1
|
Chen B, Zhang Y, Niu Y, Wang Y, Liu Y, Ji H, Han R, Tian Y, Liu X, Kang X, Li Z. RRM2 promotes the proliferation of chicken myoblasts, inhibits their differentiation and muscle regeneration. Poult Sci 2024; 103:103407. [PMID: 38198913 PMCID: PMC10825555 DOI: 10.1016/j.psj.2023.103407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/10/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
During myogenesis and regeneration, the proliferation and differentiation of myoblasts play key regulatory roles and may be regulated by many genes. In this study, we analyzed the transcriptomic data of chicken primary myoblasts at different periods of proliferation and differentiation with protein‒protein interaction network, and the results indicated that there was an interaction between cyclin-dependent kinase 1 (CDK1) and ribonucleotide reductase regulatory subunit M2 (RRM2). Previous studies in mammals have a role for RRM2 in skeletal muscle development as well as cell growth, but the role of RRM2 in chicken is unclear. In this study, we investigated the effects of RRM2 on skeletal muscle development and regeneration in chickens in vitro and in vivo. The interaction between RRM2 and CDK1 was initially identified by co-immunoprecipitation and mass spectrometry. Through a dual luciferase reporter assay and quantitative real-time PCR, we identified the core promoter region of RRM2, which is regulated by the SP1 transcription factor. In this study, through cell counting kit-8 assays, 5-ethynyl-2'-deoxyuridine incorporation assays, flow cytometry, immunofluorescence staining, and Western blot analysis, we demonstrated that RRM2 promoted the proliferation and inhibited the differentiation of myoblasts. In vivo studies showed that RRM2 reduced the diameter of muscle fibers and slowed skeletal muscle regeneration. In conclusion, these data provide preliminary insights into the biological functions of RRM2 in chicken muscle development and skeletal muscle regeneration.
Collapse
Affiliation(s)
- Bingjie Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yushi Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yufang Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanxing Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yang Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Haigang Ji
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Fan D, Zhang Y, Lu L, Yin F, Liu B. Uncovering the potential molecular mechanism of liraglutide to alleviate the effects of high glucose on myoblasts based on high-throughput transcriptome sequencing technique. BMC Genomics 2024; 25:159. [PMID: 38331723 PMCID: PMC10851481 DOI: 10.1186/s12864-024-10076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Myoblasts play an important role in muscle growth and repair, but the high glucose environment severely affects their function. The purpose of this study is to explore the potential molecular mechanism of liraglutide in alleviating the effects of high glucose environments on myoblasts. METHODS MTT, western blot, and ELISA methods were used to investigate the role of liraglutide on C2C12 myoblasts induced by high glucose. The high-throughput transcriptome sequencing technique was used to sequence C2C12 myoblasts from different treated groups. The DESeq2 package was used to identify differentially expressed-mRNAs (DE-mRNAs). Then, functional annotations and alternative splicing (AS) were performed. The Cytoscape-CytoHubba plug-in was used to identify multicentric DE-mRNAs. RESULTS The MTT assay results showed that liraglutide can alleviate the decrease of myoblasts viability caused by high glucose. Western blot and ELISA tests showed that liraglutide can promote the expression of AMPKα and inhibit the expression of MAFbx, MuRF1 and 3-MH in myoblasts. A total of 15 multicentric DE-mRNAs were identified based on the Cytoscape-CytoHubba plug-in. Among them, Top2a had A3SS type AS. Functional annotation identifies multiple signaling pathways such as metabolic pathways, cytokine-cytokine receptor interaction, cAMP signaling pathway and cell cycle. CONCLUSION Liraglutide can alleviate the decrease of cell viability and degradation of muscle protein caused by high glucose, and improves cell metabolism and mitochondrial activity. The molecular mechanism of liraglutide to alleviate the effect of high glucose on myoblasts is complex. This study provides a theoretical basis for the clinical effectiveness of liraglutide in the treatment of skeletal muscle lesions in diabetes.
