1
|
Li Y, Zhang C, Jiang A, Lin A, Liu Z, Cheng X, Wang W, Cheng Q, Zhang J, Wei T, Luo P. Potential anti-tumor effects of regulatory T cells in the tumor microenvironment: a review. J Transl Med 2024; 22:293. [PMID: 38509593 PMCID: PMC10953261 DOI: 10.1186/s12967-024-05104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Regulatory T cells (Tregs) expressing the transcription factor FoxP3 are essential for maintaining immunological balance and are a significant component of the immunosuppressive tumor microenvironment (TME). Single-cell RNA sequencing (ScRNA-seq) technology has shown that Tregs exhibit significant plasticity and functional diversity in various tumors within the TME. This results in Tregs playing a dual role in the TME, which is not always centered around supporting tumor progression as typically believed. Abundant data confirms the anti-tumor activities of Tregs and their correlation with enhanced patient prognosis in specific types of malignancies. In this review, we summarize the potential anti-tumor actions of Tregs, including suppressing tumor-promoting inflammatory responses and boosting anti-tumor immunity. In addition, this study outlines the spatial and temporal variations in Tregs function to emphasize that their predictive significance in malignancies may change. It is essential to comprehend the functional diversity and potential anti-tumor effects of Tregs to improve tumor therapy strategies.
Collapse
Affiliation(s)
- Yu Li
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Anqi Lin
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zaoqu Liu
- Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, China
- Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Xiangshu Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road. Nangang District, Harbin, Heilongiiang, China
| | - Wanting Wang
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Jian Zhang
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Ting Wei
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Zajkowska M, Dulewicz M, Kulczyńska-Przybik A, Safiejko K, Juchimiuk M, Konopko M, Kozłowski L, Mroczko B. CXCL5 and CXCL14, but not CXCL16 as potential biomarkers of colorectal cancer. Sci Rep 2023; 13:17688. [PMID: 37848726 PMCID: PMC10582048 DOI: 10.1038/s41598-023-45093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023] Open
Abstract
Experts emphasize that colorectal cancer (CRC) incidence and mortality are increasing. That is why its early detection is of the utmost importance. Patients with cancer diagnosed in earlier stages have a better prognosis and a chance for faster implementation of treatment. Consequently, it is vital to search for new parameters that could be useful in its diagnosis. Therefore, we evaluated the usefulness of CXCL5, CXCL14 and CXCL16 in serum of 115 participants (75 CRC patients and 40 healthy volunteers). Concentrations of all parameters were measured using Luminex. CRP (C-reactive protein) levels were determined by immunoturbidimetry, while levels of classical tumor markers were measured using CMIA (Chemiluminescence Microparticle Immunoassay). Concentrations of CXCL5 were statistically higher in the CRC group when compared to healthy controls. The diagnostic sensitivity, specificity, positive and negative predictive value, and area under the ROC curve (AUC) of CXCL5 and CXCL14 were higher than those of CA 19-9. Obtained results suggest the usefulness of CXCL5 and CXCL16 in the determination of distant metastases and differentiation between TNM (Tumor-Node-Metastasis) stages, as well as the usefulness of CXCL14 and CRP combination in CRC detection (primary or recurrence). However, further studies concerning their role in CRC progression are crucial to confirm and explain their diagnostic utility and clinical application as biomarkers.
Collapse
Affiliation(s)
- Monika Zajkowska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269, Bialystok, Poland.
| | - Maciej Dulewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269, Bialystok, Poland
| | | | - Kamil Safiejko
- Department of Oncological Surgery with Specialized Cancer Treatment Units, Maria Sklodowska-Curie Oncology Center, 15-027, Bialystok, Poland
| | - Marcin Juchimiuk
- Department of Oncological Surgery with Specialized Cancer Treatment Units, Maria Sklodowska-Curie Oncology Center, 15-027, Bialystok, Poland
| | - Marzena Konopko
- Department of Oncological Surgery with Specialized Cancer Treatment Units, Maria Sklodowska-Curie Oncology Center, 15-027, Bialystok, Poland
| | - Leszek Kozłowski
- Department of Oncological Surgery with Specialized Cancer Treatment Units, Maria Sklodowska-Curie Oncology Center, 15-027, Bialystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269, Bialystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269, Bialystok, Poland
| |
Collapse
|
3
|
Nishiyama H, Inoue T, Koizumi Y, Kobayashi Y, Kitamura H, Yamamoto K, Takeda T, Yamamoto T, Yamamoto R, Matsubara T, Hoshino J, Yanagita M. Chapter 2:indications and dosing of anticancer drug therapy in patients with impaired kidney function, from clinical practice guidelines for the management of kidney injury during anticancer drug therapy 2022. Int J Clin Oncol 2023; 28:1298-1314. [PMID: 37572198 DOI: 10.1007/s10147-023-02377-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/25/2023] [Indexed: 08/14/2023]
Abstract
This comprehensive review discusses the dosing strategies of cancer treatment drugs for patients with impaired kidney function, specifically those with chronic kidney disease (CKD), undergoing hemodialysis, and kidney transplant recipients. CKD patients often necessitate dose adjustments of chemotherapeutic agents, e.g., platinum preparations, pyrimidine fluoride antimetabolites, antifolate agents, molecularly targeted agents, and bone-modifying agents, to prevent drug accumulation and toxicity due to diminished renal clearance of the administered drugs and their metabolites. In hemodialysis patients, factors such as drug removal from hemodialysis and altered pharmacokinetics demand careful optimization of anticancer drug therapy, including dose adjustment and timing of administration. While free cisplatin is removed by hemodialysis, most of the tissue- and protein-bound cisplatin remains in the body and rebound cisplatin elevations are observed after hemodialysis. It is not recommended hemodialysis for drug removal, regardless of timing. Kidney transplant patients encounter unique challenges in cancer treatment, as maintaining the balance between reduction of immunosuppression, switching to mTOR inhibitors, and considering potential drug interactions with chemotherapeutic agents and immunosuppressants are crucial for preventing graft rejection and achieving optimal oncologic outcomes. The review underscores the importance of personalized, patient-centric approaches to anticancer drug therapy in patients with impaired kidney function.
