1
|
Avitabile M, Aleksov A, Giosafatto CVL, Restaino OF, Lesjak M, Živanović N, Mariniello L, Simin N. Pectin-Based Bioplastics Functionalized with Polyphenols from Rose Oil Distillation Wastewater Exhibit Antioxidant Activity. Biomacromolecules 2024; 25:7695-7703. [PMID: 39495193 DOI: 10.1021/acs.biomac.4c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
This study explored the potential of rose aqueous extract (RE), a byproduct of rose essential oil extraction, to enhance the properties of biobased food packaging materials. RE contained a high phenolic content (153 mg of GAE/g of dw), rich in hydroxybenzoic acids and flavonols. The antioxidant potential of RE, assessed by DPPH assay, was evaluated (IC50 = 2.85 μg/mL). Edible pectin films fortified with RE were prepared, and their mechanical, physical, and chemical characteristics were evaluated. RE addition increased the moisture content from 14 to 28%, while moisture uptake remained stable at around 10%. Zeta potential remained below -30 mV, indicating that particle aggregation and particle size decreased with higher RE concentrations. Scanning electron microscopy showed an improved homogeneity of the films. RE retained its antioxidant properties, enhancing the mechanical resistance of the films and offering protection against oxidative damage and UV radiation. These findings suggest the potential of RE in developing functional, eco-friendly food packaging.
Collapse
Affiliation(s)
- Marika Avitabile
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy
| | - Ana Aleksov
- Faculty of Sciences, University of Novi Sad, Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - C Valeria L Giosafatto
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT), University of Naples Federico II, 80126 Naples, Italy
| | - Odile Francesca Restaino
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy
| | - Marija Lesjak
- Faculty of Sciences, University of Novi Sad, Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Nemanja Živanović
- Faculty of Sciences, University of Novi Sad, Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Loredana Mariniello
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT), University of Naples Federico II, 80126 Naples, Italy
| | - Nataša Simin
- Faculty of Sciences, University of Novi Sad, Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| |
Collapse
|
2
|
Dumas L, de Souza MC, Bonafe EG, Martins AF, Monteiro JP. Optimized Incorporation of Silver Nanoparticles onto Cotton Fabric Using k-Carrageenan Coatings for Enhanced Antimicrobial Properties. ACS APPLIED BIO MATERIALS 2024; 7:6908-6918. [PMID: 39316373 PMCID: PMC11497209 DOI: 10.1021/acsabm.4c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
The incorporation of bactericidal properties into textiles is a widely sought-after aspect, and silver nanoparticles (AgNPs) can be used for this. Here, we evaluate a strategy for incorporating AgNPs into a cotton fabric. For this purpose, a bactericidal textile coating based on a composite of AgNPs and kappa-carrageenan (k-CA) was proposed. The composite was obtained by heating the silver precursor (AgNO3) directly in k-CA solution for green synthesis and in situ AgNPs stabilization. Cotton substrates were added to the heated composite solution for surface impregnation and hydrogel film formation after cooling. Direct synthesis of AgNPs on a fabric was also tested. The results showed that the application of a coating based on k-CA/AgNPs composite can achieve more than twice the silver loading on the fabric surface compared to the textile subjected to direct AgNPs incorporation. Furthermore, silver release tests in water showed that higher Ag+ levels were reached for k-CA/AgNPs-coated cotton. Therefore, inoculation tests with the bacteria Staphylococcus aureus (SA) using the agar diffusion method showed that samples covered with the composite resulted in significantly larger inhibition halos. This indicated that the use of the composite as a coating for cotton fabric improved its bactericidal activity against SA.