Collapse
Affiliation(s)
- Dongmei Fan
- Department of Endocrinology, The First Hospital of QinHuangdao, 258 Wenhua Road, Haigang District, Qinhuangdao City, 066000, Hebei Province, China
| | - Yunjie Zhang
- Department of Nursing, The First Hospital of QinHuangdao, Qinhuangdao City, 066000, Hebei Province, China
| | - Lanyu Lu
- Department of Endocrinology, The First Hospital of QinHuangdao, 258 Wenhua Road, Haigang District, Qinhuangdao City, 066000, Hebei Province, China
| | - Fuzai Yin
- Department of Endocrinology, The First Hospital of QinHuangdao, 258 Wenhua Road, Haigang District, Qinhuangdao City, 066000, Hebei Province, China
| | - Bowei Liu
- Department of Endocrinology, The First Hospital of QinHuangdao, 258 Wenhua Road, Haigang District, Qinhuangdao City, 066000, Hebei Province, China.
| |
Collapse
|
3
|
Chen X, Zhu Y, Song C, Chen Y, Wang Y, Lai M, Zhang C, Fang X. MiR-424-5p targets HSP90AA1 to facilitate proliferation and restrain differentiation in skeletal muscle development. Anim Biotechnol 2023; 34:2514-2526. [PMID: 35875894 DOI: 10.1080/10495398.2022.2102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
MiR-424-5p was found to be a potential regulator in the proliferation, migration, and invasion of various cancer cells. However, the effects and functional mechanism of miR-424-5p in the process of myogenesis are still unclear. Previously, using microRNA (miRNA) sequencing and expression analysis, we discovered that miR-424-5p was expressed differentially in the different skeletal muscle growth periods of Xuhuai goats. We hypothesized that miR-424-5p might play an important role in skeletal muscle myogenesis. Then, we found that the proliferation ability of the mouse myoblast cell (C2C12 myoblast cell line) was significantly augmented, whereas the C2C12 differentiation was repressed after increasing the expression of miR-424-5p. Mechanistically, HSP90AA1 presented a close interrelation with miR-424-5p, which was predicted as a target gene in the progression of skeletal muscle myogenesis, using transcriptome sequencing, dual luciferase reporter gene detection, and qRT-PCR. The silencing of HSP90AA1 obviously increased C2C12 proliferation and diminished differentiation, which is consistent with the ability of miR-424-5p in C2C12. Altogether, our findings indicated the role of miR-424-5p as a novel potential regulator via HSP90AA1 during muscle myogenesis progression.
Collapse
Affiliation(s)
- Xi Chen
- School of Life Science, Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| | - Ying Zhu
- School of Life Science, Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
- Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Chengchuang Song
- School of Life Science, Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| | - Yaqi Chen
- School of Life Science, Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| | - Yanhong Wang
- School of Life Science, Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| | - Min Lai
- School of Life Science, Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| | - Chunlei Zhang
- School of Life Science, Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| | - Xingtang Fang
- School of Life Science, Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
4
|
Yang Y, Wu J, Liu W, Zhao Y, Chen H. The Function and Regulation Mechanism of Non-Coding RNAs in Muscle Development. Int J Mol Sci 2023; 24:14534. [PMID: 37833983 PMCID: PMC10572267 DOI: 10.3390/ijms241914534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/15/2023] Open
Abstract
Animal skeletal muscle growth is regulated by a complex molecular network including some non-coding RNAs (ncRNAs). In this paper, we review the non-coding RNAs related to the growth and development of common animal skeletal muscles, aiming to provide a reference for the in-depth study of the role of ncRNAs in the development of animal skeletal muscles, and to provide new ideas for the improvement of animal production performance.
