1
|
Higashide M, Watanabe M, Sato T, Ogawa T, Umetsu A, Suzuki S, Furuhashi M, Ohguro H, Nishikiori N. Unexpected and Synergistical Effects of All-Trans Retinoic Acid and TGF-β2 on Biological Aspects of 2D and 3D Cultured ARPE19 Cells. Biomedicines 2024; 12:2228. [PMID: 39457541 PMCID: PMC11505250 DOI: 10.3390/biomedicines12102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Objectives: To study the effects of all-trans retinoic acid (ATRA) on TGF-β2-induced effects of human retinal pigment epithelium cells under normoxia and hypoxia conditions. Methods: Two-dimensionally (2D) and three-dimensionally (3D) cultured ARPE19 cells were subjected to cellular functional analyses by transepithelial electrical resistance (TEER) and an extracellular flux assay (2D), measurement of levels of reactive oxygen species (ROS), gene expression analyses of COL1, αSMA, Zo-1, HIF1α, and PGC1α (2D), and physical property analyses (3D). Results: Under a normoxia condition, treatment with 100 nM ATRA substantially decreased barrier function regardless of the presence of 5 ng/mL TGF-β2 in 2D ARPE19 monolayer cells. Under a hypoxia condition, treatment with ATRA conversely increased barrier function, but the effect was masked by a marked increase in effects induced by TGF-β2. Although ATRA alone did not affect cellular metabolism and ROS levels in 2D ARPE cells, treatment with ATRA under a hypoxia condition did not affect ROS levels but shifted cellular metabolism from mitochondrial respiration to glycolysis. The changes of cellular metabolism and ROS levels were more pronounced with treatment of both ATRA and TGF-β2 independently of oxygen conditions. Changes in mRNA expressions of some of the above genes suggested the involvement of synergistical regulation of cellular functions by TGF-β2 and hypoxia. In 3D ARPE spheroids, the size was decreased and the stiffness was increased by either treatment with TGF-β2 or ATRA, but these changes were unexpectedly modulated by both ATRA and TGF-β2 treatment regardless of oxygen conditions. Conclusions: The findings reported herein indicate that TGF-β2 and hypoxia synergistically and differentially induce effects in 2D and 3D cultured ARPE19 cells and that their cellular properties are significantly altered by the presence of ATRA.
Collapse
Affiliation(s)
- Megumi Higashide
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (M.W.); (A.U.); (S.S.); (H.O.)
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (M.W.); (A.U.); (S.S.); (H.O.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Toshifumi Ogawa
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Araya Umetsu
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (M.W.); (A.U.); (S.S.); (H.O.)
| | - Soma Suzuki
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (M.W.); (A.U.); (S.S.); (H.O.)
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
| | - Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (M.W.); (A.U.); (S.S.); (H.O.)
| | - Nami Nishikiori
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (M.W.); (A.U.); (S.S.); (H.O.)
| |
Collapse
|
2
|
Li Y, Wang Y, Cao Y, Zhang X, Dai W, Zhao Y, Zhang L, Han X. Correlation Between Growth Differentiation Factor-15 and Peripheral Neuropathy in Patients with Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2024; 17:3019-3028. [PMID: 39161742 PMCID: PMC11330853 DOI: 10.2147/dmso.s454531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024] Open
Abstract
Purpose To inquire into the relationship between diabetic peripheral neuropathy (DPN) and serum levels of growth differentiation factor-15 (GDF-15) in individuals with type 2 diabetes mellitus (T2DM). Patients and Methods Out of 162 T2DM patients classified according to the diagnostic criteria of DPN, 75 were allocated to the non-DPN group and 87 to the DPN group. In turn, based on serum GDF-15 quartiles, all patients were additionally divided (GDF-15 low to high) into group A (40 cases), group B (41 cases), group C (41 cases), and group D (40 cases). General data and laboratory indexes of patients were collected, and enzyme-linked immunosorbent assay (ELISA) was used to determine serum GDF-15 levels. Results Compared to the non-DPN group, in the DPN group GDF-15 levels were noticeably greater (P < 0.001). Using serum GDF-15 as a grouping variable, DPN prevalence and body mass index were gradually increased, motor and sensory nerve latencies were gradually lengthened, and amplitude (Amp) and nerve conduction velocity (NCV) were gradually decreased with increasing GDF-15 levels (P < 0.05). Linear regression modeling revealed that GDF-15 levels correlated positively with the latencies of sensory and motor nerves, and negatively with their corresponding NCV (P < 0.05). Binary logistic regression results indicated GDF-15 as an independent predictor for DPN (P < 0.05), whereas restricted cubic spline analysis indicated a dose-response, nonlinear relationship between GDF-15 and DPN. Conclusion Serum GDF-15 level strongly correlates with DPN, and may represent an independent predictor and a biological marker for the disease.
Collapse
Affiliation(s)
- Yue Li
- Department of Endocrinology, Hefei Hospital Affiliated to Anhui Medical University, Hefei, People’s Republic of China
- The Fifth Clinical College of Anhui Medical University, Hefei, People’s Republic of China
| | - Yuhui Wang
- The Fifth Clinical College of Anhui Medical University, Hefei, People’s Republic of China
- Department of Cardiology, Hefei Hospital Affiliated to Anhui Medical University, Hefei, People’s Republic of China
| | - Yonghong Cao
- Department of Endocrinology, Hefei Hospital Affiliated to Anhui Medical University, Hefei, People’s Republic of China
- The Fifth Clinical College of Anhui Medical University, Hefei, People’s Republic of China
| | - Xinxiu Zhang
- Department of Endocrinology, Hefei Hospital Affiliated to Anhui Medical University, Hefei, People’s Republic of China
- The Fifth Clinical College of Anhui Medical University, Hefei, People’s Republic of China
| | - Wu Dai
- Department of Endocrinology, Hefei Hospital Affiliated to Anhui Medical University, Hefei, People’s Republic of China
- The Fifth Clinical College of Anhui Medical University, Hefei, People’s Republic of China
| | - Yiran Zhao
- Department of Endocrinology, Hefei Hospital Affiliated to Anhui Medical University, Hefei, People’s Republic of China
- The Fifth Clinical College of Anhui Medical University, Hefei, People’s Republic of China
| | - Lei Zhang
- Department of Endocrinology, Hefei Hospital Affiliated to Anhui Medical University, Hefei, People’s Republic of China
- The Fifth Clinical College of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaofang Han
- Department of Endocrinology, Hefei Hospital Affiliated to Anhui Medical University, Hefei, People’s Republic of China
- The Fifth Clinical College of Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
3
|
Nishikiori N, Sato T, Ogawa T, Higashide M, Umetsu A, Suzuki S, Furuhashi M, Ohguro H, Watanabe M. TGF-β Isoforms and Local Environments Greatly Modulate Biological Nature of Human Retinal Pigment Epithelium Cells. Bioengineering (Basel) 2024; 11:581. [PMID: 38927817 PMCID: PMC11201039 DOI: 10.3390/bioengineering11060581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
To characterize transforming growth factor-β (TGF-β) isoform (TGF-β1~3)-b's biological effects on the human retinal pigment epithelium (RPE) under normoxia and hypoxia conditions, ARPE19 cells cultured by 2D (two-dimensional) and 3D (three-dimensional) conditions were subjected to various analyses, including (1) an analysis of barrier function by trans-epithelial electrical resistance (TEER) measurements; (2) qPCR analysis of major ECM molecules including collagen 1 (COL1), COL4, and COL6; α-smooth muscle actin (αSMA); hypoxia-inducible factor 1α (HIF1α); and peroxisome proliferator-activated receptor-gamma coactivator (PGC1α), a master regulator for mitochondrial respiration;, tight junction-related molecules, Zonula occludens-1 (ZO1) and E-cadherin; and vascular endothelial growth factor (VEGF); (3) physical property measurements of 3D spheroids; and (4) cellular metabolic analysis. Diverse effects among TGF-β isoforms were observed, and those effects were also different between normoxia and hypoxia conditions: (1) TGF-β1 and TGF-β3 caused a marked increase in TEER values, and TGF-β2 caused a substantial increase in TEER values under normoxia conditions and hypoxia conditions, respectively; (2) the results of qPCR analysis supported data obtained by TEER; (3) 3D spheroid sizes were decreased by TGF-β isoforms, among which TGF-β1 had the most potent effect under both oxygen conditions; (4) 3D spheroid stiffness was increased by TGF-β2 and TGF-β3 or by TGF-β1 and TGF-β3 under normoxia conditions and hypoxia conditions, respectively; and (5) the TGF-β isoform altered mitochondrial and glycolytic functions differently under oxygen conditions and/or culture conditions. These collective findings indicate that the TGF-β-induced biological effects of 2D and 3D cultures of ARPE19 cells were substantially diverse depending on the three TGF-β isoforms and oxygen levels, suggesting that pathological conditions including epithelial-mesenchymal transition (EMT) of the RPE may be exclusively modulated by both factors.