Collapse
Affiliation(s)
- Luana Dumas
- Laboratory
of Materials, Macromolecules and Composites (LAMMAC), Federal University of Technology—Paraná (UTFPR), Apucarana, Paraná 86812-460, Brazil
| | - Matheus Cardoso de Souza
- Laboratory
of Materials, Macromolecules and Composites (LAMMAC), Federal University of Technology—Paraná (UTFPR), Apucarana, Paraná 86812-460, Brazil
| | - Elton Guntendorfer Bonafe
- Laboratory
of Materials, Macromolecules and Composites (LAMMAC), Federal University of Technology—Paraná (UTFPR), Apucarana, Paraná 86812-460, Brazil
| | - Alessandro Francisco Martins
- Laboratory
of Materials, Macromolecules and Composites (LAMMAC), Federal University of Technology—Paraná (UTFPR), Apucarana, Paraná 86812-460, Brazil
- Department
of Chemistry, Pittsburgh State University, Pittsburgh, Kansas 66762, United States
| | - Johny Paulo Monteiro
- Laboratory
of Materials, Macromolecules and Composites (LAMMAC), Federal University of Technology—Paraná (UTFPR), Apucarana, Paraná 86812-460, Brazil
| |
Collapse
|
3
|
Camele I, Mohamed AA, Ibrahim AA, Elshafie HS. Biochemical Characterization and Disease Control Efficacy of Pleurotus eryngii-Derived Chitosan-An In Vivo Study against Monilinia laxa, the Causal Agent of Plum Brown Rot. PLANTS (BASEL, SWITZERLAND) 2024; 13:2598. [PMID: 39339573 PMCID: PMC11435330 DOI: 10.3390/plants13182598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/19/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Chitin (Ct) is a crucial biopolymer present in fungi, algae, arthropods, and is usually obtained from crustacean shells. Chitosan (Cs) is a derivative from Ct deacetylation, and possesses numerous uses in various agro-industrial fields. Research on fungal-derived Ct and Cs is mostly focused on pharmaceutical uses, however their uses for plant disease control remain less explored. The main objective of the current study is to evaluate the possibility of using chitosan obtained from mushroom Pleurotus eryngii (Cs-Pe) for controlling some phytopathogens compared to commercial chitosan (C.Cs). This study is focused on the following key areas: (i) extracting Ct from P. eryngii mycelium and converting it to Cs through deacetylation, using both bleaching and non-bleaching methods; (ii) conducting a physico-chemical characterization and in vitro evaluation of the antimicrobial activity of the obtained Cs; (iii) performing an in vivo assessment of the phytotoxic and cytotoxic effects of Cs; and (iv) investigating in vivo the impact of the studied chitosan on fruit quality and its biocontrol efficacy against Monilinia laxa infections in plum fruits. Results showed that Cs-Pe, especially the unbleached one, displayed promising in vitro antimicrobial activity against the majority of tested pathogens. Regarding the cytotoxicity, the highest significant increase in cell abnormality percentage was observed in the case of C.Cs compared to Cs-Pe. In the in vivo study, Cs-Pe acted as a protective barrier, lowering and/or preventing moisture loss and firmness of treated plums. The studied Cs-Pe demonstrated notable efficacy against M. laxa which decreased the fruits' percentage decline. These results strongly suggest that Cs derived from P. eryngii is a potential candidate for increasing plums' shelf-life. This research shed light on the promising applications of P. eryngii-derived Cs in the agri-food field.