Collapse
Affiliation(s)
- Yaling Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (W.L.)
| | - Jian Wu
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Academy of Agricultural Sciences of Jilin Province, Changchun 136100, China;
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (W.L.)
| | - Yumin Zhao
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Academy of Agricultural Sciences of Jilin Province, Changchun 136100, China;
| | - Hong Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (W.L.)
| |
Collapse
|
5
|
Nguyen MT, Lee W. Induction of miR-665-3p Impairs the Differentiation of Myogenic Progenitor Cells by Regulating the TWF1-YAP1 Axis. Cells 2023; 12:cells12081114. [PMID: 37190023 DOI: 10.3390/cells12081114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Actin dynamics are known to orchestrate various myogenic processes in progenitor cells. Twinfilin-1 (TWF1) is an actin-depolymerizing factor that plays a crucial role in the differentiation of myogenic progenitor cells. However, little is known about the mechanisms underlying the epigenetic regulation of TWF1 expression and impaired myogenic differentiation in the background of muscle wasting. This study investigated how miR-665-3p affects TWF1 expression, actin filaments' modulation, proliferation, and myogenic differentiation in progenitor cells. Palmitic acid, the most prevalent saturated fatty acid (SFA) in food, suppressed TWF1 expression and inhibited the myogenic differentiation of C2C12 cells while increasing the level of miR-665-3p expression. Interestingly, miR-665-3p inhibited TWF1 expression by targeting TWF1 3'UTR directly. In addition, miR-665-3p accumulated filamentous actin (F-actin) and enhanced the nuclear translocation of Yes-associated protein 1 (YAP1), consequently promoting cell cycle progression and proliferation. Furthermore, miR-665-3p suppressed the expressions of myogenic factors, i.e., MyoD, MyoG, and MyHC, and consequently impaired myoblast differentiation. In conclusion, this study suggests that SFA-inducible miR-665-3p suppresses TWF1 expression epigenetically and inhibits myogenic differentiation by facilitating myoblast proliferation via the F-actin/YAP1 axis.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
6
|
Nguyen MT, Lee W. Mir-302a/TWF1 Axis Impairs the Myogenic Differentiation of Progenitor Cells through F-Actin-Mediated YAP1 Activation. Int J Mol Sci 2023; 24:ijms24076341. [PMID: 37047312 PMCID: PMC10094299 DOI: 10.3390/ijms24076341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Actin cytoskeleton dynamics have been found to regulate myogenesis in various progenitor cells, and twinfilin-1 (TWF1), an actin-depolymerizing factor, plays a vital role in actin dynamics and myoblast differentiation. Nevertheless, the molecular mechanisms underlying the epigenetic regulation and biological significance of TWF1 in obesity and muscle wasting have not been explored. Here, we investigated the roles of miR-302a in TWF1 expression, actin filament modulation, proliferation, and myogenic differentiation in C2C12 progenitor cells. Palmitic acid, the most prevalent saturated fatty acid (SFA) in the diet, decreased the expression of TWF1 and impeded myogenic differentiation while increasing the miR-302a levels in C2C12 myoblasts. Interestingly, miR-302a inhibited TWF1 expression directly by targeting its 3′UTR. Furthermore, ectopic expression of miR-302a promoted cell cycle progression and proliferation by increasing the filamentous actin (F-actin) accumulation, which facilitated the nuclear translocation of Yes-associated protein 1 (YAP1). Consequently, by suppressing the expressions of myogenic factors, i.e., MyoD, MyoG, and MyHC, miR-302a impaired myoblast differentiation. Hence, this study demonstrated that SFA-inducible miR-302a suppresses TWF1 expression epigenetically and impairs myogenic differentiation by facilitating myoblast proliferation via F-actin-mediated YAP1 activation.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
- Correspondence: ; Tel.: +82-54-770-2409
| |
Collapse
|
7
|
miR-183/96/182 Cluster Regulates the Development of Bovine Myoblasts through Targeting FoxO1. Animals (Basel) 2022; 12:ani12202799. [PMID: 36290185 PMCID: PMC9597811 DOI: 10.3390/ani12202799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/16/2022] [Accepted: 10/08/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary In this work, we identified that the miR-183/96/182 cluster was highly expressed in bovine embryonic muscle; meanwhile, it widely existed in other organizations. Functional assays indicated that the miR-183/96/182 cluster targets the FoxO1 gene to regulate the proliferation and differentiation of bovine myoblasts. Abstract Muscle development is an important factor affecting meat yield and quality and is coordinated by a variety of the myogenic genes and signaling pathways. Recent studies reported that miRNA, a class of highly conserved small noncoding RNA, is actively involved in regulating muscle development, but many miRNAs still need to be further explored. Here, we identified that the miR-183/96/182 cluster exhibited higher expression in bovine embryonic muscle; meanwhile, it widely existed in other organizations. Functionally, the results of the RT-qPCR, EdU, CCK8 and immunofluorescence assays demonstrated that the miR-183/96/182 cluster promoted proliferation and differentiation of bovine myoblast. Next, we found that the miR-183/96/182 cluster targeted FoxO1 and restrained its expression. Meanwhile, the expression of FoxO1 had a negative correlation with the expression of the miR-183/96/182 cluster during myoblast differentiation. In a word, our findings indicated that the miR-183/96/182 cluster serves as a positive regulator in the proliferation and differentiation of bovine myoblasts through suppressing the expression of FoxO1.