Collapse
Affiliation(s)
- Nami Nishikiori
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Toshifumi Ogawa
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Megumi Higashide
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Araya Umetsu
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Soma Suzuki
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
| | - Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| |
Collapse
|
4
|
Kaur N, Singh J, Minz RW, Anand S, Saikia B, Bhadada SK, Dayal D, Kumar M, Dhanda SK. Shared and distinct genetics of pure type 1 diabetes and type 1 diabetes with celiac disease, homology in their auto-antigens and immune dysregulation states: a study from North India. Acta Diabetol 2024; 61:791-805. [PMID: 38483572 DOI: 10.1007/s00592-024-02258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/11/2024] [Indexed: 05/18/2024]
Abstract
AIM This study was undertaken to explicate the shared and distinctive genetic susceptibility and immune dysfunction in patients with T1D alone and T1D with CD (T1D + CD). METHODS A total of 100 T1D, 50 T1D + CD and 150 healthy controls were recruited. HLA-DRB1/DQB1 alleles were determined by PCR-sequence-specific primer method, SNP genotyping for CTLA-4 and PTPN22 was done by simple probe-based SNP-array and genotyping for INS-23 Hph1 A/T was done by RFLP. Autoantibodies and cytokine estimation was done by ELISA. Immune-regulation was analysed by flow-cytometry. Clustering of autoantigen epitopes was done by epitope cluster analytical tool. RESULTS Both T1D alone and T1D + CD had a shared association of DRB1*03:01, DRB1*04, DRB3*01:07/15 and DQB1*02. DRB3*01:07/15 confers the highest risk for T1D with relative risk of 11.32 (5.74-22.31). Non-HLA gene polymorphisms PTPN22 and INS could discriminate between T1D and T1D + CD. T1D + CD have significantly higher titers of autoantibodies, expression of costimulatory molecules on CD4 and CD8 cells, and cytokine IL-17A and TGF-β1 levels compared to T1D patients. Epitopes from immunodominant regions of autoantigens of T1D and CD clustered together with 40% homology. CONCLUSION Same HLA genes provide susceptibility for both T1D and CD. Non-HLA genes CTLA4, PTPN22 and INS provide further susceptibility while different polymorphisms in PTPN22 and INS can discriminate between T1D and T1D + CD. Epitope homology between autoantigens of two diseases further encourages the two diseases to occur together. The T1D + CD being more common in females along with co-existence of thyroid autoimmunity, and have more immune dysregulated state than T1D alone.
Collapse
Affiliation(s)
- Navchetan Kaur
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Jagdeep Singh
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ranjana W Minz
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Shashi Anand
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Biman Saikia
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Sanjay K Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Devi Dayal
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Manoj Kumar
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Sandeep K Dhanda
- Division of Vaccine Discovery, La Jolla Institute of Allergy and Immunology, San Diego, CA, USA
- Now at Department of Oncology, Saint Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
5
|
Lam CHI, Zuo B, Chan HHL, Leung TW, Abokyi S, Catral KPC, Tse DYY. Coenzyme Q10 eyedrops conjugated with vitamin E TPGS alleviate neurodegeneration and mitochondrial dysfunction in the diabetic mouse retina. Front Cell Neurosci 2024; 18:1404987. [PMID: 38863499 PMCID: PMC11165046 DOI: 10.3389/fncel.2024.1404987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness and vision impairment worldwide and represents one of the most common complications among diabetic patients. Current treatment modalities for DR, including laser photocoagulation, intravitreal injection of corticosteroid, and anti-vascular endothelial growth factor (VEGF) agents, target primarily vascular lesions. However, these approaches are invasive and have several limitations, such as potential loss of visual function, retinal scars and cataract formation, and increased risk of ocular hypertension, vitreous hemorrhage, retinal detachment, and intraocular inflammation. Recent studies have suggested mitochondrial dysfunction as a pivotal factor leading to both the vascular and neural damage in DR. Given that Coenzyme Q10 (CoQ10) is a proven mitochondrial stabilizer with antioxidative properties, this study investigated the effect of CoQ10 eyedrops [in conjunction with vitamin E d-α-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS)] on DR-induced neurodegeneration using a type 2 diabetes mouse model (C57BLKsJ-db/db mice). Utilizing a comprehensive electroretinography protocol, supported by immunohistochemistry, our results revealed that topical application of CoQ10 eyedrops conjugated with vitamin E TPGS produced a neuroprotective effect against diabetic-induced neurodegeneration by preserving the function and histology of various retinal neural cell types. Compared to the control group, mice treated with CoQ10 exhibited thicker outer and inner nuclear layers, higher densities of photoreceptor, cone cell, and rod-bipolar cell dendritic boutons, and reduced glial reactivity and microglial cell density. Additionally, the CoQ10 treatment significantly alleviated retinal levels of MMP-9 and enhanced mitochondrial function. These findings provide further insight into the role of mitochondrial dysfunction in the development of DR and suggest CoQ10 eyedrops, conjugated with vitamin E TPGS, as a potential complementary therapy for DR-related neuropathy.