Collapse
Affiliation(s)
- Hiroyuki Nishiyama
- Department of Urology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| | - Takamitsu Inoue
- Department of Renal and Urological Surgery, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Yuichi Koizumi
- Department of Pharmacy, Seichokai Fuchu Hospital, Izumi, Japan
| | - Yusuke Kobayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Kitamura
- Department of Urology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | | | - Takashi Takeda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Takehito Yamamoto
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Ryohei Yamamoto
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takeshi Matsubara
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Junichi Hoshino
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Pan M, Wei X, Xiang X, Liu Y, Zhou Q, Yang W. Targeting CXCL9/10/11-CXCR3 axis: an important component of tumor-promoting and antitumor immunity. Clin Transl Oncol 2023; 25:2306-2320. [PMID: 37076663 DOI: 10.1007/s12094-023-03126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 04/21/2023]
Abstract
Chemokines are chemotactic-competent molecules composed of a family of small cytokines, playing a key role in regulating tumor progression. The roles of chemokines in antitumor immune responses are of great interest. CXCL9, CXCL10, and CXCL11 are important members of chemokines. It has been widely investigated that these three chemokines can bind to their common receptor CXCR3 and regulate the differentiation, migration, and tumor infiltration of immune cells, directly or indirectly affecting tumor growth and metastasis. Here, we summarize the mechanism of how the CXCL9/10/11-CXCR3 axis affects the tumor microenvironment, and list the latest researches to find out how this axis predicts the prognosis of different cancers. In addition, immunotherapy improves the survival of tumor patients, but some patients show drug resistance. Studies have found that the regulation of CXCL9/10/11-CXCR3 on the tumor microenvironment is involved in the process of changing immunotherapy resistance. Here we also describe new approaches to restoring sensitivity to immune checkpoint inhibitors through the CXCL9/10/11-CXCR3 axis.
Collapse
Affiliation(s)
- Minjie Pan
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xiaoshan Wei
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xuan Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Yanhong Liu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Weibing Yang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
5
|
Martin SD, Bhuiyan I, Soleimani M, Wang G. Biomarkers for Immune Checkpoint Inhibitors in Renal Cell Carcinoma. J Clin Med 2023; 12:4987. [PMID: 37568390 PMCID: PMC10419620 DOI: 10.3390/jcm12154987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized renal cell carcinoma treatment. Patients previously thought to be palliative now occasionally achieve complete cures from ICI. However, since immunotherapies stimulate the immune system to induce anti-tumor immunity, they often lead to adverse autoimmunity. Furthermore, some patients receive no benefit from ICI, thereby unnecessarily risking adverse events. In many tumor types, PD-L1 expression levels, immune infiltration, and tumor mutation burden predict the response to ICI and help inform clinical decision making to better target ICI to patients most likely to experience benefits. Unfortunately, renal cell carcinoma is an outlier, as these biomarkers fail to discriminate between positive and negative responses to ICI therapy. Emerging biomarkers such as gene expression profiles and the loss of pro-angiogenic proteins VHL and PBRM-1 show promise for identifying renal cell carcinoma cases likely to respond to ICI. This review provides an overview of the mechanistic underpinnings of different biomarkers and describes the theoretical rationale for their use. We discuss the effectiveness of each biomarker in renal cell carcinoma and other cancer types, and we introduce novel biomarkers that have demonstrated some promise in clinical trials.
