1
|
Sandeep B, Liu X, Wu Q, Gao K, Xiao Z. Recent updates on asymptomatic and symptomatic aortic valve stenosis its diagnosis, pathogenesis, management and future perspectives. Curr Probl Cardiol 2024; 49:102631. [PMID: 38729278 DOI: 10.1016/j.cpcardiol.2024.102631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Aortic stenosis (AS) is very common in mid-aged and elderly patients, and it has been reported to have a negative impact on both short and long-term survival with a high mortality rate. The current study identified methods of diagnosis, incidence, and causes of AS, pathogenesis, intervention and management and future perspectives of Asymptomatic and Symptomatic Aortic stenosis. A systematic literature search was conducted using PubMed, Scopus and CINAHL, using the Mesh terms and key words "Aortic stenosis", "diagnostic criteria", "pathogenesis", "incidence and causes of AS" and" intervention and management strategies". Studies were retained for review after meeting strict inclusion criteria that included studies evaluating Asymptomatic and Symptomatic AS. Studies were excluded if duplicate publication, overlap of patients, subgroup studies of a main study, lack of data on AS severity, case reports and letters to editors. Forty-five articles were selected for inclusion. Incidence of AS across the studies ranged from 3 % to 7 %. Many factors have been associated with incidence and increased risk of AS, highest incidence of AS was described after aortic valve calcification, rheumatic heart disease, degenerative aortic valve disease, bicuspid aortic valve and other factors. AS is common and can be predicted by aortic root calcification volume, rheumatic heart disease, degenerative aortic valve disease, bicuspid aortic valve. Intervention and management for AS patients is a complex decision that takes into consideration multiple factors. On the other hand, there is not enough progress in preventive pharmacotherapy to slow the progression of AS.
Collapse
Affiliation(s)
- Bhushan Sandeep
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China.
| | - Xian Liu
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China
| | - Qinghui Wu
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China
| | - Ke Gao
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China
| | - Zongwei Xiao
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China
| |
Collapse
|
2
|
Jain H, Goyal A, Khan AT, Khan NU, Jain J, Chopra S, Sulaiman SA, Reddy MM, Patel K, Khullar K, Daoud M, Sohail AH. Insights into calcific aortic valve stenosis: a comprehensive overview of the disease and advancing treatment strategies. Ann Med Surg (Lond) 2024; 86:3577-3590. [PMID: 38846838 PMCID: PMC11152847 DOI: 10.1097/ms9.0000000000002106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/14/2024] [Indexed: 06/09/2024] Open
Abstract
Aortic valve stenosis is a disease characterized by thickening and narrowing of the aortic valve (AV), most commonly due to calcification, which leads to left ventricular outflow obstruction called calcific aortic valve disease (CAVD). CAVD presents as a progressive clinical syndrome with cardiorespiratory symptoms, often with rapid deterioration. The modern-day pathophysiology of CAVD involves a complex interplay of genetic factors, chronic inflammation, lipid deposition, and valve calcification, with early CAVD stages resembling atherosclerosis. Various imaging modalities have been used to evaluate CAVD, with a recent trend of using advanced imaging to measure numerous AV parameters, such as peak jet velocity. Significant improvements in mortality have been achieved with transcatheter AV repair, but numerous therapeutics and modalities are being researched to delay the progression of CAVD. This article aims to provide a comprehensive review of CAVD, explore recent developments, and provide insights into future treatments with various novel modalities.
Collapse
Affiliation(s)
- Hritvik Jain
- Department of Internal Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur
| | - Aman Goyal
- Department of Internal Medicine, Seth Gordhandas Sunderdas (GS) Medical College and King Edward Memorial (KEM) Hospital, Mumbai
| | | | - Noor U. Khan
- Department of Public Health, Health Services Academy, Islamabad, Pakistan
| | - Jyoti Jain
- Department of Internal Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur
| | - Shrey Chopra
- Department of Internal Medicine, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi
| | | | | | - Kush Patel
- Department of Internal Medicine, Baroda Medical College, Gujarat
| | - Kaarvi Khullar
- Department of Internal Medicine, Government Medical College and Hospital, Gondia, Maharashtra, India
| | - Mohamed Daoud
- Department of Internal Medicine, Bogomolets National Medical University, Kyiv, Ukraine
| | - Amir H. Sohail
- Department of Surgery, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| |
Collapse
|
3
|
Tucureanu MM, Ciortan L, Macarie RD, Mihaila AC, Droc I, Butoi E, Manduteanu I. The Specific Molecular Changes Induced by Diabetic Conditions in Valvular Endothelial Cells and upon Their Interactions with Monocytes Contribute to Endothelial Dysfunction. Int J Mol Sci 2024; 25:3048. [PMID: 38474293 DOI: 10.3390/ijms25053048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Aortic valve disease (AVD) represents a global public health challenge. Research indicates a higher prevalence of diabetes in AVD patients, accelerating disease advancement. Although the specific mechanisms linking diabetes to valve dysfunction remain unclear, alterations of valvular endothelial cells (VECs) homeostasis due to high glucose (HG) or their crosstalk with monocytes play pivotal roles. The aim of this study was to determine the molecular signatures of VECs in HG and upon their interaction with monocytes in normal (NG) or high glucose conditions and to propose novel mechanisms underlying valvular dysfunction in diabetes. VECs and THP-1 monocytes cultured in NG/HG conditions were used. The RNAseq analysis revealed transcriptomic changes in VECs, in processes related to cytoskeleton regulation, focal adhesions, cellular junctions, and cell adhesion. Key molecules were validated by qPCR, Western blot, and immunofluorescence assays. The alterations in cytoskeleton and intercellular junctions impacted VEC function, leading to changes in VECs adherence to extracellular matrix, endothelial permeability, monocyte adhesion, and transmigration. The findings uncover new molecular mechanisms of VEC dysfunction in HG conditions and upon their interaction with monocytes in NG/HG conditions and may help to understand mechanisms of valvular dysfunction in diabetes and to develop novel therapeutic strategies in AVD.