Collapse
Affiliation(s)
- Ippolito Camele
- Department of Agricultural, Forestry, Food and Environmental Sciences (DAFE), University of Basilicata, 85100 Potenza, Italy
| | - Amira A Mohamed
- Department of Basic Science, Zagazig Higher Institute of Engineering and Technology, Zagazig 44519, Egypt
| | - Amira A Ibrahim
- Botany and Microbiology Department, Faculty of Science, Arish University, Al-Arish 45511, Egypt
| | - Hazem S Elshafie
- Department of Agricultural, Forestry, Food and Environmental Sciences (DAFE), University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
4
|
Umaña M, Simal S, Dalmau E, Turchiuli C, Chevigny C. Evaluation of Different Pectic Materials Coming from Citrus Residues in the Production of Films. Foods 2024; 13:2138. [PMID: 38998643 PMCID: PMC11241157 DOI: 10.3390/foods13132138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
This article explores the use of citrus residues as a source of different pectic materials for packaging film production: a water-soluble orange residue extract (WSE) (~5% pectin), semi-pure pectins extracted in citric acid (SP) (~50% pectin), and commercial pure citrus pectins (CP). First, these materials were characterized in terms of chemical composition. Then, films were produced using them pure or mixed with chitosan or glycerol through solvent-casting. Finally, antioxidant activity, functional properties (e.g., mechanical and gas barrier properties), and visual appearance of the films were assessed. WSE films showed the highest antioxidant activity but the lowest mechanical strength with the highest elongation at break (EB) (54%); incorporating chitosan increased the films' strength (Young's modulus 35.5 times higher). SP films showed intermediate mechanical properties, reinforced by chitosan addition (Young's modulus 4.7 times higher); they showed an outstanding dry O2 barrier. CP films showed a similar O2 barrier to SP films and had the highest Young's modulus (~29 MPa), but their brittleness required glycerol for improved pliability, and chitosan addition compromised their surface regularity. Overall, the type of pectic material determined the film's properties, with less-refined pectins offering just as many benefits as pure commercial ones.
Collapse
Affiliation(s)
- Mónica Umaña
- Department of Chemistry, Universitat de les Illes Balears, 07011 Palma, Spain; (M.U.); (E.D.)
| | - Susana Simal
- Department of Chemistry, Universitat de les Illes Balears, 07011 Palma, Spain; (M.U.); (E.D.)
| | - Esperanza Dalmau
- Department of Chemistry, Universitat de les Illes Balears, 07011 Palma, Spain; (M.U.); (E.D.)
| | - Christelle Turchiuli
- INRAE, AgroParisTech, UMR SayFood, Université Paris-Saclay, 91120 Palaiseau, France; (C.T.); (C.C.)
| | - Chloé Chevigny
- INRAE, AgroParisTech, UMR SayFood, Université Paris-Saclay, 91120 Palaiseau, France; (C.T.); (C.C.)
| |
Collapse
|
5
|
Ranote S, Kowalczuk M, Guzenko N, Duale K, Chaber P, Musioł M, Jankowski A, Marcinkowski A, Kurcok P, Chauhan GS, Chauhan S, Kumar K. Towards scalable and degradable bioplastic films from Moringa oleifera gum/poly(vinyl alcohol) as packaging material. Int J Biol Macromol 2024; 269:132219. [PMID: 38729475 DOI: 10.1016/j.ijbiomac.2024.132219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
The use of plant gum-based biodegradable bioplastic films as a packaging material is limited due to their poor physicochemical properties. However, combining plant gum with synthetic degradable polymer and some additives can improve these properties. Keeping in view, the present study aimed to synthesize a series of bioplastic films using Moringa oleifera gum, polyvinyl alcohol, glycerol, and citric acid via thermal treatment followed by a solution casting method. The films were characterized using analytical techniques such as FTIR, XRD, SEM, AFM, TGA, and DSC. The study examined properties such as water sensitivity, gas barrier attributes, tensile strength, the shelf life of food, and biodegradability. The films containing higher citric acid amounts showed appreciable %elongation without compromising tensile strength, good oxygen barrier properties, and biodegradation rates (>95%). Varying the amounts of glycerol and citric acid in the films broadened their physicochemical properties ranging from hydrophilicity to hydrophobicity and rigidity to flexibility. As all the films were synthesized using economical and environmentally safe materials, and showed better physicochemical and barrier properties, this study suggests that these bioplastic films can prove to be a potential alternative for various packaging applications.
Collapse
Affiliation(s)
- Sunita Ranote
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland.