Collapse
Affiliation(s)
- Christie Hang-I Lam
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Centre for Eye and Vision Research Limited, Shatin, Hong Kong SAR, China
| | - Bing Zuo
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Henry Ho-Lung Chan
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Centre for Eye and Vision Research Limited, Shatin, Hong Kong SAR, China
| | - Tsz-Wing Leung
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Samuel Abokyi
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | | | - Dennis Yan-Yin Tse
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Centre for Eye and Vision Research Limited, Shatin, Hong Kong SAR, China
- Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
6
|
Zhao L, Hu H, Zhang L, Liu Z, Huang Y, Liu Q, Jin L, Zhu M, Zhang L. Inflammation in diabetes complications: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2024; 5:e516. [PMID: 38617433 PMCID: PMC11014467 DOI: 10.1002/mco2.516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/16/2024] Open
Abstract
At present, diabetes mellitus (DM) has been one of the most endangering healthy diseases. Current therapies contain controlling high blood sugar, reducing risk factors like obesity, hypertension, and so on; however, DM patients inevitably and eventually progress into different types of diabetes complications, resulting in poor quality of life. Unfortunately, the clear etiology and pathogenesis of diabetes complications have not been elucidated owing to intricate whole-body systems. The immune system was responsible to regulate homeostasis by triggering or resolving inflammatory response, indicating it may be necessary to diabetes complications. In fact, previous studies have been shown inflammation plays multifunctional roles in the pathogenesis of diabetes complications and is attracting attention to be the meaningful therapeutic strategy. To this end, this review systematically concluded the current studies over the relationships of susceptible diabetes complications (e.g., diabetic cardiomyopathy, diabetic retinopathy, diabetic peripheral neuropathy, and diabetic nephropathy) and inflammation, ranging from immune cell response, cytokines interaction to pathomechanism of organ injury. Besides, we also summarized various therapeutic strategies to improve diabetes complications by target inflammation from special remedies to conventional lifestyle changes. This review will offer a panoramic insight into the mechanisms of diabetes complications from an inflammatory perspective and also discuss contemporary clinical interventions.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Haoran Hu
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Lin Zhang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Zheting Liu
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yunchao Huang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qian Liu
- National Demonstration Center for Experimental Traditional Chinese Medicines Education (Zhejiang Chinese Medical University)College of Pharmaceutical Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Liang Jin
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Meifei Zhu
- Department of Critical Care MedicineThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Ling Zhang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
7
|
Callan A, Jha S, Valdez L, Baldado L, Tsin A. TGF-β Signaling Pathways in the Development of Diabetic Retinopathy. Int J Mol Sci 2024; 25:3052. [PMID: 38474297 PMCID: PMC10932130 DOI: 10.3390/ijms25053052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Diabetic retinopathy (DR), a prevalent complication of diabetes mellitus affecting a significant portion of the global population, has long been viewed primarily as a microvascular disorder. However, emerging evidence suggests that it should be redefined as a neurovascular disease with multifaceted pathogenesis rooted in oxidative stress and advanced glycation end products. The transforming growth factor-β (TGF-β) signaling family has emerged as a major contributor to DR pathogenesis due to its pivotal role in retinal vascular homeostasis, endothelial cell barrier function, and pericyte differentiation. However, the precise roles of TGF-β signaling in DR remain incompletely understood, with conflicting reports on its impact in different stages of the disease. Additionally, the BMP subfamily within the TGF-β superfamily introduces further complexity, with BMPs exhibiting both pro- and anti-angiogenic properties. Furthermore, TGF-β signaling extends beyond the vascular realm, encompassing immune regulation, neuronal survival, and maintenance. The intricate interactions between TGF-β and reactive oxygen species (ROS), non-coding RNAs, and inflammatory mediators have been implicated in the pathogenesis of DR. This review delves into the complex web of signaling pathways orchestrated by the TGF-β superfamily and their involvement in DR. A comprehensive understanding of these pathways may hold the key to developing targeted therapies to halt or mitigate the progression of DR and its devastating consequences.
Collapse
Affiliation(s)
| | | | | | | | - Andrew Tsin
- School of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (A.C.); (S.J.); (L.V.); (L.B.)
| |
Collapse
|
8
|
Zhu T, Li Y, Zhu L, Xu J, Feng Z, Chen H, Shi S, Liu C, Ou Q, Gao F, Zhang J, Jin C, Xu J, Li J, Zhang J, Bi Y, Xu GT, Wang J, Tian H, Lu L. GMFB/AKT/TGF-β3 in Müller cells mediated early retinal degeneration in a streptozotocin-induced rat diabetes model. Glia 2024; 72:504-528. [PMID: 37904673 DOI: 10.1002/glia.24486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/14/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023]
Abstract
Retinal degeneration, characterized by Müller cell gliosis and photoreceptor apoptosis, is considered an early event in diabetic retinopathy (DR). Our previous study proposed that GMFB may mediate diabetic retinal degeneration. This study identified GMFB as a sensitive and functional gliosis marker for DR. Compared to the wild type (WT) group, Gmfb knockout (KO) significantly improved visual function, attenuated gliosis, reduced the apoptosis of neurons, and decreased the mRNA levels of tumor necrosis factor α (Tnf-α) and interleukin-1β (Il-1β) in diabetic retinas. Tgf-β3 was enriched by hub genes using RNA sequencing in primary WT and KO Müller cells. Gmfb KO significantly upregulated the transforming growth factor (TGF)-β3 protein level via the AKT pathway. The protective effect of TGF-β3 in the vitreous resulted in significantly improved visual function and decreased the number of apoptotic cells in the diabetic retina. The protection of Gmfb KO in primary Müller cells against high glucose (HG)-induced photoreceptor apoptosis was partially counteracted by TGF-β3 antibody and administration of TGFBR1/2 inhibitors. Nuclear receptor subfamily 3 group C member 1 (NR3C1) binds to the promoter region of Gmfb and regulates Gmfb mRNA at the transcriptional level. NR3C1 was increased in the retinas of early diabetic rats but decreased in the retinas of late diabetic rats. N'-[(1E)-(3-Methoxyphenyl)Methylene]-3-Methyl-1H-Pyrazole-5-Carbohydrazide (DS-5) was identified as an inhibitor of GMFB, having a protective role in DR. We demonstrated that GMFB/AKT/TGF-β3 mediated early diabetic retinal degeneration in diabetic rats. This study provides a novel therapeutic strategy for treating retinal degeneration in patients with DR.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Yingao Li
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Lilin Zhu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jinyuan Xu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Zijun Feng
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Hao Chen
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Si Shi
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Caiying Liu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Furong Gao
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jieping Zhang
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Caixia Jin
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jingying Xu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jiao Li
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology of Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yanlong Bi
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Juan Wang
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Human Genetics, Tongji University School of Medicine, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tongji Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Santana-Garrido Á, Reyes-Goya C, André H, Vázquez CM, Mate A. Exploring the Potential of Wild Olive (Acebuche) Oil as a Pharm-Food to Prevent Ocular Hypertension and Fibrotic Events in the Retina of Hypertensive Mice. Mol Nutr Food Res 2024; 68:e2200623. [PMID: 38044285 DOI: 10.1002/mnfr.202200623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 08/25/2023] [Indexed: 12/05/2023]
Abstract
SCOPE Our laboratory has previously described the antioxidant and anti-inflammatory potential of a wild olive (acebuche, ACE) oil against hypertension-associated vascular retinopathies. The current study aims to analyze the antifibrotic effect of ACE oil on the retina of hypertensive mice. METHODS AND RESULTS Mice are rendered hypertensive by administration of NG-nitro-L-arginine-methyl-ester (L-NAME) and simultaneously subjected to dietary supplementation with ACE oil or a reference extra virgin olive oil (EVOO). Intraocular pressure (IOP) is measured by rebound tonometry, and retinal vasculature/layers are analyzed by fundus fluorescein angiography and optical coherence tomography. Different fibrosis-related parameters are analyzed in the retina and choroid of normotensive and hypertensive mice with or without oil supplementation. Besides preventing the alterations found in hypertensive animals, including increased IOP, reduced fluorescein signal, and altered retinal layer thickness, the ACE oil-enriched diet improves collagen metabolism by regulating the expression of major fibrotic process modulators (matrix metalloproteinases, tissue inhibitors of metalloproteinases, connective tissue growth factor, and transforming growth factor beta family). CONCLUSION Regular consumption of EVOO and ACE oil (with better outcomes in the latter) might help reduce abnormally high IOP values in the context of hypertension-related retinal damage, with significant reduction in the surrounding fibrotic process.