Collapse
Affiliation(s)
- Spencer D. Martin
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
| | - Ishmam Bhuiyan
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Maryam Soleimani
- Division of Medical Oncology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
- British Columbia Cancer Vancouver Centre, Vancouver, BC V5Z 4E6, Canada
| | - Gang Wang
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
- British Columbia Cancer Vancouver Centre, Vancouver, BC V5Z 4E6, Canada
| |
Collapse
|
6
|
Zajkowska M, Mroczko B. A Novel Approach to Staging and Detection of Colorectal Cancer in Early Stages. J Clin Med 2023; 12:3530. [PMID: 37240636 PMCID: PMC10218832 DOI: 10.3390/jcm12103530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Colorectal cancer (CRC) is a significant problem affecting patients all over the world. Since it is the fourth most common cause of cancer-related deaths, many scientists aim to expand their knowledge on the detection in early stages and treatment of this disease. Chemokines, as protein parameters involved in many processes accompanying the development of cancer, constitute a group of potential biomarkers that could also be useful in the detection of CRC. For this purpose, our research team used the results of thirteen parameters (nine chemokines, one chemokine receptor and three comparative markers, i.e., CEA, CA19-9 and CRP) to calculate one hundred and fifty indexes. Moreover, for the first time, the relationship between these parameters during the ongoing cancer process and in comparison to a control group are presented. As a result of statistical analyses using patients' clinical data and the obtained indexes, it was established that several of the indexes have a diagnostic utility that is much higher than the tumor marker that is currently the most commonly used (CEA) currently. Furthermore, two of the indexes (CXCL14/CEA and CXCL16/CEA) showed not only extremely high usefulness in the detection of CRC in its early stages, but also the ability to determine whether the stage is low (stage I and II) or high (stage III and IV).
Collapse
Affiliation(s)
- Monika Zajkowska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
7
|
Dong H, Sun M, Li H, Yue Y. CXCR3 predicts the prognosis of endometrial adenocarcinoma. BMC Med Genomics 2023; 16:20. [PMID: 36750966 PMCID: PMC9903462 DOI: 10.1186/s12920-023-01451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
OBJECTIVES Currently, endometrial adenocarcinoma lacks an effective prognostic indicator. This study was to develop and validate a gene biomarker and a nomogram to predict the survival of endometrial adenocarcinoma, explore potential mechanisms and select sensitive drugs. METHODS 425 endometrial adenocarcinoma cases with RNA sequencing data from TCGA were used to identify the most immune-related module by WGCNA. As an external test set, 103 cases from GSE17025 were used. Immune-related genes were downloaded from Innate DB. The three sets of data were used to identify the prognostic genes. Based on 397 cases with complete clinical data from TCGA, randomly divided into the training set (n = 199) and test set (n = 198), we identified CXCR3 as the prognostic gene biomarker. Age, grade, FIGO stage, and risk were used to develop and validate a predictive nomogram. AUC, C-index, calibration curve and K-M estimate evaluated the model's predictive performance. KEGG enrichment analysis, immune functions, TMB, the effectiveness of immunotherapy, and drug sensitivity between the high-risk and low-risk groups. RESULTS CXCR3 was identified as a prognostic biomarker. We calculated the risk score and divided the cases into the high-risk and low-risk groups by the median value of the risk score. The OS of the high-risk group was better than the low-risk group. The risk was the prognostic indicator independent of age, grade, and FIGO stage. We constructed the nomogram including age, grade, FIGO stage, and risk to predict the prognosis of endometrial adenocarcinoma. The top five KEGG pathways enriched by the DEGs between the high- and low-risk groups were viral protein interaction with cytokine and cytokine receptors, cytokine-cytokine receptor interaction, chemokine signaling pathway, natural killer cell-mediated cytotoxicity, and cell adhesion molecules. We analyzed the difference in immune cells and found that CD8+ T cells, activated CD4+ T cells, T helper cells, monocytes, and M1 macrophages were infiltrated more in the low-risk group. However, M0 macrophages and activated dendritic cells were more in the high-risk group. The immune function including APC coinhibition, APC costimulation, CCR, checkpoint, cytolytic activity, HLA, inflammation-promoting, MHC-I, parainflammation, T cell coinhibition, T cell costimulation, type I-IFN-response, and type II-IFN-response were better in the low-risk group. TMB and TIDE scores were both better in the low-risk group. By 'the pRRophetic' package, we found 56 sensitive drugs for different risk groups. CONCLUSION We identified CXCR3 as the prognostic biomarker. We also developed and validated a predictive nomogram model combining CXCR3, age, histological grade, and FIGO stage for endometrial adenocarcinoma, which could help explore the precise treatment.