Collapse
Affiliation(s)
- Monica Madalina Tucureanu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Letitia Ciortan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Razvan Daniel Macarie
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Andreea Cristina Mihaila
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Ionel Droc
- Cardiovascular Surgery Department, Central Military Hospital, 010825 Bucharest, Romania
| | - Elena Butoi
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Ileana Manduteanu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| |
Collapse
|
4
|
De Azevedo D, Boute M, Tribouilloy C, Maréchaux S, Pouleur AC, Bohbot Y, Rusinaru D, Altes A, Thellier N, Beauloye C, Pasquet A, Gerber BL, de Kerchove L, Vanoverschelde JLJ, Vancraeynest D. Quantifying the Survival Loss Linked to Late Therapeutic Indication in High-Gradient Severe Aortic Stenosis. JACC. ADVANCES 2024; 3:100830. [PMID: 38938822 PMCID: PMC11198331 DOI: 10.1016/j.jacadv.2024.100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 06/29/2024]
Abstract
Background International guidelines recommend aortic valve replacement (AVR) as Class I triggers in high-gradient severe aortic stenosis (HGSAS) patients with symptoms and/or left ventricular ejection fraction (LVEF) <50%. The association between waiting for these triggers and postoperative survival penalty is poorly studied. Objectives The purpose of this study was to examine the impact of guideline-based Class I triggers on long-term postoperative survival in HGSAS patients. Methods 2,030 patients operated for HGSAS were included and classified as follows: no Class I triggers (no symptoms and LVEF >50%, n = 853), symptoms with LVEF >50% (n = 965), or LVEF <50% regardless of symptoms (n = 212). Survival was compared after matching (inverse probability weighting) for clinical differences. Restricted mean survival time was analyzed to quantify lifetime loss. Results Ten-year survival was better without any Class I trigger than with symptoms or LVEF <50% (67.1% ± 3% vs 56.4% ± 3% vs 53.1% ± 7%, respectively, P < 0.001). Adjusted death risks increased significantly in operated patients with symptoms (HR: 1.45 [95% CI: 1.15-1.82]) or LVEF <50% (HR: 1.47 [95% CI: 1.05-2.06]) than in those without Class I triggers. Performing AVR with LVEF >60% produced similar outcomes to that of the general population, whereas operated patients with LVEF <60% was associated with a 10-year postoperative survival penalty. Furthermore, according to restricted mean survival time analyses, operating on symptomatic patients or with LVEF <60% led to 8.3- and 11.4-month survival losses, respectively, after 10 years, compared with operated asymptomatic patients with a LVEF >60%. Conclusions Guideline-based Class I triggers for AVR in HGSAS have profound consequences on long-term postoperative survival, suggesting that HGSAS patients should undergo AVR before trigger onset. Operating on patients with LVEF <60% is already associated with a 10-year postoperative survival penalty questioning the need for an EF threshold recommending AVR in HGSAS patients.
Collapse
Affiliation(s)
- David De Azevedo
- Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, and IREC/CARD UCLouvain, Brussels, Belgium
| | - Marin Boute
- Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, and IREC/CARD UCLouvain, Brussels, Belgium
| | - Christophe Tribouilloy
- Department of Cardiology, University Hospital Amiens, Amiens, France
- UR UPJV 7517, Jules Verne University of Picardie, Amiens, France
| | - Sylvestre Maréchaux
- Laboratoire ETHICS, Groupement des Hôpitaux de l’Institut Catholique de Lille, Service de cardiologie-USIC, Université Catholique de Lille, Lille, France
| | - Anne-Catherine Pouleur
- Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, and IREC/CARD UCLouvain, Brussels, Belgium
| | - Yohann Bohbot
- Department of Cardiology, University Hospital Amiens, Amiens, France
- UR UPJV 7517, Jules Verne University of Picardie, Amiens, France
| | - Dan Rusinaru
- Department of Cardiology, University Hospital Amiens, Amiens, France
- UR UPJV 7517, Jules Verne University of Picardie, Amiens, France
| | - Alexandre Altes
- Laboratoire ETHICS, Groupement des Hôpitaux de l’Institut Catholique de Lille, Service de cardiologie-USIC, Université Catholique de Lille, Lille, France
| | - Nicolas Thellier
- Laboratoire ETHICS, Groupement des Hôpitaux de l’Institut Catholique de Lille, Service de cardiologie-USIC, Université Catholique de Lille, Lille, France
| | - Christophe Beauloye
- Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, and IREC/CARD UCLouvain, Brussels, Belgium
| | - Agnès Pasquet
- Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, and IREC/CARD UCLouvain, Brussels, Belgium
| | - Bernhard L. Gerber
- Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, and IREC/CARD UCLouvain, Brussels, Belgium
| | - Laurent de Kerchove
- Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, and IREC/CARD UCLouvain, Brussels, Belgium
| | - Jean-Louis J. Vanoverschelde
- Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, and IREC/CARD UCLouvain, Brussels, Belgium
| | - David Vancraeynest
- Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, and IREC/CARD UCLouvain, Brussels, Belgium
| |
Collapse
|
5
|
Chen L, Yu L, Liu Y, Xu H, Li W, Wang F, Zhu J, Yi K, Ma L, Xiao H, Zhou F, Chen M, Cheng Y, Wang F, Zhu C, Xiao X, Yang Y. Valve-Adjustable Optofluidic Bio-Imaging Platform for Progressive Stenosis Investigation. ACS Sens 2023; 8:3104-3115. [PMID: 37477650 DOI: 10.1021/acssensors.3c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The clinical evidence has proven that valvular stenosis is closely related to many vascular diseases, which attracts great academic attention to the corresponding pathological mechanisms. The investigation is expected to benefit from the further development of an in vitro model that is tunable for bio-mimicking progressive valvular stenosis and enables accurate optical recognition in complex blood flow. Here, we develop a valve-adjustable optofluidic bio-imaging recognition platform to fulfill it. Specifically, the bionic valve was designed with in situ soft membrane, and the internal air-pressure chamber could be regulated from the inside out to bio-mimic progressive valvular stenosis. The developed imaging algorithm enhances the recognition of optical details in blood flow imaging and allows for quantitative analysis. In a prospective clinical study, we examined the effect of progressive valvular stenosis on hemodynamics within the typical physiological range of veins by this way, where the inhomogeneity and local enhancement effect in the altered blood flow field were precisely described and the optical differences were quantified. The effectiveness and consistency of the results were further validated through statistical analysis. In addition, we tested it on fluorescence and noticed its good performance in fluorescent tracing of the clotting process. In virtue of theses merits, this system should be able to contribute to mechanism investigation, pharmaceutical development, and therapeutics of valvular stenosis-related diseases.