Collapse
Affiliation(s)
- Álvaro Santana-Garrido
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, 41012, Spain
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, 41013, Spain
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Claudia Reyes-Goya
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, 41012, Spain
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, 41013, Spain
| | - Helder André
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Carmen M Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, 41012, Spain
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, 41013, Spain
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Alfonso Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, 41012, Spain
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, 41013, Spain
| |
Collapse
|
10
|
Mesquita J, Santos FM, Sousa JP, Vaz-Pereira S, Tavares-Ratado P, Neves A, Mesquita R, Tomaz CT. Serum and Vitreous Levels of Placenta Growth Factor in Diabetic Retinopathy Patients: Correlation With Disease Severity and Optical Coherence Tomographic Parameters. Cureus 2024; 16:e54862. [PMID: 38533176 PMCID: PMC10964121 DOI: 10.7759/cureus.54862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2024] [Indexed: 03/28/2024] Open
Abstract
Purpose The primary objective of this study was to compare placenta growth factor (PlGF) levels in the serum and vitreous of diabetic retinopathy (DR) patients to non-diabetic controls. Additionally, the study aimed to establish associations between serum and vitreous PlGF concentrations and to examine the correlation between vitreous PlGF in DR patients and morphological parameters. Methods This study included serum and vitreous samples from 38 patients, including 21 patients with DR and 17 non-diabetic controls. The control group included non-diabetic patients with rhegmatogenous retinal detachment with retinal tears secondary to posterior vitreous detachment or trauma. PlGF levels were quantified in vitreous and serum samples using an enzyme-linked immunosorbent assay (ELISA). Optical coherence tomography (OCT) scans from DR patients were evaluated to measure the central retinal thickness (CRT) and macular volume (MV). Results DR patients had significantly higher mean vitreous PlGF levels compared to non-DR patients (70.0±39.2 vs. 46.47±9.7 pg/mL, p-value=0.004). However, no significant increase in mean serum PlGF levels was observed in DR patients (p-value=0.232). Within the DR group, proliferative DR (PDR) patients presented significantly higher vitreous PlGF levels than non-PDR (NPDR) patients (76.5±41.0 vs. 42.5±5.0 pg/mL, p-value=0.009). There was no association between serum and vitreous PlGF levels. The correlation between vitreous PlGF levels and morphological parameters was rsp=0.175, p-value=0.488 for CRT, and rsp=0.288, p-value=0.262 for MV. Conclusion This study emphasizes the important role of PlGF in neovascularization, specifically highlighting its overexpression exclusively in vitreous from PDR patients. The observed increase in PlGF levels may be indicative of disease severity. The lack of correlation between vitreous and serum PlGF levels suggests a potential dissociation between intravitreal and systemic PlGF synthesis. Consequently, targeting PlGF in therapeutic approaches may offer an additional strategy for ocular pathologies with a neovascular component.
Collapse
Affiliation(s)
- Joana Mesquita
- Pharmacy, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Covilhã, PRT
| | - Fátima Milhano Santos
- Biochemistry, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, ESP
| | | | | | - Paulo Tavares-Ratado
- Clinical Research, Medical Sciences, Universidade da Beira Interior, Covilhã, PRT
| | - Arminda Neves
- Ophthalmology, Centro Hospitalar de Leiria, Leiria, PRT
| | - Rita Mesquita
- Medicine, Faculty of Medicine, Universidade de Lisboa, Lisbon, PRT
| | - Cândida Teixeira Tomaz
- Pharmacology and Therapeutics, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Covilhã, PRT
| |
Collapse
|
11
|
Sun WJ, An XD, Zhang YH, Zhao XF, Sun YT, Yang CQ, Kang XM, Jiang LL, Ji HY, Lian FM. The ideal treatment timing for diabetic retinopathy: the molecular pathological mechanisms underlying early-stage diabetic retinopathy are a matter of concern. Front Endocrinol (Lausanne) 2023; 14:1270145. [PMID: 38027131 PMCID: PMC10680169 DOI: 10.3389/fendo.2023.1270145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetic retinopathy (DR) is a prevalent complication of diabetes, significantly impacting patients' quality of life due to vision loss. No pharmacological therapies are currently approved for DR, excepted the drugs to treat diabetic macular edema such as the anti-VEGF agents or steroids administered by intraocular route. Advancements in research have highlighted the crucial role of early intervention in DR for halting or delaying disease progression. This holds immense significance in enhancing patients' quality of life and alleviating the societal burden associated with medical care costs. The non-proliferative stage represents the early phase of DR. In comparison to the proliferative stage, pathological changes primarily manifest as microangiomas and hemorrhages, while at the cellular level, there is a loss of pericytes, neuronal cell death, and disruption of components and functionality within the retinal neuronal vascular unit encompassing pericytes and neurons. Both neurodegenerative and microvascular abnormalities manifest in the early stages of DR. Therefore, our focus lies on the non-proliferative stage of DR and we have initially summarized the mechanisms involved in its development, including pathways such as polyols, that revolve around the pathological changes occurring during this early stage. We also integrate cutting-edge mechanisms, including leukocyte adhesion, neutrophil extracellular traps, multiple RNA regulation, microorganisms, cell death (ferroptosis and pyroptosis), and other related mechanisms. The current status of drug therapy for early-stage DR is also discussed to provide insights for the development of pharmaceutical interventions targeting the early treatment of DR.
Collapse
Affiliation(s)
- Wen-Jie Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue-Dong An
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue-Hong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue-Fei Zhao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Ting Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Cun-Qing Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Min Kang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Lin Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Hang-Yu Ji
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feng-Mei Lian
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Liu J, Wang H, Huang C. Exendin-4, a GLP-1 receptor agonist, suppresses diabetic retinopathy in vivo and in vitro. Arch Physiol Biochem 2023:1-10. [PMID: 37920998 DOI: 10.1080/13813455.2023.2274279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Diabetic retinopathy (DR) is a complication of diabetes and a leading cause of blindness in adults. Studies have shown that glucagon-like peptide-1 (GLP-1) exerts a protective effect on patients with DR. Here, we investigated the protective effects of Exendin-4, a GLP-1 analogue, on DR. We established a high-glucose-induced HREC cell model and an STZ-induced rat DR Model to study the effect of Exendin-4 in DR in vitro and in vivo. The qRT-PCR, CCK-8, TUNEL, western blotting, tube formation assays, and ELISA were performed. In addition, we overexpressed TGFB2 to observe whether the protective effect of Exendin-4 was reversed. Our results showed that Exendin-4 inhibited the progression of DR. Furthermore, the protective effect of Exendin-4 was suppressed in cells overexpressing TGFB2. Our findings suggest that Exendin-4 may be involved in the regulation of TGFB2 expression levels to inhibit DR. These results indicate that Exendin-4 could be an effective therapy for DR.