Collapse
Affiliation(s)
- He Dong
- grid.430605.40000 0004 1758 4110Department of Gynecologic Oncology, The First Hospital of Jilin University, Changchun, China
| | - Mengzi Sun
- grid.64924.3d0000 0004 1760 5735Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, China
| | - Hua Li
- grid.430605.40000 0004 1758 4110Department of Abdominal Ultrasound, The First Hospital of Jilin University, Changchun, China
| | - Ying Yue
- Department of Gynecologic Oncology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
8
|
CXCR3 Expression Is Associated with Advanced Tumor Stage and Grade Influencing Survival after Surgery of Localised Renal Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15041001. [PMID: 36831346 PMCID: PMC9954014 DOI: 10.3390/cancers15041001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Surgery is the standard treatment in localized renal cell carcinoma (RCC). Pembrolizumab is now approved for adjuvant therapy in high-risk patients. However, inhomogeneity of studies gives ambiguity which patient benefit most from adjuvant therapy. A high infiltration of CD8+ T cells is known to be linked with poor prognosis in RCC. CXCR3 is a key player of CD8+ T cell differentiation and infiltration. We aimed to evaluate CXCR3 as a potential marker for predicting recurrence. METHODS CXCR3 and immune cell subsets (CD4, CD8, CD68 and FoXP3) were measured on RCC samples by multiplex immunofluorescence (mIF) staining. Cellular localization of CXCR3 was evaluated using single-cell RNA analysis on a publicly available dataset. RESULTS Tumor samples of 42 RCC patients were analyzed, from which 59.5% were classified as clear-cell RCC and of which 20 had recurrence. Single-cell RNA analysis revealed that CXCR3 was predominantly expressed in intratumoral T cells and dendritic cells. CXCR3 expression was higher in advanced tumors stages (p = 0.0044) and grade (p = 0.0518), correlating significantly with a higher CD8+ T cell expression (p < 0.001). Patients with CXCR3high RCCs had also a significant shorter RFS compared to CXCR3low (median: 78 vs. 147 months, p = 0.0213). In addition, also tumor stage pT3/4 (p < 0.0001) as well as grade G3/4 (p = 0.0008) negatively influenced RFS. CONCLUSION CXCR3high cell density was associated with high T cell infiltration and advanced tumor stage, worsening RFS in surgically resected RCC patients. Beside its prognostic value, CXCR3 might be a predictive biomarker to guide therapy decision for adjuvant therapy in localized RCC.
Collapse
|
9
|
Zhang ZC, Liu YF, Xi P, Nie YC, Sun T, Gong BB. Upregulation of CENPM is associated with poor clinical outcome and suppression of immune profile in clear cell renal cell carcinoma. Hereditas 2023; 160:1. [PMID: 36635779 PMCID: PMC9837903 DOI: 10.1186/s41065-023-00262-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The response of advanced clear cell renal cell carcinoma (ccRCC) to immunotherapy is still not durable, suggesting that the immune landscape of ccRCC still needs to be refined, especially as some molecules that have synergistic effects with immune checkpoint genes need to be explored. METHODS The expression levels of CENPM and its relationship with clinicopathological features were explored using the ccRCC dataset from TCGA and GEO databases. Quantitative polymerase chain reaction (qPCR) analysis was performed to validate the expression of CENPM in renal cancer cell lines. Kaplan-Meier analysis, COX regression analysis and Nomogram construction were used to systematically evaluate the prognostic potential of CENPM in ccRCC. Besides, single gene correlation analysis, protein-protein interaction (PPI) network, genetic ontology (GO), kyoto encyclopedia of genes and genomes (KEGG) and gene set enrichment analysis (GSEA) were used to predict the biological behaviour of CENPM and the possible signalling pathways involved. Finally, a comprehensive analysis of the crosstalk between CENPM and immune features in the tumor microenvironment was performed based on the ssGSEA algorithm, the tumor immune dysfunction and exclusion (TIDE) algorithm, the TIMER2.0 database and the TISIDB database. RESULTS CENPM was significantly upregulated in ccRCC tissues and renal cancer cell lines and was closely associated with poor clinicopathological features and prognosis. Pathway enrichment analysis revealed that CENPM may be involved in the regulation of the cell cycle in ccRCC and may have some crosstalk with the immune microenvironment in tumors. The ssGSEA algorithm, CIBERSOPT algorithm suggests that CENPM is associated with suppressor immune cells in ccRCC such as regulatory T cells. The ssGSEA algorithm, CIBERSOPT algorithm suggests that CENPM is associated with suppressor immune cells in ccRCC such as regulatory T cells. Furthermore, the TISIDB database provides evidence that not only CENPM is positively associated with immune checkpoint genes such as CTLA4, PDCD1, LAG3, TIGIT, but also chemokines and receptors (such as CCL5, CXCL13, CXCR3, CXCR5) may be responsible for the malignant phenotype of CENPM in ccRCC. Meanwhile, predictions based on the TIDE algorithm support that patients with high CENPM expression have a worse response to immunotherapy. CONCLUSIONS The upregulation of CENPM in ccRCC predicts a poor clinical outcome, and this malignant phenotype may be associated with its exacerbation of the immunosuppressive state in the tumor microenvironment.
Collapse
Affiliation(s)
- Zhi-Cheng Zhang
- grid.412604.50000 0004 1758 4073Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi Province China
| | - Yi-Fu Liu
- grid.412604.50000 0004 1758 4073Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi Province China
| | - Ping Xi
- grid.412604.50000 0004 1758 4073Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi Province China
| | - Ye-Chen Nie
- grid.412604.50000 0004 1758 4073Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi Province China
| | - Ting Sun
- grid.412604.50000 0004 1758 4073Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi Province China
| | - Bin-Bin Gong
- grid.412604.50000 0004 1758 4073Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330000 Jiangxi Province China
| |
Collapse
|
10
|
Matsukawa T, Doi T, Obayashi K, Sumida K, Fujimoto N, Endo M. ANGPTL8 links inflammation and poor differentiation, which are characteristics of malignant renal cell carcinoma. Cancer Sci 2022; 114:1410-1422. [PMID: 36529524 PMCID: PMC10067409 DOI: 10.1111/cas.15700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammation is observed in many tumors, which affects metastasis, infiltration, and immune escape and causes poor differentiation of the cancer cells. However, the molecular basis underlying the relationship between inflammation and poor differentiation in tumors has not been identified. In this study, we demonstrate that angiopoietin-like protein-8 (ANGPTL8), which is induced by stress stimuli such as inflammation, is involved in the maintenance of the undifferentiated state of clear cell renal cell carcinoma (ccRCC) cells. ANGPTL8 is also involved in the production of chemokines that attract immune suppressor cells to the tumor microenvironment. ANGPTL8 sustains the continuous production of chemokines by activating the NF-κB signaling pathway and maintains the undifferentiated state of ccRCC cells. Finally, ANGPTL8 is induced by STAT3 signaling, which is activated by immune cells in the tumor microenvironment. These results support a role for ANGPTL8 in determining the properties of ccRCC by hampering tumor cell differentiation and establishing the tumor microenvironment.