Collapse
Affiliation(s)
- Longfei Chen
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & technology, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Le Yu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & technology, Wuhan University, Wuhan 430072, China
| | - Yantong Liu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & technology, Wuhan University, Wuhan 430072, China
| | - Hongshan Xu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & technology, Wuhan University, Wuhan 430072, China
| | - Wei Li
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & technology, Wuhan University, Wuhan 430072, China
| | - Fang Wang
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & technology, Wuhan University, Wuhan 430072, China
| | - Jiaomeng Zhu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & technology, Wuhan University, Wuhan 430072, China
| | - Kezhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Linlu Ma
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Hui Xiao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Ming Chen
- Department of Blood Transfusion, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Yanxiang Cheng
- School of Medicine, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xuan Xiao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Yi Yang
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & technology, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| |
Collapse
|
6
|
Yu W, Zhu X, Liu J, Zhou J. Biofunctionalized Decellularized Tissue-Engineered Heart Valve with Mesoporous Silica Nanoparticles for Controlled Release of VEGF and RunX2-siRNA against Calcification. Bioengineering (Basel) 2023; 10:859. [PMID: 37508886 PMCID: PMC10376836 DOI: 10.3390/bioengineering10070859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The goal of tissue-engineered heart valves (TEHV) is to replace normal heart valves and overcome the shortcomings of heart valve replacement commonly used in clinical practice. However, calcification of TEHV is the major bottleneck to break for both clinical workers and researchers. Endothelialization of TEHV plays a crucial role in delaying valve calcification by reducing platelet adhesion and covering the calcified spots. In the present study, we loaded RunX2-siRNA and VEGF into mesoporous silica nanoparticles and investigated the properties of anti-calcification and endothelialization in vitro. Then, the mesoporous silica nanoparticle was immobilized on the decellularized porcine aortic valve (DPAV) by layer self-assembly and investigated the anti-calcification and endothelialization. Our results demonstrated that the mesoporous silica nanoparticles delivery vehicle demonstrated good biocompatibility, and a stable release of RunX2-siRNA and VEGF. The hybrid decellularized valve exhibited a low hemolysis rate and promoted endothelial cell proliferation and adhesion while silencing RunX2 gene expression in valve interstitial cells, and the hybrid decellularized valve showed good mechanical properties. Finally, the in vivo experiment showed that the mesoporous silica nanoparticles delivery vehicle could enhance the endothelialization of the hybrid valve. In summary, we constructed a delivery system based on mesoporous silica to biofunctionalized TEHV scaffold for endothelialization and anti-calcification.
Collapse
Affiliation(s)
- Wenpeng Yu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, China
| | - Xiaowei Zhu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jichun Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, China
| | - Jianliang Zhou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, China
| |
Collapse
|
7
|
Abdul-Rahman T, Lizano-Jubert I, Garg N, Talukder S, Lopez PP, Awuah WA, Shah R, Chambergo D, Cantu-Herrera E, Farooqi M, Pyrpyris N, de Andrade H, Mares AC, Gupta R, Aldosoky W, Mir T, Lavie CJ, Abohashem S. The common pathobiology between coronary artery disease and calcific aortic stenosis: Evidence and clinical implications. Prog Cardiovasc Dis 2023; 79:89-99. [PMID: 37302652 DOI: 10.1016/j.pcad.2023.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Calcific aortic valve stenosis (CAS), the most prevalent valvular disease worldwide, has been demonstrated to frequently occur in conjunction with coronary artery disease (CAD), the third leading cause of death worldwide. Atherosclerosis has been proven to be the main mechanism involved in CAS and CAD. Evidence also exists that obesity, diabetes, and metabolic syndrome (among others), along with specific genes involved in lipid metabolism, are important risk factors for CAS and CAD, leading to common pathological processes of atherosclerosis in both diseases. Therefore, it has been suggested that CAS could also be used as a marker of CAD. An understanding of the commonalities between the two conditions may improve therapeutic strategies for treating both CAD and CAS. This review explores the common pathogenesis and disparities between CAS and CAD, alongside their etiology. It also discusses clinical implications and provides evidence-based recommendations for the clinical management of both diseases.
Collapse
Affiliation(s)
- Toufik Abdul-Rahman
- Medical Institute, Sumy State University; Toufik's World Medical Association, Sumy, Ukraine
| | | | - Neil Garg
- Rowan-Virtua School of Osteopathic Medicine, One Medical Center Drive, Stratford, NJ, United States
| | | | - Pablo Perez Lopez
- Faculty of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain; Puerta de Hierro Majadahonda University Hospital, Majadahonda, Spain
| | - Wireko Andrew Awuah
- Medical Institute, Sumy State University; Toufik's World Medical Association, Sumy, Ukraine
| | | | - Diego Chambergo
- Faculty of Medicine, Anahuac University, Huixquilucan, Mexico
| | - Emiliano Cantu-Herrera
- Department of Clinical Sciences, Division of Health Sciences, University of Monterrey, San Pedro Garza García, Nuevo León, Mexico
| | | | - Nikolaos Pyrpyris
- School of Medicine, National and Kapodistrian University of Athens, Greece
| | | | - Adriana C Mares
- Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Rahul Gupta
- Lehigh Valley Heart Institute, Lehigh Valley Health Network, Allentown, PA, United States of America.
| | - Wesam Aldosoky
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Tanveer Mir
- Detroit Medical Center - Cardiology department, Wayne State University, Detroit, United States
| | - Carl J Lavie
- Department of Cardiology, Ochsner Clinic Foundation, New Orleans, LA, United States of America; The University of Queensland Medical School, Ochsner Clinical School, New Orleans, LA, United States of America
| | - Shady Abohashem
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School Boston, MA, United States; Epidemiology Department, Harvard T. Chan of Public Health, Boston, MA, United States
| |
Collapse
|
8
|
Motawea KR, Elhalag RH, Aboelenein M, Ibrahim N, Swed S, Fathy H, Awad DM, Mohamed Belal M, Talaat NE, Rozan SS, Aiash H, Mostafa MR. Association of aortic valve calcification and high levels of lipoprotein (a): Systematic review and Meta-analysis. Curr Probl Cardiol 2023; 48:101746. [PMID: 37100357 DOI: 10.1016/j.cpcardiol.2023.101746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023]
Abstract
AIM This study aimed to assess the association between aortic valve calcification and lipoprotein (a). METHODS We searched PUBMED, WOS, and SCOPUS databases. Inclusion criteria were any controlled clinical trials or observational studies that reported the level of Lipoprotein A in patients with aortic valve calcifications, excluding case reports, editorials and animal studies. RevMan software (5.4) was used to perform the meta-analysis. RESULTS After complete screening, 7 studies were included with a total number of 446179 patients included in the analysis. The pooled analysis showed a statistically significant association between the incidence of aortic valve calcium and increased levels of lipoprotein (a) compared with controls (SMD = 1.71, 95% CI = 1.04 to 2.38, p-value < 0.00001). CONCLUSION This meta-analysis showed a statistically significant association between the incidence of aortic valve calcium and increased levels of lipoprotein (a) compared with controls. Patients with high levels of lipoprotein (a) are at increased risk of developing aortic valve calcification. Medications targeting lipoprotein (a) in future clinical trials may be useful in primary prevention of aortic valve calcification in high risk patients.
