome and its potential use as a target for medical countermeasures or biodosimetry approaches, or as a medical countermeasure itself. The authors also address animal model considerations for designing studies, and the potential to use the microbiome as a biomarker to assess radiation exposure and predict outcome. Recent research has shown that the microbiome holds enormous potential for mitigation of radiation injury, in the context of both radiotherapy and radiological/nuclear public health emergencies. Gaps still exist, but the field is moving forward with much promise.
Collapse
Affiliation(s)
- Brynn A Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Thomas A Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| |
Collapse
|