Collapse
Affiliation(s)
- Takuo Matsukawa
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan.,Department of Urology, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Tomomitsu Doi
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kunie Obayashi
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuhiro Sumida
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
11
|
Zhang Z, Lin S, Yin J, Yu W, Xu C. CircRNF220 plays a pathogenic role to facilitate cell progression of AML in vitro via sponging miR-330-5p to induce upregulation of SOX4. Histol Histopathol 2022; 37:1019-1030. [PMID: 35611720 DOI: 10.14670/hh-18-472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are a specific family of non-coding RNAs (ncRNAs) with important function in disease progression. This research is performed to study circRNA Ring Finger Protein 220 (circRNF220) in acute myeloid leukemia (AML). METHODS CircRNF220, microRNA-330-5p (miR-330-5p) and sex-determining region Y-related high-mobility group box 4 (SOX4) were measured via quantitative real-time polymerase chain reaction (qRT-PCR). 3-(4, 5-dimethylthiazol-2-y1)-2, 5- diphenyl tetrazolium bromide (MTT) and EdU assays were used to assess cell proliferation. Cell cycle and apoptosis were detected using flow cytometry. Cell invasion was determined by transwell assay. Glycolytic metabolism was assessed by glucose consumption and lactate production. The target interaction was implemented via dual-luciferase reporter and RNA pull-down assays. SOX4 protein detection was conducted by western blot. RESULTS Expression detection identified that circRNF220 was overexpressed in AML. In vitro experiments showed that silence of circRNF220 promoted cell apoptosis but impeded proliferation, cell cycle progression, invasion and glycolytic metabolism in AML cells. Target analysis indicated that circRNF220 directly targeted miR-330-5p, and the effects of si-circRNF220 were abrogated by miR-330-5p inhibitor. Moreover, circRNF220 targeted miR-330-5p to increase the expression of SOX4 and SOX4 promoted cell progression of AML. CONCLUSION All these findings revealed that circRNF220 contributed to AML cell development in vitro via upregulating SOX4 expression by targeting miR-330-5p.
Collapse
Affiliation(s)
- Zewen Zhang
- Division of Hematology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| | - Shujun Lin
- Division of Nephrology, Shantou Central Hospital, Shantou, Guangdong, China
| | - Jun Yin
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Wenjun Yu
- Division of Hematology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Chengwei Xu
- Blood Purification Room, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
12
|
Pei L, Dong C, Wang Y, Lv X, Jia G, Zhang A. Circular RNA circSDHC (hsa_circ_0015004) regulates tumor growth and angiogenesis via regulating centrosomal protein 55 expression in renal cell carcinoma. Histol Histopathol 2022; 37:971-983. [PMID: 35506422 DOI: 10.14670/hh-18-467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Renal cell carcinoma (RCC) is the main aggressive subtype of kidney cancer. Circular RNAs have been shown to exert critical roles in RCC. However, little is known about the regulatory mechanism of hsa_circ_0015004 (circSDHC) in RCC. METHODS 35 patients with RCC were recruited in the research. Expression changes of circSDHC were determined by real-time quantitative polymerase chain reaction (RT-qPCR). The effects of circSDHC inhibition on cell proliferation, apoptosis, angiogenesis, migration, and invasion were analyzed. The regulation mechanism of circSDHC was surveyed by bioinformatics analysis. The effect of circSDHC on tumorigenesis was validated by xenograft assay. RESULTS We observed an observable elevation in circSDHC expression in RCC tissues and cell lines. Functionally, circSDHC silencing decreased xenograft tumor growth and induced RCC cell apoptosis, repressed RCC cell proliferation, angiogenesis, migration, and invasion in vitro. Mechanically, circSDHC modulated centrosomal protein 55 (CEP55) expression by functioning as a miR-130a-3p sponge. Also, miR-130a-3p silencing offset circSDHC knockdown-mediated impacts on malignant phenotypes and angiogenesis of RCC cells. Furthermore, exogenetic expression of CEP55 counteracted miR-130a-3p overexpression-mediated effects on malignant phenotypes and angiogenesis of RCC cells. CONCLUSION Silencing of circSDHC restrained cell malignant phenotypes and angiogenesis via reducing CEP55 expression by releasing miR-130a-3p in RCC, providing a new mechanism for understanding the progression of RCC.