Collapse
Affiliation(s)
| | | | | | | | - Sarya Swed
- Faculty of Medicine, Aleppo University, Aleppo, Syria
| | - Hager Fathy
- Faculty of Medicine, Minia University, Egypt
| | - Dina M Awad
- Faculty of Medicine, Alexandria University, Egypt
| | | | | | | | - Hani Aiash
- Upstate Medical University, NY, USA, Cardiovascular perfusion Department
| | | |
Collapse
|
9
|
Shah SM, Shah J, Lakey SM, Garg P, Ripley DP. Pathophysiology, emerging techniques for the assessment and novel treatment of aortic stenosis. Open Heart 2023; 10:e002244. [PMID: 36963766 PMCID: PMC10040005 DOI: 10.1136/openhrt-2022-002244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
Our perspectives on aortic stenosis (AS) are changing. Evolving from the traditional thought of a passive degenerative disease, developing a greater understanding of the condition's mechanistic underpinning has shifted the paradigm to an active disease process. This advancement from the 'wear and tear' model is a result of the growing economic and health burden of AS, particularly within industrialised countries, prompting further research. The pathophysiology of calcific AS (CAS) is complex, yet can be characterised similarly to that of atherosclerosis. Progressive remodelling involves lipid-protein complexes, with lipoprotein(a) being of particular interest for diagnostics and potential future treatment options.There is an unmet clinical need for asymptomatic patient management; no pharmacotherapies are proven to slow progression and intervention timing varies. Novel approaches are developing to address this through: (1) screening with circulating biomarkers; (2) development of drugs to slow disease progression and (3) early valve intervention guided by medical imaging. Existing biomarkers (troponin and brain natriuretic peptide) are non-specific, but cost-effective predictors of ventricular dysfunction. In addition, their integration with cardiovascular MRI can provide accurate risk stratification, aiding aortic valve replacement decision making. Currently, invasive intervention is the only treatment for AS. In comparison, the development of lipoprotein(a) lowering therapies could provide an alternative; slowing progression of CAS, preventing left ventricular dysfunction and reducing reliance on surgical intervention.The landscape of AS management is rapidly evolving. This review outlines current understanding of the pathophysiology of AS, its management and future perspectives for the condition's assessment and treatment.
Collapse
Affiliation(s)
- Syed Muneeb Shah
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Jay Shah
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Samuel Mark Lakey
- Department of Cardiology, Northumbria Healthcare NHS Foundation Trust, North Shields, UK
| | - Pankaj Garg
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
- Department of Cardiology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, Norfolk, UK
| | - David Paul Ripley
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
- Department of Cardiology, Northumbria Healthcare NHS Foundation Trust, North Shields, UK
| |
Collapse
|
10
|
Wen D, Hu L, Shan J, Zhang H, Hu L, Yuan A, Pu J, Xue S. Mechanical injury accentuates lipid deposition in ApoE -/- mice and advance aortic valve stenosis: A novel modified aortic valve stenosis model. Front Cardiovasc Med 2023; 10:1119746. [PMID: 36818346 PMCID: PMC9932047 DOI: 10.3389/fcvm.2023.1119746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Background Current mouse models still have limitations in studying aortic valve stenosis (AVS). A suitable animal model bearing a close resemblance to the pathophysiological processes of humans needs to be developed. Here, we combined two risk factors to create a mouse model that mimics the pathological features of human AVS. Methods and results We combined WI and hyperlipidemia in ApoE-/- mice to explore the synergistic effect on the stenosis of the aortic valve. Transthoracic echocardiography revealed progressively increased peak velocity with age in ApoE-/- mice to velocities above C57 mice when fed a high-fat diet after wire injury. Moreover, ApoE-/- mice demonstrated lower cusp separation and lower aortic valve area after 8 weeks vs. C57 mice. Gross morphology and MRI showed advanced thickening, sclerosis aortic valve, narrowing of the orifice area, and micro-CT showed obvious calcification in the aortic valves in the hyperlipidemia group after wire injury. Histopathology studies showed thickening and fibrosis of aortic valve leaflets in the hyperlipidemia group after wire injury. Notably, lipid deposition was observed in ApoE-/- mice 8 weeks after wire injury, accompanied by overexpressed apoB and apoA proteins. After wire injury, the hyperlipidemia group exhibited augmented inflammation, ROS production, and apoptosis in the leaflets. Moreover, the combination group exhibited advanced fibro-calcific aortic valves after wire injury. Conclusion Overall, we present the synergistic effect of wire injury and hyperlipidemia on lipoproteins deposition in the development of AVS in ApoE-/- mice, this model bear close resemblance to human AVS pathology.
Collapse
Affiliation(s)
- Dezhong Wen
- Department of Cardiovascular Surgery, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Hu
- Department of Cardiology, Key Laboratory of Coronary Heart Disease, Shanghai Municipal Education Commission, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianggui Shan
- Department of Cardiovascular Surgery, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hengyuan Zhang
- Department of Cardiology, Key Laboratory of Coronary Heart Disease, Shanghai Municipal Education Commission, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liuhua Hu
- Department of Cardiology, Key Laboratory of Coronary Heart Disease, Shanghai Municipal Education Commission, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ancai Yuan
- Department of Cardiology, Key Laboratory of Coronary Heart Disease, Shanghai Municipal Education Commission, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Key Laboratory of Coronary Heart Disease, Shanghai Municipal Education Commission, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Jun Pu,
| | - Song Xue
- Department of Cardiovascular Surgery, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Song Xue,
| |
Collapse
|
11
|
Strange G, Stewart S, Playford D, Strom JB. Risk for Mortality with Increasingly Severe Aortic Stenosis: An International Cohort Study. J Am Soc Echocardiogr 2023; 36:60-68.e2. [PMID: 36208655 PMCID: PMC9822866 DOI: 10.1016/j.echo.2022.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Aortic stenosis (AS) is the most common valvular heart disease in high-income countries. Adjusted for clinical confounders, the risk associated with increasing AS severity across the spectrum of AS severity remains uncertain. METHODS The authors conducted an international, multicenter, parallel-cohort study of 217,599 Australian (mean age, 76.0 ± 7.3 years; 49.3% women) and 30,865 US (mean age, 77.4 ± 7.3 years; 52.2% women) patients aged ≥65 years who underwent echocardiography. Patients with previous aortic valve replacement were excluded. The risk of increasing AS severity, quantified by peak aortic velocity (Vmax), was assessed through linkage to 97,576 and 14,481 all-cause deaths in Australia and the United States, respectively. RESULTS The distribution of AS severity (mean Vmax, 1.7 ± 0.7 m/sec) was similar in both cohorts. Compared with those with Vmax of 1.0 to 1.49 m/sec, those with Vmax of 2.50 to 2.99 m/sec (US cohort) or Vmax of 3.0 to 3.49 m/sec (Australian cohort) had a 1.5-fold increase in mortality risk within 10 years, adjusting for age, sex, presence of left heart disease, and left ventricular ejection fraction. Overall, the adjusted risk for mortality plateaued (1.75- to 2.25-fold increased risk) above a Vmax of 3.5 m/sec. This pattern of mortality persisted despite adjustment for a comprehensive list of comorbidities and treatments within the US cohort. CONCLUSIONS Within large, parallel patient cohorts managed in different health systems, similar patterns of mortality linked to increasingly severe AS were observed. These findings support ongoing clinical trials of aortic valve replacement in patients with nonsevere AS and suggest the need to develop and apply more proactive surveillance strategies in this high-risk population.