Collapse
Affiliation(s)
- Jufen Liu
- Ophthalmology Department of Shangyu People's Hospital of Shaoxing City, Shaoxing, China
| | - Huijing Wang
- Health Management Center of Shangyu People's Hospital of Shaoxing City, Shaoxing, China
| | - Cuiting Huang
- Ophthalmology Department Of Ningde City Hospital, Ningde Normal University, China
| |
Collapse
|
13
|
Błaszkiewicz M, Walulik A, Florek K, Górecki I, Sławatyniec O, Gomułka K. Advances and Perspectives in Relation to the Molecular Basis of Diabetic Retinopathy-A Review. Biomedicines 2023; 11:2951. [PMID: 38001952 PMCID: PMC10669459 DOI: 10.3390/biomedicines11112951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Diabetes mellitus (DM) is a growing problem nowadays, and diabetic retinopathy (DR) is its predominant complication. Currently, DR diagnosis primarily relies on fundoscopic examination; however, novel biomarkers may facilitate that process and make it widely available. In this current review, we delve into the intricate roles of various factors and mechanisms in DR development, progression, prediction, and their association with therapeutic approaches linked to the underlying pathogenic pathways. Specifically, we focus on advanced glycation end products, vascular endothelial growth factor (VEGF), asymmetric dimethylarginine, endothelin-1, and the epigenetic regulation mediated by microRNAs (miRNAs) in the context of DR.
Collapse
Affiliation(s)
- Michał Błaszkiewicz
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Agata Walulik
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Kamila Florek
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Ignacy Górecki
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Olga Sławatyniec
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| |
Collapse
|
14
|
Wang X, Wang T, Lam E, Alvarez D, Sun Y. Ocular Vascular Diseases: From Retinal Immune Privilege to Inflammation. Int J Mol Sci 2023; 24:12090. [PMID: 37569464 PMCID: PMC10418793 DOI: 10.3390/ijms241512090] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The eye is an immune privileged tissue that insulates the visual system from local and systemic immune provocation to preserve homeostatic functions of highly specialized retinal neural cells. If immune privilege is breached, immune stimuli will invade the eye and subsequently trigger acute inflammatory responses. Local resident microglia become active and release numerous immunological factors to protect the integrity of retinal neural cells. Although acute inflammatory responses are necessary to control and eradicate insults to the eye, chronic inflammation can cause retinal tissue damage and cell dysfunction, leading to ocular disease and vision loss. In this review, we summarized features of immune privilege in the retina and the key inflammatory responses, factors, and intracellular pathways activated when retinal immune privilege fails, as well as a highlight of the recent clinical and research advances in ocular immunity and ocular vascular diseases including retinopathy of prematurity, age-related macular degeneration, and diabetic retinopathy.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - Tianxi Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - Enton Lam
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - David Alvarez
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| |
Collapse
|
15
|
Naseri S, Rosenberg‐Hasson Y, Maecker HT, Avrutsky MI, Blumenthal PD. A cross-sectional study comparing the inflammatory profile of menstrual effluent vs. peripheral blood. Health Sci Rep 2023; 6:e1038. [PMID: 36620506 PMCID: PMC9813904 DOI: 10.1002/hsr2.1038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Background and Aims Cytokine profiles of peripheral blood and other bodily fluids provide diagnostic indicators for assessing inflammatory processes. Menstrual effluent may provide a noninvasive source of biological material for monitoring cytokine levels in blood and in endometrial tissues. This pilot study investigated the potential of measuring cytokines in menstrual effluent, and compared the cytokine profiles of menstrual versus peripheral blood. Methods Seven healthy donors (aged ≥18 and ≤45 years) collected menstrual effluent on day 2 of menses. Matched peripheral blood samples were collected by venous blood draw on the same day. Levels of 62 cytokines were measured in all samples by 62-plex Luminex assay. Results Peripheral blood and menstrual effluent cytokine profiles were tenuously correlated (r 2 = 0.26, p < 0.0001), with higher levels detected in menstrual effluent for 48/62 cytokines. Thirty five cytokines were significantly elevated in menstrual effluent compared to peripheral blood samples (IL-8, CCL2, CCL4, LIF, IL-1RA, IL-6, IL-1β, HGF, CCL3, FGF-2, TNF-α, VEGF-A, IL-1α, CXCL1, IL-9, IL-10, EGF, CXCL5, CSF3, EOTAXIN, TGF-α, TRAIL, CXCL10, VEGF-D, IL-12P40, CXCL9, IL-18 RESISTIN, IL-22, IL-21, CSF1, IFN-γ, IL-17A, CXCL12, IL-12p70). Two cytokines (LEPTIN, CSF2) were expressed at significantly lower levels in menstrual effluent compared to peripheral blood. Linear regression of individual cytokines found low predictive power (linear regression p > 0.05) for 53/62 cytokines in menstrual effluent versus peripheral blood. Levels of TGF-β (r 2 = 0.87, p = 0.002) and CCL7 (r 2 = 0.63, p = 0.033) were significantly positively correlated between matched menstrual and peripheral blood samples. Conclusion In this group of study participants, the cytokine profile of menstrual effluent was quantitatively distinct from peripheral blood, and also characterized by higher levels of inflammatory signaling. This pattern of comparative menstrual blood cytokine profiles points to a need for further studies to evaluate the relationship between peripheral and menstrual blood cytokines in broader populations including both healthy and diseased states.
Collapse
Affiliation(s)
- Sara Naseri
- Department of Obstetrics and GynecologyStanford UniversityStanfordCaliforniaUSA
- Qurasense Inc.Menlo ParkCaliforniaUSA
| | - Yael Rosenberg‐Hasson
- Institute for Immunity, Transplantation, and Infection, Stanford University School of MedicineStanfordCaliforniaUSA
| | - Holden T. Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of MedicineStanfordCaliforniaUSA
| | | | - Paul D. Blumenthal
- Department of Obstetrics and GynecologyStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
16
|
Kovoor E, Chauhan SK, Hajrasouliha A. Role of inflammatory cells in pathophysiology and management of diabetic retinopathy. Surv Ophthalmol 2022; 67:1563-1573. [PMID: 35914582 PMCID: PMC11082823 DOI: 10.1016/j.survophthal.2022.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023]
Abstract
Diabetic retinopathy (DR) is a sight-threatening complication of diabetes mellitus. Several inflammatory cells and proteins, including macrophages and microglia, cytokines, and vascular endothelial growth factors, are found to play a significant role in the development and progression of DR. Inflammatory cells play a significant role in the earliest changes seen in DR including the breakdown of the blood retinal barrier leading to leakage of blood into the retina. They also have an important role in the pathogenesis of more advanced stage of proliferative diabetic retinopathy, leading to neovascularization, vitreous hemorrhage, and tractional retinal detachment. In this review, we examine the function of numerous inflammatory cells involved in the pathogenesis, progression, and role as a potential therapeutic target in DR. Additionally, we explore the role of inflammation following treatment of DR.
Collapse
Affiliation(s)
- Elias Kovoor
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Sunil K Chauhan
- Schepens Eye Institute, Harvard Medical School, Boston, MA, USA
| | - Amir Hajrasouliha
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
17
|
Casciano F, Zauli E, Rimondi E, Mura M, Previati M, Busin M, Zauli G. The role of the mTOR pathway in diabetic retinopathy. Front Med (Lausanne) 2022; 9:973856. [PMID: 36388931 PMCID: PMC9663464 DOI: 10.3389/fmed.2022.973856] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/05/2022] [Indexed: 07/30/2023] Open
Abstract
The retina, the part of the eye, translates the light signal into an electric current that can be sent to the brain as visual information. To achieve this, the retina requires fine-tuned vascularization for its energy supply. Diabetic retinopathy (DR) causes alterations in the eye vascularization that reduce the oxygen supply with consequent retinal neurodegeneration. During DR, the mammalian target of rapamycin (mTOR) pathway seems to coordinate retinal neurodegeneration with multiple anabolic and catabolic processes, such as autophagy, oxidative stress, cell death, and the release of pro-inflammatory cytokines, which are closely related to chronic hyperglycemia. This review outlines the normal anatomy of the retina and how hyperglycemia can be involved in the neurodegeneration underlying this disease through over activation or inhibition of the mTOR pathway.