Collapse
Affiliation(s)
- Long Pei
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Chunhui Dong
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Yanchao Wang
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Xianqiang Lv
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Gaopei Jia
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Aili Zhang
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China.
| |
Collapse
|
13
|
Alchahin AM, Mei S, Tsea I, Hirz T, Kfoury Y, Dahl D, Wu CL, Subtelny AO, Wu S, Scadden DT, Shin JH, Saylor PJ, Sykes DB, Kharchenko PV, Baryawno N. A transcriptional metastatic signature predicts survival in clear cell renal cell carcinoma. Nat Commun 2022; 13:5747. [PMID: 36180422 PMCID: PMC9525645 DOI: 10.1038/s41467-022-33375-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer in adults. When ccRCC is localized to the kidney, surgical resection or ablation of the tumor is often curative. However, in the metastatic setting, ccRCC remains a highly lethal disease. Here we use fresh patient samples that include treatment-naive primary tumor tissue, matched adjacent normal kidney tissue, as well as tumor samples collected from patients with bone metastases. Single-cell transcriptomic analysis of tumor cells from the primary tumors reveals a distinct transcriptional signature that is predictive of metastatic potential and patient survival. Analysis of supporting stromal cells within the tumor environment demonstrates vascular remodeling within the endothelial cells. An in silico cell-to-cell interaction analysis highlights the CXCL9/CXCL10-CXCR3 axis and the CD70-CD27 axis as potential therapeutic targets. Our findings provide biological insights into the interplay between tumor cells and the ccRCC microenvironment.
Collapse
Affiliation(s)
- Adele M Alchahin
- Childhood Cancer Research unit, Department of Children's and Women's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Shenglin Mei
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Ioanna Tsea
- Childhood Cancer Research unit, Department of Children's and Women's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Taghreed Hirz
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Youmna Kfoury
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Douglas Dahl
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chin-Lee Wu
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander O Subtelny
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shulin Wu
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - John H Shin
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip J Saylor
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Altos Labs, San Diego, CA, USA.
| | - Ninib Baryawno
- Childhood Cancer Research unit, Department of Children's and Women's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
14
|
Ran GH, Lin YQ, Tian L, Zhang T, Yan DM, Yu JH, Deng YC. Natural killer cell homing and trafficking in tissues and tumors: from biology to application. Signal Transduct Target Ther 2022; 7:205. [PMID: 35768424 PMCID: PMC9243142 DOI: 10.1038/s41392-022-01058-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells, a subgroup of innate lymphoid cells, act as the first line of defense against cancer. Although some evidence shows that NK cells can develop in secondary lymphoid tissues, NK cells develop mainly in the bone marrow (BM) and egress into the blood circulation when they mature. They then migrate to and settle down in peripheral tissues, though some special subsets home back into the BM or secondary lymphoid organs. Owing to its success in allogeneic adoptive transfer for cancer treatment and its "off-the-shelf" potential, NK cell-based immunotherapy is attracting increasing attention in the treatment of various cancers. However, insufficient infiltration of adoptively transferred NK cells limits clinical utility, especially for solid tumors. Expansion of NK cells or engineered chimeric antigen receptor (CAR) NK cells ex vivo prior to adoptive transfer by using various cytokines alters the profiles of chemokine receptors, which affects the infiltration of transferred NK cells into tumor tissue. Several factors control NK cell trafficking and homing, including cell-intrinsic factors (e.g., transcriptional factors), cell-extrinsic factors (e.g., integrins, selectins, chemokines and their corresponding receptors, signals induced by cytokines, sphingosine-1-phosphate (S1P), etc.), and the cellular microenvironment. Here, we summarize the profiles and mechanisms of NK cell homing and trafficking at steady state and during tumor development, aiming to improve NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Guang He Ran
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China
| | - Yu Qing Lin
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Tao Zhang
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China.
| | - Dong Mei Yan
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China.
| | - Jian Hua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
| | - You Cai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China.
- Department of Clinical Hematology, College of Pharmacy, Army Medical University, 400038, Chongqing, China.