Collapse
Affiliation(s)
- Geoff Strange
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Institute of Health Research, University of Notre Dame, Fremantle, Australia; Heart Research Institute, Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Simon Stewart
- Institute of Health Research, University of Notre Dame, Fremantle, Australia; School of Medicine, Dentistry & Nursing, University of Glasgow, Glasgow, United Kingdom
| | - David Playford
- Institute of Health Research, University of Notre Dame, Fremantle, Australia
| | - Jordan B Strom
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
12
|
Omarjee L. Letter by Omarjee Regarding Article, "Vitamin K2 and D in Patients With Aortic Valve Calcification: A Randomized Double-Blinded Clinical Trial". Circulation 2022; 146:e225-e226. [PMID: 36251787 DOI: 10.1161/circulationaha.122.060855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Loukman Omarjee
- NuMeCan (Nutrition, Metabolism and Cancer) Insitute. EXPRES (Exogenous and endogenous stress, plasticity of responses and diseases) Team. Mixed Research Unit 1241 INSERM (National Institute of Health and Medical Research), Rennes University Hospital, F-35033, Rennes, France. Vascular Medicine Department, Clinical Investigation Center 1414, Rennes University Hospital, F-35033, Rennes, France. Vascular Medicine Unit, Redon Hospital, F-35600, Redon, France. ODYSSEY Research For A Better Life Non-Profit Organization, F-97410, Saint-Pierre, La Reunion, France
| |
Collapse
|
13
|
Luo J, Wang S, Liu X, Zheng Q, Wang Z, Huang Y, Shi J. Galectin-3 promotes calcification of human aortic valve interstitial cells via the NF-kappa B signaling pathway. Cardiovasc Diagn Ther 2022; 12:196-207. [PMID: 35433352 PMCID: PMC9011093 DOI: 10.21037/cdt-21-506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/30/2022] [Indexed: 09/19/2023]
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is an active pathobiological process that takes place at the cellular and molecular levels. It involves fibrosis and calcification of aortic valve leaflets, which eventually contributes to heart failure. Galectin-3 (Gal-3), a β-galactoside-binding lectin, is involved in myocardial fibrosis and remodeling. Our study aimed to explore how Gal-3 promoted the osteogenic differentiation of human aortic valve interstitial cells (hVICs) along with elucidating the underlying molecular mechanisms. METHODS To determine the Gal-3 expression in this study, we included the blood samples and aortic valves (AVs) from patients with CAVD (n=20) and normal controls (n=20). The hVICs were stimulated by Osteogenic medium (OM) and were treated with or without recombinant human Gal-3. Calcified transformation of hVICs was assessed by Alizarin Red S staining and osteogenic gene/protein expression. RNA-sequencing was performed for all different treatments to investigate differentially expressed genes (DEGs) along with exploring the enriched pathways for potential molecular targets of Gal-3. The targets were further detected using Western blotting and immunofluorescence staining. RESULTS Gal-3 levels were found to be significantly increased in CAVD patients. Treatment of valve interstitial cells (VICs) with Gal-3 led to a marked increase in Runx2 and ALP-mRNA/protein expression levels as well as calcification. Gene expression profiles of hVICs cultured with or without Gal-3 revealed 79 upregulated genes and 82 down-regulated genes, which were highly enriched in TNF and NF-κB signaling pathways. Furthermore, Gal-3 could activate the phosphorylation of IκBα and interfere with the translocation of p65 into the cell nucleus of hVICs. However, inhibition of this pathway can suppress the osteogenic differentiation by Gal-3. CONCLUSIONS Gal-3 acts as a positive regulator of osteogenic differentiation by activating the NF-κB signaling pathway in hVICs. Our findings provide novel mechanistic insights into the critical role of Gal-3 in the CAVD progression.
Collapse
Affiliation(s)
- Jingjing Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Wang
- Department of Anesthesiology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijie Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuming Huang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Diederichsen A, Lindholt JS, Møller JE, Gerke O, Rasmussen LM, Dahl JS. Sex Differences in Factors Associated With Progression of Aortic Valve Calcification in the General Population. Circ Cardiovasc Imaging 2022; 15:e013165. [PMID: 34983195 DOI: 10.1161/circimaging.121.013165] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Guidelines recommend measurement of the aortic valve calcification (AVC) score to help differentiate between severe and nonsevere aortic stenosis, but a paucity exists in data about AVC in the general population. The aim of this study was to describe the natural history of AVC progression in the general population and to identify potential sex differences in factors associated with this progression rate. METHODS Noncontrast cardiac computed tomography was performed in 1298 randomly selected women and men aged 65 to 74 years who participated in the DANCAVAS trial (Danish Cardiovascular Screening). Participants were invited to attend a reexamination after 4 years. The AVC score was measured at the computed tomography, and AVC progression (ΔAVC) was defined as the difference between AVC scores at baseline and follow-up. Multivariable regression analyses were performed to identify factors associated with ΔAVC. RESULTS Among the 1298 invited citizens, 823 accepted to participate in the follow-up examination. The mean age at follow-up was 73 years. Men had significantly higher AVC scores at baseline (median AVC score 13 Agatston Units [AU; interquartile range, 0-94 AU] versus 1 AU [interquartile range, 0-22 AU], P<0.001) and a higher ΔAVC (median 26 AU [interquartile range, 0-101 AU] versus 4 AU [interquartile range, 0-37 AU], P<0.001) than women. In the fully adjusted model, the most important factor associated with ΔAVC was the baseline AVC score. However, hypertension was associated with ΔAVC in women (incidence rate ratios, 1.58 [95% CI, 1.06-2.34], P=0.024) but not in men, whereas dyslipidemia was associated with ΔAVC in men (incidence rate ratio: 1.66 [95% CI, 1.18-2.34], P=0.004) but not in women. CONCLUSIONS The magnitude of the AVC score was the most important marker of AVC progression. However, sex differences were significant; hence, dyslipidemia was associated with AVC progression only among men; hypertension with AVC progression only among women. Registration: URL: https://www.isrctn.com; Unique identifier: ISRCTN12157806.