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Natalia Guzenko
- Chuiko Institute of Surface Chemistry, NAS of Ukraine 17, General Naumov's Street, 03164 Kyiv, Ukraine
| | - Khadar Duale
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Paweł Chaber
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Marta Musioł
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Andrzej Jankowski
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Andrzej Marcinkowski
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Piotr Kurcok
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Ghanshyam S Chauhan
- Himachal Pradesh University, Department of Chemistry, Himachal Pradesh, Summerhill 171005, India
| | - Sandeep Chauhan
- Himachal Pradesh University, Department of Chemistry, Himachal Pradesh, Summerhill 171005, India
| | - Kiran Kumar
- Himachal Pradesh University, Department of Chemistry, Himachal Pradesh, Summerhill 171005, India
| |
Collapse
|
6
|
Upadhyay P, Ullah A. Enhancement of mechanical and barrier properties of chitosan-based bionanocomposites films reinforced with eggshell-derived hydroxyapatite nanoparticles. Int J Biol Macromol 2024; 261:129764. [PMID: 38296144 DOI: 10.1016/j.ijbiomac.2024.129764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
In this study, Hydroxyapatite nanoparticles (HANPs), derived from eggshell waste, were employed to reinforce chitosan biopolymer-based films through the solvent-casting method. The impact of varying HANPs content (1%, 3%, 5%, and 10 wt %) in bionanocomposites was investigated. The influence of HANPs addition on the final film properties was comprehensively analyzed using Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA), mechanical (tensile) testing, and Water Vapor Permeability (WVP). The morphological aspects of bionanocomposites and the dispersion of nanoparticles within the matrix were studied using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD). The structural changes in the films were probed using Fourier-Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) techniques. Results indicated that the addition of 1% and 3% of HANPs exhibited a higher glass transition temperature and improved thermal stability in bionanocomposites. Films with 3% HANPs content exhibited a notable increase in tensile strength, showing a 61.54% increase, while films with 1% HANPs content displayed a 52% reduction in WVP compared to pristine chitosan films. These findings underscore the significant potential of chitosan-hydroxyapatite bionanocomposite films for applications in food packaging applications.
Collapse
Affiliation(s)
- Punita Upadhyay
- Department of Agricultural, Food, and Nutritional Science, 360C South Academic Building, University of Alberta, Edmonton, Alberta T6G 2G7, Canada
| | - Aman Ullah
- Department of Agricultural, Food, and Nutritional Science, 360C South Academic Building, University of Alberta, Edmonton, Alberta T6G 2G7, Canada.
| |
Collapse
|
7
|
Rani S, Lal S, Kumar S, Kumar P, Nagar JK, Kennedy JF. Utilization of marine and agro-waste materials as an economical and active food packaging: Antimicrobial, mechanical and biodegradation studies of O-Carboxymethyl chitosan/pectin/neem composite films. Int J Biol Macromol 2024; 254:128038. [PMID: 37963501 DOI: 10.1016/j.ijbiomac.2023.128038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/05/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023]
Abstract
The present work deals with the eco-friendly preparation of highly degradable food packaging films consisting of O-CMC (O-Carboxymethyl Chitosan) and pectin, incorporated with neem (Azadirachta indica) leaves powder and extract. This study aimed to investigate the tensile properties, antimicrobial activity, biodegradability, and thermal behavior of the composite films. The results of tensile strength and elongation at break, showed that the incorporation of neem leaves powder improved the tensile properties (7.11 MPa) of the composite films compared to the neat O-CMC and pectin films (3.02 MPa). The antimicrobial activity of the films was evaluated against a panel of microorganisms including both gram-positive and gram-negative bacteria as well as fungi. The composite films exhibited excellent antimicrobial activity with a zone of inhibition (12-17.6 mm) against the tested microorganisms. The opacity of the composite films ranges from 1.14 to 4.40 mm-1 and the addition of fiber causes a decrease in opacity value. Biodegradability studies were conducted by Soil burial method and the films demonstrated complete biodegradability within 75 days. The results of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) of composite films show that they are thermally stable and might be used in food packaging.