Collapse
Affiliation(s)
- Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
- Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Erika Rimondi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Marco Mura
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Maurizio Previati
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Massimo Busin
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Design, construction and in vivo functional assessment of a hinge truncated sFLT01. Gene Ther 2022; 30:347-361. [PMID: 36114375 DOI: 10.1038/s41434-022-00362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 08/05/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022]
Abstract
Gene therapy for the treatment of ocular neovascularization has reached clinical trial phases. The AAV2-sFLT01 construct was already evaluated in a phase 1 open-label trial administered intravitreally to patients with advanced neovascular age-related macular degeneration. SFLT01 protein functions by binding to VEGF and PlGF molecules and inhibiting their activities simultaneously. It consists of human VEGFR1/Flt-1 (hVEGFR1), a polyglycine linker, and the Fc region of human IgG1. The IgG1 upper hinge region of the sFLT01 molecule makes it vulnerable to radical attacks and prone to causing immune reactions. This study pursued two goals: (i) minimizing the immunogenicity and vulnerability of the molecule by designing a truncated molecule called htsFLT01 (hinge truncated sFLT01) that lacked the IgG1 upper hinge and lacked 2 amino acids from the core hinge region; and (ii) investigating the structural and functional properties of the aforesaid chimeric molecule at different levels (in silico, in vitro, and in vivo). Molecular dynamics simulations and molecular mechanics energies combined with Poisson-Boltzmann and surface area continuum solvation calculations revealed comparable free energy of binding and binding affinity for sFLT01 and htsFLT01 to their cognate ligands. Conditioned media from human retinal pigment epithelial (hRPE) cells that expressed htsFLT01 significantly reduced tube formation in HUVECs. The AAV2-htsFLT01 virus suppressed vascular development in the eyes of newborn mice. The htsFLT01 gene construct is a novel anti-angiogenic tool with promising improvements compared to existing treatments.
Collapse
|
19
|
Liu Y, Yamagishi R, Honjo M, Kurano M, Yatomi Y, Igarashi K, Aihara M. Role of Autotaxin in High Glucose-Induced Human ARPE-19 Cells. Int J Mol Sci 2022; 23:ijms23169181. [PMID: 36012446 PMCID: PMC9409272 DOI: 10.3390/ijms23169181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Autotaxin (ATX) is an enzymatic with lysophospholipase D (lysoPLD) activity. We investigated the role of ATX in high glucose (HG)-induced human retinal pigment epithelial (ARPE-19) cells to explore the pathogenesis of diabetic retinopathy (DR). We performed a quantitative real-time polymerase chain reaction, Western blotting, immunocytochemistry, enzyme-linked immunosorbent assay, cell permeability assay, and transepithelial electrical resistance measurement in HG-induced ARPE-19 cells and compared their results with those of normal glucose and osmotic pressure controls. ATX expression and its lysoPLD activity, barrier function, and expression of vascular endothelial growth factor receptors VEGFR-1 and VEGFR-2 were downregulated, while fibrotic responses, cytoskeletal reorganization, and transforming growth factor-β expression were upregulated, in the HG group. Our results suggest that HG induces intracellular ATX downregulation, barrier dysfunction, and fibrosis, which are involved in early DR and can be targeted for DR treatment.
Collapse
Affiliation(s)
- Yang Liu
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Reiko Yamagishi
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Correspondence:
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Koji Igarashi
- Bioscience Division, Reagent Development Department, AIA Research Group, TOSOH Corporation, Ayase 252-1123, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
20
|
Ren J, Zhang S, Pan Y, Jin M, Li J, Luo Y, Sun X, Li G. Diabetic retinopathy: Involved cells, biomarkers, and treatments. Front Pharmacol 2022; 13:953691. [PMID: 36016568 PMCID: PMC9396039 DOI: 10.3389/fphar.2022.953691] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic retinopathy (DR), a leading cause of vision loss and blindness worldwide, is caused by retinal neurovascular unit dysfunction, and its cellular pathology involves at least nine kinds of retinal cells, including photoreceptors, horizontal and bipolar cells, amacrine cells, retinal ganglion cells, glial cells (Müller cells, astrocytes, and microglia), endothelial cells, pericytes, and retinal pigment epithelial cells. Its mechanism is complicated and involves loss of cells, inflammatory factor production, neovascularization, and BRB impairment. However, the mechanism has not been completely elucidated. Drug treatment for DR has been gradually advancing recently. Research on potential drug targets relies upon clear information on pathogenesis and effective biomarkers. Therefore, we reviewed the recent literature on the cellular pathology and the diagnostic and prognostic biomarkers of DR in terms of blood, protein, and clinical and preclinical drug therapy (including synthesized molecules and natural molecules). This review may provide a theoretical basis for further DR research.
Collapse
Affiliation(s)
- Jiahui Ren
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
| | - Shuxia Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yunfeng Pan
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Meiqi Jin
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Jiaxin Li
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| | - Guang Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| |
Collapse
|
21
|
Pirmardvand Chegini S, Varshosaz J, Dehghani A, Minaiyan M, Mirmohammad Sadeghi H. Ocular delivery of sunitinib-loaded nanoparticles doped in tragacanthic acid hydrogel in treatment of diabetic retinopathy in rats. Drug Dev Ind Pharm 2022; 48:29-39. [PMID: 35723593 DOI: 10.1080/03639045.2022.2092745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Diabetic retinopathy (DR) is a common microvascular complication of diabetes mellitus. This study aimed to compare the effect of sunitinib-loaded poly (glycerol sebacate) (PGS)/gelatin nanoparticles doped in an injectable hydrogel with bevacizumab as a standard treatment of DR. METHODS The shear-sensitive hydrogel was prepared based on tragacanthic acid (TA) cross-linked with sodium acetate. DR was induced in rats by streptozotocin (STZ), and the animals were injected intravitreally a single dose of 20 µL sunitinib solution in three different concentrations (12.5, 25, and 50 µg/mL), sunitinib-loaded nanoparticles in hydrogel (413 μg/mL) and bevacizumab solution (6.25 mg/mL). The efficacy of the treatments was studied by histological and immunohisitological tests, angiogenesis, and optical coherence tomography (OCT). Vascular endothelial growth factor (VEGF) concentration was measured in the retina. RESULTS The results revealed that 20 µL of sunitinib with the concentration of 25 µg/mL was effective in DR without any disruption in the retina or any other side effects. This dose was considered the therapeutic dose for nanoparticles. Sunitinib loaded PGS/gelatine nanoparticles that were incorporated in the injectable hydrogel were as effective as bevacizumab in controlling DR. Although sunitinib solution reduced VEGF production and neovascularization in the retina compared to the negative control group, it was not as suitable as the nanoparticles. TA-based hydrogel showed no toxicity on the normal retina, and the angiography and histologic studies confirmed the VEGF results. Conclusions: Sunitinib nanoparticles doped in TA hydrogel may be an appropriate substitution of bevacizumab in the treatment of DR.