Collapse
Affiliation(s)
- Axel Diederichsen
- Department of Cardiology (A.D., J.E.M., J.S.D.), and Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark
| | - Jes Sanddal Lindholt
- Department of Thoracic and Vascular Surgery (J.S.L.), and Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark
| | - Jacob Eifer Møller
- Department of Cardiology (A.D., J.E.M., J.S.D.), and Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark.,Department of Cardiology, Rigshospitalet - Copenhagen, Denmark (J.E.M.)
| | - Oke Gerke
- Department of Nuclear Medicine (O.G., L.M.R.), and Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark
| | - Lars Melholt Rasmussen
- Department of Nuclear Medicine (O.G., L.M.R.), and Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark
| | - Jordi S Dahl
- Department of Cardiology (A.D., J.E.M., J.S.D.), and Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark
| |
Collapse
|
15
|
Innate immune cells in the pathophysiology of calcific aortic valve disease: lessons to be learned from atherosclerotic cardiovascular disease? Basic Res Cardiol 2022; 117:28. [PMID: 35581364 PMCID: PMC9114076 DOI: 10.1007/s00395-022-00935-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 01/31/2023]
Abstract
Calcific aortic valve disease (CAVD) is the most common valvular disease in the developed world with currently no effective pharmacological treatment available. CAVD results from a complex, multifactorial process, in which valvular inflammation and fibro-calcific remodelling lead to valve thickening and cardiac outflow obstruction. The exact underlying pathophysiology of CAVD is still not fully understood, yet the development of CAVD shows many similarities with the pathophysiology of atherosclerotic cardiovascular disease (ASCVD), such as coronary artery disease. Innate immune cells play a crucial role in ASCVD and might also play a pivotal role in the development of CAVD. This review summarizes the current knowledge on the role of innate immune cells, both in the circulation and in the aortic valve, in the development of CAVD and the similarities and differences with ASCVD. Trained immunity and clonal haematopoiesis of indeterminate potential are proposed as novel immunological mechanisms that possibly contribute to the pathophysiology of CAVD and new possible treatment targets are discussed.
Collapse
|
16
|
Morselli F, McNally R, Nesti L, Liu B, Khan H, Thomson RJ, Stevenson A, Banerjee A, Ahmad M, Hanif M, Steeds R, Khan M. Pharmacological interventions for the treatment of aortic root and heart valve disease. Hippokratia 2021. [DOI: 10.1002/14651858.cd014767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Franca Morselli
- School of Cardiovascular Medicine and Sciences; King's College London; London UK
- Department of Cardiology; East Kent Hospitals Univestity NHS Foundation Trust; Kent UK
| | - Ryan McNally
- Department of Clinical Pharmacology; King's College London; London UK
| | - Lorenzo Nesti
- Department of Clinical and Experimental Medicine; University of Pisa; Pisa Italy
| | - Boyang Liu
- Department of Cardiology; University Hospitals Birmingham (Queen Elizabeth) NHS Foundation Trust; Birmingham UK
| | - Haris Khan
- Department of Renal Medicine; Guys and St Thomas NHS Foundation Trust; London UK
| | - Ross J Thomson
- William Harvey Research Institute; Barts and The London School of Medicine and Dentistry, Queen Mary University of London; London UK
| | - Alex Stevenson
- Department of Acute Medicine; Royal Free NHS Foundation Trust; London UK
| | - Amitava Banerjee
- Institute of Health Informatics Research; University College London; London UK
| | - Mahmood Ahmad
- Department of Cardiology; Royal Free Hospital, Royal Free London NHS Foundation Trust; London UK
| | - Moghees Hanif
- William Harvey Research Institute; Barts and The London School of Medicine and Dentistry, Queen Mary University of London; London UK
| | - Richard Steeds
- Department of Cardiology; University Hospitals Birmingham (Queen Elizabeth) NHS Foundation Trust; Birmingham UK
| | | |
Collapse
|
17
|
Metformin alleviates the calcification of aortic valve interstitial cells through activating the PI3K/AKT pathway in an AMPK dependent way. Mol Med 2021; 27:156. [PMID: 34895136 PMCID: PMC8666063 DOI: 10.1186/s10020-021-00416-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is the most prevalent valvular disease worldwide. However, no effective treatment could delay or prevent the progression of the disease due to the poor understanding of its pathological mechanism. Many studies showed that metformin exerted beneficial effects on multiple cardiovascular diseases by mediating multiple proteins such as AMPK, NF-κB, and AKT. This study aims to verify whether metformin can inhibit aortic calcification through the PI3K/AKT signaling pathway. METHODS We first analyzed four microarray datasets to screen differentially expressed genes (DEGs) and signaling pathways related to CAVD. Then aortic valve samples were used to verify selected genes and pathways through immunohistochemistry (IHC) and western blot (WB) assays. Aortic valve interstitial cells (AVICs) were isolated from non-calcific aortic valves and then cultured with phosphate medium (PM) with or without metformin to verify whether metformin can inhibit the osteogenic differentiation and calcification of AVICs. Finally, we used inhibitors and siRNA targeting AMPK, NF-κB, and AKT to study the mechanism of metformin. RESULTS We screened 227 DEGs; NF-κB and PI3K/AKT signaling pathways were implicated in the pathological mechanism of CAVD. IHC and WB experiments showed decreased AMPK and AKT and increased Bax in calcific aortic valves. PM treatment significantly reduced AMPK and PI3K/AKT signaling pathways, promoted Bax/Bcl2 ratio, and induced AVICs calcification. Metformin treatment ameliorated AVICs calcification and apoptosis by activating the PI3K/AKT signaling pathway. AMPK activation and NF-κB inhibition could inhibit AVICs calcification induced by PM treatment; however, AMPK and AKT inhibition reversed the protective effect of metformin. CONCLUSIONS This study, for the first time, demonstrates that metformin can inhibit AVICs in vitro calcification by activating the PI3K/AKT signaling pathway; this suggests that metformin may provide a potential target for the treatment of CAVD. And the PI3K/AKT signaling pathway emerges as an important regulatory axis in the pathological mechanism of CAVD.
Collapse
|
18
|
Sáinz-Jaspeado M, Smith RO, Plunde O, Pawelzik SC, Jin Y, Nordling S, Ding Y, Aspenström P, Hedlund M, Bastianello G, Ascione F, Li Q, Demir CS, Fernando D, Daniel G, Franco-Cereceda A, Kroon J, Foiani M, Petrova TV, Kilimann MW, Bäck M, Claesson-Welsh L. Palmdelphin Regulates Nuclear Resilience to Mechanical Stress in the Endothelium. Circulation 2021; 144:1629-1645. [PMID: 34636652 PMCID: PMC8589083 DOI: 10.1161/circulationaha.121.054182] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Supplemental Digital Content is available in the text. PALMD (palmdelphin) belongs to the family of paralemmin proteins implicated in cytoskeletal regulation. Single nucleotide polymorphisms in the PALMD locus that result in reduced expression are strong risk factors for development of calcific aortic valve stenosis and predict severity of the disease.