Collapse
Affiliation(s)
- Shikha Rani
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India; Department of Chemistry, Pt. CLS Government College, Karnal, Haryana 132001, India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India.
| | - Sumit Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Jitendra K Nagar
- Dr. Bhim Rao Ambedkar College, University of Delhi, Delhi 110094, India
| | - John F Kennedy
- Chembiotech Laboratories Ltd, Tenbury Wells, United Kingdom
| |
Collapse
|
8
|
Kumar S, Reddy ARL, Basumatary IB, Nayak A, Dutta D, Konwar J, Purkayastha MD, Mukherjee A. Recent progress in pectin extraction and their applications in developing films and coatings for sustainable food packaging: A review. Int J Biol Macromol 2023; 239:124281. [PMID: 37001777 DOI: 10.1016/j.ijbiomac.2023.124281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/04/2023] [Accepted: 03/28/2023] [Indexed: 03/30/2023]
Abstract
Perishable foods like fruits and vegetables, meat, fish, and dairy products have short shelf-life that causes significant postharvest losses, which poses a major challenge for food supply chains. Biopolymers have been extensively studied as sustainable alternatives to synthetic plastics, and pectin is one such biopolymer that has been used for packaging and preservation of foods. Pectin is obtained from abundantly available low-cost sources such as agricultural or food processing wastes and by products. This review is a complete account of pectin extraction from agro-wastes, development of pectin-based composite films and coatings, their characterizations, and their applications in food packaging and preservation. Compared to conventional chemical extraction, supercritical water, ultrasound, and microwave assisted extractions are a few examples of modern and more efficient pectin extraction processes that generate almost no hazardous effluents, and thus, such extraction techniques are more environment friendly. Pectin-based films and coatings can be functionalized with natural active agents such as essential oils and other phytochemicals to improve their moisture barrier, antimicrobial and antioxidant properties. Application of pectin-based active films and coatings effectively improved shelf-life of fresh cut-fruits, vegetables, meat, fish, poultry, milk, and other food perishable products.
Collapse
|
9
|
Potential of pectin-chitosan based composite films embedded with quercetin-loaded nanofillers to control meat associated spoilage bacteria. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
10
|
Xu T, Gao H, Zhou J, He M, Ji X, Dai H, Rojas OJ. Design of AgNPs doped chitosan/sodium lignin sulfonate/polypyrrole films with antibacterial and endotoxin adsorption functions. Int J Biol Macromol 2023; 229:321-328. [PMID: 36543299 DOI: 10.1016/j.ijbiomac.2022.12.143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/15/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
There is an urgent need to develop materials to prevent bacterial infection and the deleterious effects of endotoxins. In this study, we introduce a one-step electrodeposition method to prepare films composed of chitosan/Ag/polypyrrole and layer-by-layer self-assembly to introduce lignin sulphonate (LS) to obtain chitosan/Ag/polypyrrole/LS films. Antibacterial effects against both E. coli and S. aureus are shown by bacterial growth profiles and observation of bacteriostatic zones. Meanwhile, the addition of self-assembled LS improved the antibacterial effect of the film. For E. coli, the inhibition zone diameter was 0.93 cm, while for S. aureus, the inhibition zone diameter was 0.72 cm. Rapid and efficient endotoxin adsorption effects were shown whereby the electrostatic interactions between chitosan and endotoxin molecules played a major role. After adsorption for 1 h, in initial concentration of 1 EU/mL endotoxin solution, the adsorption efficiency could reach up to 85 %, while in initial concentration of 5 EU/mL endotoxin solution, the adsorption efficiency could reach up to 87.6 %. The results suggest chitosan/Ag/polypyrrole/LS films for their capability as a new type of antibacterial film with intrinsic endotoxin adsorption activity.