Collapse
|
8
|
Characteristics and Expression of circ_003628 and Its Promoted Effect on Proliferation and Differentiation of Skeletal Muscle Satellite Cells in Goats. Animals (Basel) 2022; 12:ani12192524. [PMID: 36230263 PMCID: PMC9559657 DOI: 10.3390/ani12192524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Circular RNAs (circRNAs) are new regulators of the development of skeletal muscle in mammals. Herein, circ_003628 in Longissimus dorsi muscle tissue of goats, previously found by RNA-seq, was selected to construct an expression profile in different caprine tissues, and investigate the effect on proliferation and differentiation of caprine skeletal muscle satellite cells (SMSCs), using RT-qPCR, EdU, CCK-8 and immunofluorescence assays. The results showed that circ_003628 had the highest expression level both in the longissimus dorsi muscle among nine caprine tissues collected, and on day 6 after differentiation during SMSCs differentiation periods. The interfering of circ_003628 inhibited the viability, proliferation, and differentiation of goat SMSCs. Abstract In our previous a study, circ_003628 was one of the most highly expressed circular RNAs (circRNAs) in the Longissimus dorsi muscle of goats found by RNA-seq, suggesting that the circRNA may be important for caprine muscle growth and development. However, there have been no reports describing the molecular mechanisms by which circ_003628 regulates the activities of goat skeletal muscle satellite cells (SMSCs). In this study, reverse transcriptase-PCR (RT-PCR) and DNA sequencing were used to validate the authenticity of circ_003628, and its characteristics, expression profile and effect on goat SMSCs were also studied using real-time quantitative-PCR (RT-qPCR), EdU, CCK-8 and immunofluorescence assays. Circ_003628 is partially originated from 13 exons, 12 introns and 3′-untranslated regions (UTR) of caprine Myosin Heavy Chain 1 (MYH1), and 25 exons and 5′ UTR of Myosin Heavy Chain 4 (MYH4), as well as intergenic sequences between the two genes. A total of 77.07% of circ_003628 were located in the nuclei of goat SMSCs, while 22.93% were expressed in the cytoplasm. The circRNAs were only expressed in triceps brachii, quadriceps femoris and longissimus dorsi muscle tissues in nine caprine tissues investigated, with the highest expression level in longissimus dorsi muscle. The expression level of circ_003628 gradually increased during differentiation periods of goat SMSCs and reached the maximum on day 6 after differentiation. The small interfering RNA of circ_003628 (named si-circ_003628) inhibited the viability and proliferation of goat SMSCs, and also decreased the expression of four cell proliferation marker genes: paired box 7 (Pax7), cyclin-dependent kinase 2 (CDK2), CDK4 and CyclinD1 in goat SMSCs. Transfection of si-circ_003628 significantly decreased the area of MyHC-labeled myotubes of goat SMSCs, as well as the expression levels of three differentiation marker genes: myosin heavy chain (MyHC), myogenin (MyoG), and myocyte enhancer factor 2C (MEF2C). These results suggest that circ_003628 promotes the viability, proliferation, and differentiation of goat SMSCs, and they also provide an improved understanding of the roles of circ_003628 in skeletal muscle growth and development in goats.