Collapse
Affiliation(s)
- Sana Pirmardvand Chegini
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Dehghani
- School of Medicine, Isfahan Eye Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Minaiyan
- Department of Pharmacology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Mirmohammad Sadeghi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
22
|
Chen Q, Xi X, Ma J, Wang X, Xia Y, Xi W, Deng Y, Li Y. The mechanism by which crocetin regulates the lncRNA NEAT1/miR-125b-5p/SOX7 molecular axis to inhibit high glucose-induced diabetic retinopathy. Exp Eye Res 2022; 222:109157. [PMID: 35718188 DOI: 10.1016/j.exer.2022.109157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Diabetic retinopathy (DR) is a high-incidence microvascular complication with retinal neovascularization that generates irreversible visual impairment. However, the mechanism of DR is unclear and needs to be further explored. To explore the expression of NEAT1 and miR-125b-5p and the proliferation activity, migration ability, and angiogenesis ability of human retinal microvascular endothelial cells (hRMECs), RT-qPCR, CCK-8, Transwell, and tube formation assays were performed. Additionally, western blotting was used to detect the expression of SOX7, VEGFA and CD31. Furthermore, a dual-luciferase reporter gene was used to verify the targeting connection. The DR mouse model was constructed by STZ. The effect of crocetin on DR angiogenesis was detected by hematoxylin-eosin (HE) staining, immunohistochemistry (IHC), retinal digest preparations and Western blotting. The results showed that crocetin inhibited the high-glucose (Hg)-induced upregulation of NEAT1 and SOX7 and the downregulation of miR-125b-5p. Crocetin inhibited Hg-induced proliferation, migration and angiogenesis by upregulating the targeted inhibition of SOX7 by miR-125b-5p through the inhibition of NEAT1. To summarize, our study revealed that crocetin has a protective effect against Hg-induced DR by regulating the lncRNA NEAT1/miR-125b-5p/SOX7 molecular axis.
Collapse
Affiliation(s)
- Qianbo Chen
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Xichang Road 295, Kunming, 650031, Yunnan, China
| | - Xiaoting Xi
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Xichang Road 295, Kunming, 650031, Yunnan, China
| | - Jia Ma
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Xichang Road 295, Kunming, 650031, Yunnan, China
| | - Xuewei Wang
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Xichang Road 295, Kunming, 650031, Yunnan, China
| | - Yuan Xia
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Xichang Road 295, Kunming, 650031, Yunnan, China
| | - Wang Xi
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Xichang Road 295, Kunming, 650031, Yunnan, China
| | - Yachun Deng
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Xichang Road 295, Kunming, 650031, Yunnan, China
| | - Yan Li
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Xichang Road 295, Kunming, 650031, Yunnan, China.
| |
Collapse
|
23
|
Avramovic D, Archaimbault SA, Kemble AM, Gruener S, Lazendic M, Westenskow PD. TGFβ1 Induces Senescence and Attenuated VEGF Production in Retinal Pericytes. Biomedicines 2022; 10:biomedicines10061404. [PMID: 35740425 PMCID: PMC9219633 DOI: 10.3390/biomedicines10061404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Abstract
Diabetic retinopathy (DR) is a microvascular disease of the retina and a serious complication of type I and type II diabetes mellitus. DR affects working-age populations and can cause permanent vision loss if left untreated. The standard of care for proliferative DR is inhibiting VEGF. However, the mechanisms that induce excessive VEGF production in the retina remain elusive, although some evidence links elevated VEGF in the diabetic retina with local and systemic TGFβ1 upexpression. Here, we present evidence from animal models of disease suggesting that excessive TGFβ1 production in the early DR is correlated with VEGF mRNA and protein production by senescent pericytes and other retinal cells. Collectively, these results confirm that TGFβ1 is strongly implicated in the vascular complications of DR.
Collapse
Affiliation(s)
- Dragana Avramovic
- Ocular Technologies, Immunology, Infectious Diseases and Ophthalmology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (S.A.A.); (S.G.); (M.L.)
- Correspondence: (D.A.); (P.D.W.)
| | - Sébastien A. Archaimbault
- Ocular Technologies, Immunology, Infectious Diseases and Ophthalmology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (S.A.A.); (S.G.); (M.L.)
| | - Alicia M. Kemble
- Neuroscience and Rare Disease, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Sabine Gruener
- Ocular Technologies, Immunology, Infectious Diseases and Ophthalmology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (S.A.A.); (S.G.); (M.L.)
| | - Mirjana Lazendic
- Ocular Technologies, Immunology, Infectious Diseases and Ophthalmology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (S.A.A.); (S.G.); (M.L.)
| | - Peter D. Westenskow
- Ocular Technologies, Immunology, Infectious Diseases and Ophthalmology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (S.A.A.); (S.G.); (M.L.)
- Correspondence: (D.A.); (P.D.W.)
| |
Collapse
|
24
|
Amorim M, Martins B, Caramelo F, Gonçalves C, Trindade G, Simão J, Barreto P, Marques I, Leal EC, Carvalho E, Reis F, Ribeiro-Rodrigues T, Girão H, Rodrigues-Santos P, Farinha C, Ambrósio AF, Silva R, Fernandes R. Putative Biomarkers in Tears for Diabetic Retinopathy Diagnosis. Front Med (Lausanne) 2022; 9:873483. [PMID: 35692536 PMCID: PMC9174990 DOI: 10.3389/fmed.2022.873483] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose Tear fluid biomarkers may offer a non-invasive strategy for detecting diabetic patients with increased risk of developing diabetic retinopathy (DR) or increased disease progression, thus helping both improving diagnostic accuracy and understanding the pathophysiology of the disease. Here, we assessed the tear fluid of nondiabetic individuals, diabetic patients with no DR, and diabetic patients with nonproliferative DR (NPDR) or with proliferative DR (PDR) to find putative biomarkers for the diagnosis and staging of DR. Methods Tear fluid samples were collected using Schirmer test strips from a cohort with 12 controls and 54 Type 2 Diabetes (T2D) patients, and then analyzed using mass spectrometry (MS)-based shotgun proteomics and bead-based multiplex assay. Tear fluid-derived small extracellular vesicles (EVs) were analyzed by transmission electron microscopy, Western Blotting, and nano tracking. Results Proteomics analysis revealed that among the 682 reliably quantified proteins in tear fluid, 42 and 26 were differentially expressed in NPDR and PDR, respectively, comparing to the control group. Data are available via ProteomeXchange with identifier PXD033101. By multicomparison analyses, we also found significant changes in 32 proteins. Gene ontology (GO) annotations showed that most of these proteins are associated with oxidative stress and small EVs. Indeed, we also found that tear fluid is particularly enriched in small EVs. T2D patients with NPDR have higher IL-2/-5/-18, TNF, MMP-2/-3/-9 concentrations than the controls. In the PDR group, IL-5/-18 and MMP-3/-9 concentrations were significantly higher, whereas IL-13 was lower, compared to the controls. Conclusions Overall, the results show alterations in tear fluid proteins profile in diabetic patients with retinopathy. Promising candidate biomarkers identified need to be validated in a large sample cohort.