Collapse
Affiliation(s)
- Tingting Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Huanli Gao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiahuan Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ming He
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
11
|
Waste Orange Peels as a Source of Cellulose Nanocrystals and Their Use for the Development of Nanocomposite Films. Foods 2023; 12:foods12050960. [PMID: 36900477 PMCID: PMC10001245 DOI: 10.3390/foods12050960] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
To date, approximately 30-50% of food is wasted from post-harvesting to consumer usage. Typical examples of food by-products are fruit peels and pomace, seeds, and others. A large part of these matrices is still discarded in landfills, while a small portion is valorized for bioprocessing. In this context, a feasible strategy to valorize food by-products consists of their use for the production of bioactive compounds and nanofillers, which can be further used to functionalize biobased packaging materials. The focus of this research was to create an efficient methodology for the extraction of cellulose from leftover orange peel after juice processing and for its conversion into cellulose nanocrystals (CNCs) for use in bionanocomposite films for packaging materials. Orange CNCs were characterized by TEM and XRD analyses and added as reinforcing agents into chitosan/hydroxypropyl methylcellulose (CS/HPMC) films enriched with lauroyl arginate ethyl (LAE). It was evaluated how CNCs and LAE affected the technical and functional characteristics of CS/HPMC films. CNCs revealed needle-like shapes with an aspect ratio of 12.5, and average length and width of 500 nm and 40 nm, respectively. Scanning electron microscopy and infrared spectroscopy confirmed the high compatibility of the CS/HPMC blend with CNCs and LAE. The inclusion of CNCs increased the films' tensile strength, light barrier, and water vapor barrier properties while reducing their water solubility. The addition of LAE improved the films' flexibility and gave them biocidal efficacy against the main bacterial pathogens that cause foodborne illness, such as Escherichia coli, Pseudomonas fluorescens, Listeria monocytogenes, and Salmonella enterica.
Collapse
|
12
|
Maurizzi E, Bigi F, Quartieri A, De Leo R, Volpelli LA, Pulvirenti A. The Green Era of Food Packaging: General Considerations and New Trends. Polymers (Basel) 2022; 14:polym14204257. [PMID: 36297835 PMCID: PMC9610407 DOI: 10.3390/polym14204257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, academic research and industries have gained awareness about the economic, environmental, and social impacts of conventional plastic packaging and its disposal. This consciousness has oriented efforts towards more sustainable materials such as biopolymers, paving the way for the “green era” of food packaging. This review provides a schematic overview about polymers and blends of them, which are emerging as promising alternatives to conventional plastics. Focus was dedicated to biopolymers from renewable sources and their applications to produce sustainable, active packaging with antimicrobial and antioxidant properties. In particular, the incorporation of plant extracts, food-waste derivatives, and nano-sized materials to produce bio-based active packaging with enhanced technical performances was investigated. According to recent studies, bio-based active packaging enriched with natural-based compounds has the potential to replace petroleum-derived materials. Based on molecular composition, the natural compounds can diversely interact with the native structure of the packaging materials, modulating their barriers, optical and mechanical performances, and conferring them antioxidant and antimicrobial properties. Overall, the recent academic findings could lead to a breakthrough in the field of food packaging, opening the gates to a new generation of packaging solutions which will be sustainable, customised, and green.