Collapse
Affiliation(s)
- Miguel Sáinz-Jaspeado
- Rudbeck, Beijer and SciLifeLab Laboratories, Department of Immunology, Genetics and Pathology (M.S.-J., R.O.S., Y.J., S.N., Y.D., P.A., M.H., L.C.-W.), Uppsala University, Sweden
| | - Ross O Smith
- Rudbeck, Beijer and SciLifeLab Laboratories, Department of Immunology, Genetics and Pathology (M.S.-J., R.O.S., Y.J., S.N., Y.D., P.A., M.H., L.C.-W.), Uppsala University, Sweden
| | - Oscar Plunde
- Department of Medicine Solna, Karolinska Institutet and Department of Cardiology, Karolinska University Hospital Stockholm, Sweden (O.P., S.-C.P., M.B.)
| | - Sven-Christian Pawelzik
- Department of Medicine Solna, Karolinska Institutet and Department of Cardiology, Karolinska University Hospital Stockholm, Sweden (O.P., S.-C.P., M.B.)
| | - Yi Jin
- Rudbeck, Beijer and SciLifeLab Laboratories, Department of Immunology, Genetics and Pathology (M.S.-J., R.O.S., Y.J., S.N., Y.D., P.A., M.H., L.C.-W.), Uppsala University, Sweden
| | - Sofia Nordling
- Rudbeck, Beijer and SciLifeLab Laboratories, Department of Immunology, Genetics and Pathology (M.S.-J., R.O.S., Y.J., S.N., Y.D., P.A., M.H., L.C.-W.), Uppsala University, Sweden
| | - Yindi Ding
- Rudbeck, Beijer and SciLifeLab Laboratories, Department of Immunology, Genetics and Pathology (M.S.-J., R.O.S., Y.J., S.N., Y.D., P.A., M.H., L.C.-W.), Uppsala University, Sweden
| | - Pontus Aspenström
- Rudbeck, Beijer and SciLifeLab Laboratories, Department of Immunology, Genetics and Pathology (M.S.-J., R.O.S., Y.J., S.N., Y.D., P.A., M.H., L.C.-W.), Uppsala University, Sweden
| | - Marie Hedlund
- Rudbeck, Beijer and SciLifeLab Laboratories, Department of Immunology, Genetics and Pathology (M.S.-J., R.O.S., Y.J., S.N., Y.D., P.A., M.H., L.C.-W.), Uppsala University, Sweden
| | - Giulia Bastianello
- IFOM-FIRC (institute of molecular oncology - Fondazione italiana per la ricerca sul cancro), Milano, Italy (G.B., F.A., Q.L., M.F.).,University of Milan, Italy (G.B., M.F.)
| | - Flora Ascione
- IFOM-FIRC (institute of molecular oncology - Fondazione italiana per la ricerca sul cancro), Milano, Italy (G.B., F.A., Q.L., M.F.)
| | - Qingsen Li
- IFOM-FIRC (institute of molecular oncology - Fondazione italiana per la ricerca sul cancro), Milano, Italy (G.B., F.A., Q.L., M.F.)
| | - Cansaran Saygili Demir
- Department of Oncology, University of Lausanne, Switzerland (C.S.D., T.V.P.).,Ludwig Institute for Cancer Research Lausanne, Switzerland (C.S.D., T.V.P.)
| | - Dinesh Fernando
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Uppsala (D.F., G.D.)
| | - Geoffrey Daniel
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Uppsala (D.F., G.D.)
| | - Anders Franco-Cereceda
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Cardiothoracic Surgery, Karolinska University Hospital, Stockholm, Sweden (A.F.-C.)
| | - Jeffrey Kroon
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam University Medical Center, The Netherlands (J.K.)
| | - Marco Foiani
- IFOM-FIRC (institute of molecular oncology - Fondazione italiana per la ricerca sul cancro), Milano, Italy (G.B., F.A., Q.L., M.F.).,University of Milan, Italy (G.B., M.F.)
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne, Switzerland (C.S.D., T.V.P.).,Ludwig Institute for Cancer Research Lausanne, Switzerland (C.S.D., T.V.P.)
| | - Manfred W Kilimann
- Department of Neuroscience (M.W.K.), Uppsala University, Sweden.,Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Göttingen, Germany (M.W.K.)
| | - Magnus Bäck
- Department of Medicine Solna, Karolinska Institutet and Department of Cardiology, Karolinska University Hospital Stockholm, Sweden (O.P., S.-C.P., M.B.)
| | - Lena Claesson-Welsh
- Rudbeck, Beijer and SciLifeLab Laboratories, Department of Immunology, Genetics and Pathology (M.S.-J., R.O.S., Y.J., S.N., Y.D., P.A., M.H., L.C.-W.), Uppsala University, Sweden
| |
Collapse
|
19
|
Lestuzzi C, Mascarin M, Coassin E, Canale ML, Turazza F. Cardiologic Long-Term Follow-Up of Patients Treated With Chest Radiotherapy: When and How? Front Cardiovasc Med 2021; 8:671001. [PMID: 34760934 PMCID: PMC8572927 DOI: 10.3389/fcvm.2021.671001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/27/2021] [Indexed: 01/12/2023] Open
Abstract
Introduction: Radiotherapy may cause valvular (VHD), pericardial, coronary artery disease (CAD), left ventricular dysfunction (LVD), arrhythmias. The risk of radiation induced heart disease (RIHD) increases over time. The current guidelines suggest a screening for RIHD every 5 years in the long-term survivors who had been treated by chest RT. Methods: We reviewed the clinical and instrumental data of 106 patients diagnosed with RIHD. In one group (Group A: 69 patients) RIHD was diagnosed in an asymptomatic phase through a screening with ECG, echocardiogram and stress test. A second group (37 patients) was seen when RIHD was symptomatic. We compared the characteristics of the two groups at the time of RT, of RIHD detection and at last follow-up. Results: Overall, 64 patients (60%) had CAD (associated to other RIHD in 18); 39 (36.7%) had LVD (isolated in 20); 24 (22.6%) had VHD (isolated in 10 cases). The interval between the last negative test and the diagnosis of moderate or severe RIHD was <5 years in 26 patients, and <4 years in 18. In group A, 63% of the patients with CAD had silent ischemia. The two groups did not differ with regard to type of tumor, cardiovascular risk factors, use of anthracycline-based chemotherapy, age at RT treatment, radiation dose and interval between RT and toxicity detection. The mean time from RT and RIHD was 16 years in group A and 15 in group B. Interventional therapy at RIHD diagnosis was more frequent in group B (54 vs. 30%, p < 0.05). At last follow-up, 27 patients had died (12 of cancer, 9 of cardiac causes, 6 of other causes); mean ejection fraction was 60% in group A and 50% in group B (p < 0.01). Patients with ejection fraction ≤ 50% were 14.5% in group A and 40% in group B (p < 0.01). Conclusions: Clinically relevant RIHD become evident at a mean interval of 16 years after RT. The most frequent clinical manifestations are CAD and LVD. RIHD diagnosis in asymptomatic patients may preserve their cardiac function with timely interventions. We suggest -after 10 years from radiotherapy- a screening every 2–3 years.