Collapse
|
9
|
Identification and characterization of circular RNAs in Longissimus dorsi muscle tissue from two goat breeds using RNA-Seq. Mol Genet Genomics 2022; 297:817-831. [DOI: 10.1007/s00438-022-01887-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
|
10
|
Nguyen MT, Lee W. Role of MiR-325-3p in the Regulation of CFL2 and Myogenic Differentiation of C2C12 Myoblasts. Cells 2021; 10:cells10102725. [PMID: 34685705 PMCID: PMC8534702 DOI: 10.3390/cells10102725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022] Open
Abstract
Skeletal myogenesis is required to maintain muscle mass and integrity, and impaired myogenesis is causally linked to the etiology of muscle wasting. Recently, it was shown that excessive uptake of saturated fatty acids (SFA) plays a significant role in the pathogenesis of muscle wasting. Although microRNA (miRNA) is implicated in the regulation of myogenesis, the molecular mechanism whereby SFA-induced miRNAs impair myogenic differentiation remains largely unknown. Here, we investigated the regulatory roles of miR-325-3p on CFL2 expression and myogenic differentiation in C2C12 myoblasts. PA impeded myogenic differentiation, concomitantly suppressed CFL2 and induced miR-325-3p. Dual-luciferase analysis revealed that miR-325-3p directly targets the 3'UTR of CFL2, thereby suppressing the expression of CFL2, a crucial factor for actin dynamics. Transfection with miR-325-3p mimic resulted in the accumulation of actin filaments (F-actin) and nuclear Yes-associated protein (YAP) in myoblasts and promoted myoblast proliferation and cell cycle progression. Consequently, miR-325-3p mimic significantly attenuated the expressions of myogenic factors and thereby impaired the myogenic differentiation of myoblasts. The roles of miR-325-3p on CFL2 expression, F-actin modulation, and myogenic differentiation suggest a novel miRNA-mediated regulatory mechanism of myogenesis and PA-inducible miR-325-3p may be a critical mediator between obesity and muscle wasting.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea;
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea;
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Goyang 10326, Korea
- Correspondence: ; Tel.: +82-54-770-2409
| |
Collapse
|
11
|
Palmitic Acid-Induced miR-429-3p Impairs Myoblast Differentiation by Downregulating CFL2. Int J Mol Sci 2021; 22:ijms222010972. [PMID: 34681631 PMCID: PMC8535884 DOI: 10.3390/ijms222010972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs are known to play a critical role in skeletal myogenesis and maintenance, and cofilin-2 (CFL2) is necessary for actin cytoskeleton dynamics and myogenic differentiation. Nonetheless, target molecules and the modes of action of miRNAs, especially those responsible for the inhibitory mechanism on the myogenesis by saturated fatty acids (SFA) or obesity, still remain unclear. Here, we reported the role played by miR-429-3p on CFL2 expression, actin filament dynamics, myoblast proliferation, and myogenic differentiation in C2C12 cells. Palmitic acid (PA), the most abundant SFA in diet, inhibited the myogenic differentiation of myoblasts, accompanied by CFL2 reduction and miR-429-3p induction. Interestingly, miR-429-3p suppressed the expression of CFL2 by targeting the 3'UTR of CFL2 mRNA directly. Transfection of miR-429-3p mimic in myoblasts increased F-actin formation and augmented nuclear YAP level, thereby promoting cell cycle progression and myoblast proliferation. Moreover, miR-429-3p mimic drastically suppressed the expressions of myogenic factors, such as MyoD, MyoG, and MyHC, and impaired myogenic differentiation of C2C12 cells. Therefore, this study unveiled the crucial role of miR-429-3p in myogenic differentiation through the suppression of CFL2 and provided implications of SFA-induced miRNA in the regulation of actin dynamics and skeletal myogenesis.
Collapse
|