Collapse
Affiliation(s)
- Enrico Maurizzi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence:
| | - Francesco Bigi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Andrea Quartieri
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Riccardo De Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Luisa Antonella Volpelli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Interdepartmental Research Centre for the Improvement of Agro-Food Biological Resources (BIOGEST-SITEIA), University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy
| | - Andrea Pulvirenti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Interdepartmental Research Centre for the Improvement of Agro-Food Biological Resources (BIOGEST-SITEIA), University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy
| |
Collapse
|
13
|
Duan A, Yang J, Wu L, Wang T, Liu Q, Liu Y. Preparation, physicochemical and application evaluation of raspberry anthocyanin and curcumin based on chitosan/starch/gelatin film. Int J Biol Macromol 2022; 220:147-158. [PMID: 35963358 DOI: 10.1016/j.ijbiomac.2022.08.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 01/20/2023]
Abstract
Raspberry anthocyanin (RA) from Rubus idaeus L. (Rosaceae) and curcumin (Cur) from Curcuma longa L. (Zingiberaceae) can effectively improve the physicochemical properties of composite films, and as bioactive pigment components, they can impart pH-responsive properties to the film. In this study, RA and Cur were added to chitosan/starch/gelatin composite film (CSG) to prepare CSG-RA, CSG-Cur, CSG-RA/Cur82 and CSG-RA/Cur73 color films by solution casting method. The color films could change color under different pH conditions and had higher antioxidant activities using ABTS (2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)) assay. The results from fourier transform infrared spectroscopy and scanning electron microscopy showed that RA and Cur were well dispersed in the CSG matrix and improved the structure of the composite films. The hydrophobic Cur increased the tensile strength from 6 Mpa (CSG) to 14 Mpa (CSG-Cur), but reduced the elongation at break from 55 % (CSG) to 40 % (CSG-Cur). These color films had a good fresh-keeping effect and freshness monitoring, in particular, CSG-RA/Cur73, had the better opacity, water solubility, thickness, moisture content and water vapor permeability than the other films. Briefly, binary pigment films had the potential to become a pH-sensitive indicator/packing film.
Collapse
Affiliation(s)
- Anbang Duan
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Jing Yang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China; Shanxi Jingxi Biotechnology Co., Ltd, Taiyuan, Shanxi, 030051, China.
| | - Liyang Wu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Tao Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Qingye Liu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Yongping Liu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| |
Collapse
|
14
|
A Systematic Literature Review on Environmental Sustainability Issues of Flexible Packaging: Potential Pathways for Academic Research and Managerial Practice. SUSTAINABILITY 2022. [DOI: 10.3390/su14084737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The purpose of this review is to investigate environmental sustainability issues of the flexible packaging (FP) segment of the packaging industry. Increasingly, waste and pollution caused by FP have become a significant challenge for global sustainable development. Prior research studies have examined a diverse set of environmental challenges associated with FP, albeit, in a fragmented way. There is a paucity of research exploring and synthesizing the environmental burden of FP in an integrated fashion. To bridge this knowledge gap, we conducted a systematic literature review (SLR) to identify, synthesize, and analyze the environmental sustainability issues of FP utilizing the SCOPUS database. Based on an in-depth critical analysis of selected articles, this paper provides novel insights to scholars, practitioners, and policymakers for developing an improved understanding of environmental issues of the FP sector. This paper promotes academic scholarship and strengthens managerial practice in addressing the environmental sustainability challenges of FP.
Collapse
|
15
|
Bigi F, Haghighi H, Siesler HW, Licciardello F, Pulvirenti A. Characterization of chitosan-hydroxypropyl methylcellulose blend films enriched with nettle or sage leaf extract for active food packaging applications. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Reichembach LH, Lúcia de Oliveira Petkowicz C. Pectins from alternative sources and uses beyond sweets and jellies: An overview. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106824] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Song X, Liu L, Wu X, Liu Y, Yuan J. Chitosan-Based Functional Films Integrated with Magnolol: Characterization, Antioxidant and Antimicrobial Activity and Pork Preservation. Int J Mol Sci 2021; 22:ijms22157769. [PMID: 34360535 PMCID: PMC8345937 DOI: 10.3390/ijms22157769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
The aims of this study were to develop the magnolol-chitosan films and study the positive effect of the combination of magnolol and chitosan. The addition of magnolol made the magnolol-chitosan films exhibit higher density (1.06-1.87 g/cm3), but the relatively lower water vapor permeability (12.06-7.36 × 10-11·g·m-1·s-1·Pa-1) and water content (16.10-10.64%). The dense and smooth surface and cross-section of magnolol-chitosan films were observed by environmental scanning electron microscopy (ESEM) images. The interaction of magnolol and chitosan was observed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). After the addition of magnolol, the antioxidant capacity of magnolol-chitosan films was increased from 18.99 to 82.00%, the growth of P. aeruginosa was inhibited and the inhibition percentage of biofilm formation was increased from 30.89 to 86.04%. We further verified that the application of magnolol-chitosan films on chilled pork significantly reduced the increases in pH value, inhibited the growth of microorganisms and extended the shelf life. Results suggest that magnolol had a positive effect on magnolol-chitosan films and could be effectively applied to pork preservation.