| |
Collapse
|
15
|
Li H, Wu M, Zhao X. Role of chemokine systems in cancer and inflammatory diseases. MedComm (Beijing) 2022; 3:e147. [PMID: 35702353 PMCID: PMC9175564 DOI: 10.1002/mco2.147] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Chemokines are a large family of small secreted proteins that have fundamental roles in organ development, normal physiology, and immune responses upon binding to their corresponding receptors. The primary functions of chemokines are to coordinate and recruit immune cells to and from tissues and to participate in regulating interactions between immune cells. In addition to the generally recognized antimicrobial immunity, the chemokine/chemokine receptor axis also exerts a tumorigenic function in many different cancer models and is involved in the formation of immunosuppressive and protective tumor microenvironment (TME), making them potential prognostic markers for various hematologic and solid tumors. In fact, apart from its vital role in tumors, almost all inflammatory diseases involve chemokines and their receptors in one way or another. Modulating the expression of chemokines and/or their corresponding receptors on tumor cells or immune cells provides the basis for the exploitation of new drugs for clinical evaluation in the treatment of related diseases. Here, we summarize recent advances of chemokine systems in protumor and antitumor immune responses and discuss the prevailing understanding of how the chemokine system operates in inflammatory diseases. In this review, we also emphatically highlight the complexity of the chemokine system and explore its potential to guide the treatment of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of EducationWest China Second HospitalSichuan UniversityChengduChina
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of EducationWest China Second HospitalSichuan UniversityChengduChina
| |
Collapse
|
16
|
Pham NB, Abraham N, Velankar KY, Schueller NR, Philip EJ, Jaber Y, Gawalt ES, Fan Y, Pal SK, Meng WS. Localized PD-1 Blockade in a Mouse Model of Renal Cell Carcinoma. FRONTIERS IN DRUG DELIVERY 2022; 2. [PMID: 36132332 PMCID: PMC9486680 DOI: 10.3389/fddev.2022.838458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Herein we report the impact of localized delivery of an anti-mouse PD-1-specific monoclonal antibody (aPD1) on Renca tumors in the resulting T cell responses and changes in broader immune gene expression profiles. Renca is a BALB/c mice syngeneic tumor that has been used to model human renal cell carcinoma In this study, T cell subsets were examined in tumors and draining lymph nodes of mice treated with localized PD-1 with and without the addition of adenosine deaminase (ADA), an enzyme that catabolizes adenosine (ADO), identified as an immune checkpoint in several types of human cancers. The biologics, aPD1, or aPD1 with adenosine deaminase (aPD1/ADA), were formulated with the self-assembling peptides Z15_EAK to enhance retention near the tumor inoculation site. We found that both aPD1 and aPD1/ADA skewed the local immune milieu towards an immune stimulatory phenotype by reducing Tregs, increasing CD8 T cell infiltration, and upregulating IFNɣ. Analysis of tumor specimens using bulk RNA-Seq confirmed the impact of the localized aPD1 treatment and revealed differential gene expressions elicited by the loco-regional treatment. The effects of ADA and Z15_EAK were limited to tumor growth delay and lymph node enlargement. These results support the notion of expanding the use of locoregional PD-1 blockade in solid tumors.
Collapse
Affiliation(s)
- Ngoc B. Pham
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Nevil Abraham
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Ketki Y. Velankar
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Nathan R. Schueller
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Errol J. Philip
- School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Yasmeen Jaber
- Department of Medical Oncology and Developmental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Ellen S. Gawalt
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yong Fan
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Sumanta K. Pal
- Department of Medical Oncology and Developmental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Wilson S. Meng
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Correspondence: Wilson S. Meng,
| |
Collapse
|
17
|
Tian Y, Wen C, Zhang Z, Liu Y, Li F, Zhao Q, Yao C, Ni K, Yang S, Zhang Y. CXCL9-modified CAR T cells improve immune cell infiltration and antitumor efficacy. Cancer Immunol Immunother 2022; 71:2663-2675. [PMID: 35352167 DOI: 10.1007/s00262-022-03193-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/14/2022] [Indexed: 12/11/2022]
Abstract
Chimeric antigen receptor (CAR) T cells remain unsatisfactory in treating solid tumors. The frequency of tumor-infiltrating T cells is closely related to the good prognosis of patients. Augmenting T cell accumulation in the tumor microenvironment is essential for tumor clearance. To overcome insufficient immune cell infiltration, innovative CAR designs need to be developed immediately. CXCL9 plays a pivotal role in regulating T cell migration and inhibiting tumor angiogenesis. Therefore, we engineered CAR T cells expressing CXCL9 (CART-CXCL9). The addition of CXCL9 enhanced cytokine secretion and cytotoxicity of CAR T cells and endowed CAR T cells with the ability to recruit activated T cells and antiangiogenic effect. In tumor-bearing mice, CART-CXCL9 cells attracted more T cell trafficking to the tumor site and inhibited angiogenesis than conventional CAR T cells. Additionally, CART-CXCL9 cell therapy slowed tumor growth and prolonged mouse survival, displaying superior antitumor activity. Briefly, modifying CAR T cells to express CXCL9 could effectively improve CAR T cell efficacy against solid tumors.