Collapse
Affiliation(s)
- Chiara Lestuzzi
- Azienda Sanitaria Friuli Occidentale (ASFO) Department of Cardiology, Cardiology and Cardio-Oncology Rehabilitation Service, Centro di Riferimento Oncologico (CRO), Istituto di Ricerca e Cura di Carattere Scientifico (IRCCS), Aviano, Italy
| | - Maurizio Mascarin
- Adolescents and Young Adults (AYA) Oncology and Pediatric Radiotherapy Unit, Centro di Riferimento Oncologico (CRO), Istituto di Ricerca e Cura di Carattere Scientifico (IRCCS), Aviano, Italy
| | - Elisa Coassin
- Adolescents and Young Adults (AYA) Oncology and Pediatric Radiotherapy Unit, Centro di Riferimento Oncologico (CRO), Istituto di Ricerca e Cura di Carattere Scientifico (IRCCS), Aviano, Italy
| | - Maria Laura Canale
- Cardiology Department, Azienda Usl Toscana Nord-Ovest, Ospedale Versilia, Camaiore, Italy
| | - Fabio Turazza
- Cardiology Unit, Istituto Nazionale Tumori (INT), Istituto di Ricerca e Cura di Carattere Scientifico (IRCCS), Milan, Italy
| |
Collapse
|
20
|
Donato M, Faggin E, Cinetto F, Felice C, Lupo MG, Ferri N, Rattazzi M. The Emerging Role of Nutraceuticals in Cardiovascular Calcification: Evidence from Preclinical and Clinical Studies. Nutrients 2021; 13:nu13082603. [PMID: 34444763 PMCID: PMC8401694 DOI: 10.3390/nu13082603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 02/03/2023] Open
Abstract
Cardiovascular calcification is the ectopic deposition of calcium-phosphate crystals within the arterial wall and the aortic valve leaflets. This pathological process leads to increased vascular stiffness, reduced arterial elasticity, and aortic valve stenosis, increasing the risk of cardiovascular diseases. Although cardiovascular calcification is an increasing health care burden, to date no medical therapies have been approved for treating or preventing it. Considering the current lack of therapeutic strategies and the increasing prevalence of cardiovascular calcification, the investigation of some nutraceuticals to prevent this pathological condition has become prevalent in recent years. Recent preclinical and clinical studies evaluated the potential anti-calcific role of nutraceuticals (including magnesium, zinc, iron, vitamin K, and phytate) in the progression of vascular calcification, providing evidence for their dietary supplementation, especially in high-risk populations. The present review summarizes the current knowledge and latest advances for nutraceuticals with the most relevant preclinical and clinical data, including magnesium, zinc, iron, vitamin K, and phytate. Their supplementation might be recommended as a cost-effective strategy to avoid nutritional deficiency and to prevent or treat cardiovascular calcification. However, the optimal dose of nutraceuticals has not been identified and large interventional trials are warranted to support their protective effects on cardiovascular disease.
Collapse
Affiliation(s)
- Maristella Donato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padua, Italy; (M.D.); (M.G.L.); (N.F.)
| | - Elisabetta Faggin
- Department of Medicine—DIMED, University of Padova, 35122 Padua, Italy; (E.F.); (F.C.); (C.F.)
| | - Francesco Cinetto
- Department of Medicine—DIMED, University of Padova, 35122 Padua, Italy; (E.F.); (F.C.); (C.F.)
- Medicina Generale I^, Ca’ Foncello Hospital, 31100 Treviso, Italy
| | - Carla Felice
- Department of Medicine—DIMED, University of Padova, 35122 Padua, Italy; (E.F.); (F.C.); (C.F.)
- Medicina Generale I^, Ca’ Foncello Hospital, 31100 Treviso, Italy
| | - Maria Giovanna Lupo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padua, Italy; (M.D.); (M.G.L.); (N.F.)
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padua, Italy; (M.D.); (M.G.L.); (N.F.)
| | - Marcello Rattazzi
- Department of Medicine—DIMED, University of Padova, 35122 Padua, Italy; (E.F.); (F.C.); (C.F.)
- Medicina Generale I^, Ca’ Foncello Hospital, 31100 Treviso, Italy
- Correspondence: ; Tel.: +39-04-9821-1867 or +39-04-2232-2207
| |
Collapse
|
21
|
Sinitsyn V. Progression of Aortic Valve Calcification and Coronary Atherosclerosis: Similar but Not the Same. Radiology 2021; 300:87-88. [PMID: 33973841 DOI: 10.1148/radiol.2021210317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Valentin Sinitsyn
- From the Department of Radiology, University Hospital of Lomonosov, Moscow State University, Lomonosovsky prospect 27/10, Moscow, Russia 119991
| |
Collapse
|
22
|
Extracellular Matrix in Calcific Aortic Valve Disease: Architecture, Dynamic and Perspectives. Int J Mol Sci 2021; 22:ijms22020913. [PMID: 33477599 PMCID: PMC7831300 DOI: 10.3390/ijms22020913] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
Calcific Aortic Valve Disease (CAVD) is the most common valvular heart disease in developed countries and in the ageing population. It is strongly correlated to median age, affecting up to 13% of the population over the age of 65. Pathophysiological analysis indicates CAVD as a result of an active and degenerative disease, starting with sclerosis and chronic inflammation and then leaflet calcification, which ultimately can account for aortic stenosis. Although CAVD has been firstly recognized as a passive event mostly resulting from a degenerative aging process, much evidences suggests that calcification arises from different active processes, involving both aortic valve-resident cells (valve endothelial cells, valve interstitial cells, mesenchymal stem cells, innate immunity cells) and circulating cells (circulating mesenchymal cells, immunity cells). Moreover, a role for the cell-derived "matrix vesicles" and extracellular matrix (ECM) components has also been recognized. The aim of this work is to review the cellular and molecular alterations occurring in aortic valve during CAVD pathogenesis, focusing on the role of ECM in the natural course of the disease.
Collapse
|
23
|
Elements of Immunoglobulin E Network Associate with Aortic valve Area in Patients with Acquired Aortic Stenosis. Biomedicines 2020; 9:biomedicines9010023. [PMID: 33396395 PMCID: PMC7824289 DOI: 10.3390/biomedicines9010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/16/2022] Open
Abstract
Allergic mechanisms are likely involved in atherosclerosis and its clinical presentations, such as coronary artery disease (CAD). It has been previously reported that CAD severity associates with serum levels of immunoglobulin E (IgE), the molecule that, along with its high-affinity receptor (FcԑRI), plays a central role in allergic reactions. Considering multiple pathophysiological similarities between atherosclerosis and acquired aortic (valve) stenosis (AS), we speculated that allergic pathways could also contribute to the AS mechanisms and grading. To validate this hypothesis, we first checked whether total serum IgE levels associate with echocardiographic markers of AS severity. Having found a positive correlation between serum IgE and aortic valve area (AVA), we further speculated that also total IgE-determining genetic polymorphisms in FCER1A, a locus encoding an allergen-biding FcԑRI subunit, are related to acquired AS severity. Indeed, the major allele of rs2251746 polymorphism, known to associate with higher IgE levels, turned out to correlate with larger AVA, a marker of less severe AS. Our findings surprisingly suggest a protective role of IgE pathways against AS progression. IgE-mediated protective mechanisms in AS require further investigations.
Collapse
|