Collapse
|
18
|
Chitosan/heparin blends in ionic liquid produce polyelectrolyte complexes that quickly adsorb citrate-capped silver nanoparticles, forming bactericidal composites. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Souza PR, de Oliveira AC, Vilsinski BH, Kipper MJ, Martins AF. Polysaccharide-Based Materials Created by Physical Processes: From Preparation to Biomedical Applications. Pharmaceutics 2021; 13:621. [PMID: 33925380 PMCID: PMC8146878 DOI: 10.3390/pharmaceutics13050621] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Polysaccharide-based materials created by physical processes have received considerable attention for biomedical applications. These structures are often made by associating charged polyelectrolytes in aqueous solutions, avoiding toxic chemistries (crosslinking agents). We review the principal polysaccharides (glycosaminoglycans, marine polysaccharides, and derivatives) containing ionizable groups in their structures and cellulose (neutral polysaccharide). Physical materials with high stability in aqueous media can be developed depending on the selected strategy. We review strategies, including coacervation, ionotropic gelation, electrospinning, layer-by-layer coating, gelation of polymer blends, solvent evaporation, and freezing-thawing methods, that create polysaccharide-based assemblies via in situ (one-step) methods for biomedical applications. We focus on materials used for growth factor (GFs) delivery, scaffolds, antimicrobial coatings, and wound dressings.
Collapse
Affiliation(s)
- Paulo R. Souza
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
| | - Ariel C. de Oliveira
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
- Laboratory of Materials, Macromolecules and Composites, Federal University of Technology—Paraná (UTFPR), Apucarana 86812-460, PR, Brazil
| | - Bruno H. Vilsinski
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
| | - Matt J. Kipper
- Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
- School of Advanced Materials Discovery, Colorado State University (CSU), Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
| | - Alessandro F. Martins
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
- Laboratory of Materials, Macromolecules and Composites, Federal University of Technology—Paraná (UTFPR), Apucarana 86812-460, PR, Brazil
- Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
| |
Collapse
|
20
|
Antimicrobial and cytocompatible chitosan, N,N,N-trimethyl chitosan, and tanfloc-based polyelectrolyte multilayers on gellan gum films. Int J Biol Macromol 2021; 183:727-742. [PMID: 33915214 DOI: 10.1016/j.ijbiomac.2021.04.138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/06/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
In this work free-standing gels formed from gellan gum (GG) by solvent evaporation are coated with polysaccharide-based polyelectrolyte multilayers, using the layer-by-layer approach. We show that PEMs composed of iota-carrageenan (CAR) and three different natural polycationic polymers have composition-dependent antimicrobial properties, and support mammalian cell growth. Cationic polymers (chitosan (CHT), N,N,N-trimethyl chitosan (TMC), and an amino-functionalized tannin derivative (TN)) are individually assembled with the anionic iota-carrageenan (CAR) at pH 5.0. PEMs (15-layers) are alternately deposited on the GG film. The GG film and coated GG films with PEMs are characterized by infrared spectroscopy with attenuated total reflectance (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and water contact angle (WCA) measurements. The TN/CAR coating provides a hydrophobic (WCA = 127°) and rough surface (Rq = 243 ± 48 nm), and the TMC/CAR coating provides a hydrophilic surface (WCA = 78°) with the lowest roughness (Rq = 97 ± 12 nm). Polymer coatings promote stability and durability of the GG film, and introduce antimicrobial properties against Gram-negative (Salmonella enteritidis) and Gram-positive (Staphylococcus aureus) bacteria. The films are also cytocompatible. Therefore, they have properties that can be further developed as wound dressings and food packaging.
Collapse
|