Collapse
Affiliation(s)
- Yonggui Tian
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China
| | - Chunli Wen
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhen Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China
| | - Yanfen Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China
| | - Feng Li
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China
| | - Qitai Zhao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China
| | - Chang Yao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China
| | - Kaiyuan Ni
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China
| | - Shengli Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China. .,School of Life Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
18
|
Gudowska-Sawczuk M, Mroczko B. What Is Currently Known about the Role of CXCL10 in SARS-CoV-2 Infection? Int J Mol Sci 2022; 23:3673. [PMID: 35409036 PMCID: PMC8998241 DOI: 10.3390/ijms23073673] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/14/2022] Open
Abstract
Dysregulation of the immune response plays an important role in the progression of SARS-CoV-2 infection. A "cytokine storm", which is a phenomenon associated with uncontrolled production of large amounts of cytokines, very often affects patients with COVID-19. Elevated activity of chemotactic cytokines, called chemokines, can lead to serious consequences. CXCL10 has an ability to activate its receptor CXCR3, predominantly expressed on macrophages, T lymphocytes, dendritic cells, natural killer cells, and B cells. So, it has been suggested that the chemokine CXCL10, through CXCR3, is associated with inflammatory diseases and may be involved in the development of COVID-19. Therefore, in this review paper, we focus on the role of CXCL10 overactivity in the pathogenesis of COVID-19. We performed an extensive literature search for our investigation using the MEDLINE/PubMed database. Increased concentrations of CXCL10 were observed in COVID-19. Elevated levels of CXCL10 were reported to be associated with a severe course and disease progression. Published studies revealed that CXCL10 may be a very good predictive biomarker of patient outcome in COVID-19, and that markedly elevated CXCL10 levels are connected with ARDS and neurological complications. It has been observed that an effective treatment for SARS-CoV-2 leads to inhibition of "cytokine storm", as well as reduction of CXCL10 concentrations. It seems that modulation of the CXCL10-CXCR3 axis may be an effective therapeutic target of COVID-19. This review describes the potential role of CXCL10 in the pathogenesis of COVID-19, as well as its potential immune-therapeutic significance. However, future studies should aim to confirm the prognostic, clinical, and therapeutic role of CXCL10 in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Monika Gudowska-Sawczuk
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
19
|
The Significance of Selected C-C Motif Chemokine Ligands in Colorectal Cancer Patients. J Clin Med 2022; 11:jcm11071794. [PMID: 35407400 PMCID: PMC8999601 DOI: 10.3390/jcm11071794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed neoplasms. Despite the advances in diagnostic tools and treatments, the number of CRC cases is increasing. Therefore, it is vital to search for new parameters that could be useful in its diagnosis. Thus, we wanted to assess the usefulness of selected CC chemokines (CCL2, CCL4, and CCL15) in CRC. The study included 115 subjects (75 CRC patients and 40 healthy volunteers). The serum concentrations of all parameters were measured using a multiplexing method (Luminex). The CRP levels were determined by immunoturbidimetry, and the classical tumor markers (CEA and CA 19-9) were measured using CMIA (chemiluminescent microparticle immunoassay). The concentrations of all parameters were higher in the CRC group when compared to the healthy controls. The diagnostic sensitivity, specificity, positive and negative predictive value, and area under the ROC curve (AUC) of all estimated CC chemokines were higher than those of CA 19-9. Interestingly, the obtained results also suggest CCL2's significance in the determination of local metastases and CCL4's significance in the determination of distant metastases. However, further studies concerning the role of selected CC chemokines in the course of colorectal cancer are necessary to confirm and to fully clarify their diagnostic utility and their clinical application as markers of CRC development.
Collapse
|
20
|
Luyao H, Luesch H, Uy M. GPCR Pharmacological Profiling of Aaptamine from the Philippine Sponge Stylissa sp. Extends Its Therapeutic Potential for Noncommunicable Diseases. Molecules 2021; 26:molecules26185618. [PMID: 34577088 PMCID: PMC8466755 DOI: 10.3390/molecules26185618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/05/2022] Open
Abstract
We report the first isolation of the alkaloid aaptamine from the Philippine marine sponge Stylissa sp. Aaptamine possessed weak antiproliferative activity against HCT116 colon cancer cells and inhibited the proteasome in vitro at 50 µM. These activities may be functionally linked. Due to its known, more potent activity on certain G-protein coupled receptors (GPCRs), including α-adrenergic and δ-opioid receptors, the compound was profiled more broadly at sub-growth inhibitory concentrations against a panel of 168 GPCRs to potentially reveal additional targets and therapeutic opportunities. GPCRs represent the largest class of drug targets. The primary screen at 20 µM using the β-arrestin functional assay identified the antagonist, agonist, and potentiators of agonist activity of aaptamine. Dose-response analysis validated the α-adrenoreceptor antagonist activity of aaptamine (ADRA2C, IC50 11.9 µM) and revealed the even more potent antagonism of the β-adrenoreceptor (ADRB2, IC50 0.20 µM) and dopamine receptor D4 (DRD4, IC50 6.9 µM). Additionally, aaptamine showed agonist activity on selected chemokine receptors, by itself (CXCR7, EC50 6.2 µM; CCR1, EC50 11.8 µM) or as a potentiator of agonist activity (CXCR3, EC50 31.8 µM; CCR3, EC50 16.2 µM). These GPCRs play a critical role in the treatment of cardiovascular disease, diabetes, cancer, and neurological disorders. The results of this study may thus provide novel preventive and therapeutic strategies for noncommunicable diseases (NCDs).
Collapse
Affiliation(s)
- Harmie Luyao
- Department of Chemistry, Mindanao State University—Iligan Institute of Technology, Iligan City 9200, Philippines;
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery, and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery, and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
- Correspondence: (H.L.); (M.U.)
| | - Mylene Uy
- Department of Chemistry, Mindanao State University—Iligan Institute of Technology, Iligan City 9200, Philippines;
- Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University—Iligan Institute of Technology, Iligan City 9200, Philippines
- Correspondence: (H.L.); (M.U.)
| |
Collapse
|