Collapse
Affiliation(s)
- Madania Amorim
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Beatriz Martins
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Francisco Caramelo
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | | | | | - Jorge Simão
- Coimbra University Hospital, Coimbra, Portugal
| | - Patrícia Barreto
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| | - Inês Marques
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| | - Ermelindo Carreira Leal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Eugénia Carvalho
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Henrique Girão
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Cláudia Farinha
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra University Hospital, Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - António Francisco Ambrósio
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Rufino Silva
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Coimbra University Hospital, Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
- *Correspondence: Rosa Fernandes
| |
Collapse
|
25
|
Suzuki S, Sato T, Watanabe M, Higashide M, Tsugeno Y, Umetsu A, Furuhashi M, Ida Y, Hikage F, Ohguro H. Hypoxia Differently Affects TGF-β2-Induced Epithelial Mesenchymal Transitions in the 2D and 3D Culture of the Human Retinal Pigment Epithelium Cells. Int J Mol Sci 2022; 23:ijms23105473. [PMID: 35628282 PMCID: PMC9143417 DOI: 10.3390/ijms23105473] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
The hypoxia associated with the transforming growth factor-β2 (TGF-β2)-induced epithelial mesenchymal transition (EMT) of human retinal pigment epithelium (HRPE) cells is well recognized as the essential underlying mechanism responsible for the development of proliferative retinal diseases. In vitro, three-dimensional (3D) models associated with spontaneous O2 gradients can be used to recapitulate the pathological levels of hypoxia to study the effect of hypoxia on the TGF-β2-induced EMT of HRPE cells in detail, we used two-dimensional-(2D) and 3D-cultured HRPE cells. TGF-β2 and hypoxia significantly and synergistically increased the barrier function of the 2D HRPE monolayers, as evidenced by TEER measurements, the downsizing and stiffening of the 3D HRPE spheroids and the mRNA expression of most of the ECM proteins. A real-time metabolic analysis indicated that TGF-β2 caused a decrease in the maximal capacity of mitochondrial oxidative phosphorylation in the 2D HRPE cells, whereas, in the case of 3D HRPE spheroids, TGF-β2 increased proton leakage. The findings reported herein indicate that the TGF-β2-induced EMT of both the 2D and 3D cultured HRPE cells were greatly modified by hypoxia, but during these EMT processes, the metabolic plasticity was different between 2D and 3D HRPE cells, suggesting that the mechanisms responsible for the EMT of the HRPE cells may be variable during their spatial spreading.
Collapse
Affiliation(s)
- Soma Suzuki
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (S.S.); (M.W.); (M.H.); (Y.T.); (A.U.); (Y.I.); (F.H.)
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (M.F.)
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Megumi Watanabe
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (S.S.); (M.W.); (M.H.); (Y.T.); (A.U.); (Y.I.); (F.H.)
| | - Megumi Higashide
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (S.S.); (M.W.); (M.H.); (Y.T.); (A.U.); (Y.I.); (F.H.)
| | - Yuri Tsugeno
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (S.S.); (M.W.); (M.H.); (Y.T.); (A.U.); (Y.I.); (F.H.)
| | - Araya Umetsu
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (S.S.); (M.W.); (M.H.); (Y.T.); (A.U.); (Y.I.); (F.H.)
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (M.F.)
| | - Yosuke Ida
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (S.S.); (M.W.); (M.H.); (Y.T.); (A.U.); (Y.I.); (F.H.)
| | - Fumihito Hikage
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (S.S.); (M.W.); (M.H.); (Y.T.); (A.U.); (Y.I.); (F.H.)
| | - Hiroshi Ohguro
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (S.S.); (M.W.); (M.H.); (Y.T.); (A.U.); (Y.I.); (F.H.)
- Correspondence: ; Tel.: +81-611-2111
| |
Collapse
|
26
|
Behl T, Gupta A, Sehgal A, Singh S, Sharma N, Garg M, Bhatia S, Al-Harrasi A, Aleya L, Bungau S. Exploring the multifaceted role of TGF-β signaling in diabetic complications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35643-35656. [PMID: 35247177 DOI: 10.1007/s11356-022-19499-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Diabetes is one of the most comprehensive metabolic disorders and is spread across the globe. The data from IDF Diabetes Atlas and National Diabetes Statistics mentions that the number of patients with diabetes is increasing at an exponential rate which is challenging the current therapeutics used for the management of diabetes. However, current therapies used for the treatment may provide symptomatic relief but lack in preventing the progression of the disease and thereby limiting the treatment of diabetes-associated complications. A thorough review and analysis were conducted using various databases including EMBASE, MEDLINE, and Google Scholar to extract the available information on challenges faced by current therapies which have triggered the development of novel molecules or drugs. From the analysis, it was analyzed that transforming growth factor βs (TGF-βs) have been shown to exhibit pleiotropic activity and are responsible for maintaining homeostasis and its overexpression is convoluted in the pathogenesis of various disorders. Therefore, developing drugs that block TGF-β signaling may provide therapeutic benefits. This extensive review concluded that drugs targeting TGF-β signaling pathway and its subsequent blockade have shown promising results and hold the potential to become drugs of choice in the management of diabetes and associated complications.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Amit Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Madhukar Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- Adjunct Professor, Amity Institute of Pharmacy, Amity University, Haryana, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Bourgogne Franche-Comté, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
27
|
Decorin Concentrations in Aqueous Humor of Patients with Diabetic Retinopathy. Life (Basel) 2021; 11:life11121421. [PMID: 34947953 PMCID: PMC8707400 DOI: 10.3390/life11121421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes in the retina. Chronic hyperglycemia damages retinal microvasculature embedded into the extracellular matrix (ECM), causing fluid leakage and ischemic retinal neovascularization. Current treatment strategies include intravitreal anti-vascular endothelial growth factor (VEGF) or steroidal injections, laser photocoagulation, or vitrectomy in severe cases. However, treatment may require multiple modalities or repeat treatments due to variable response. Though DR management has achieved great success, improved, long-lasting, and predictable treatments are needed, including new biomarkers and therapeutic approaches. Small-leucine rich proteoglycans, such as decorin, constitute an integral component of retinal endothelial ECM. Therefore, any damage to microvasculature can trigger its antifibrotic and antiangiogenic response against retinal vascular pathologies, including DR. We conducted a cross-sectional study to examine the association between aqueous humor (AH) decorin levels, if any, and severity of DR. A total of 82 subjects (26 control, 56 DR) were recruited. AH was collected and decorin concentrations were measured using an enzyme-linked immunosorbent assay (ELISA). Decorin was significantly increased in the AH of DR subjects compared to controls (p = 0.0034). AH decorin levels were increased in severe DR groups in ETDRS and Gloucestershire classifications. Decorin concentrations also displayed a significant association with visual acuity (LogMAR) measurements. In conclusion, aqueous humor decorin concentrations were found elevated in DR subjects, possibly due to a compensatory response to the retinal microvascular changes during hyperglycemia.
Collapse
|
28
|
Guo J, Zhou P, Liu Z, Dai F, Pan M, An G, Han J, Du L, Jin X. The Aflibercept-Induced MicroRNA Profile in the Vitreous of Proliferative Diabetic Retinopathy Patients Detected by Next-Generation Sequencing. Front Pharmacol 2021; 12:781276. [PMID: 34938191 PMCID: PMC8685391 DOI: 10.3389/fphar.2021.781276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022] Open
Abstract
Purpose: Vascular endothelial growth factor-A (VEGF-A) is an important pathogenic factor in proliferative diabetic retinopathy (PDR), and aflibercept (Eylea) is one of the widely used anti-VEGF agents. This study investigated the microRNA (miRNA) profiles in the vitreous of 5 idiopathic macular hole patients (non-diabetic controls), 5 untreated PDR patients (no-treatment group), and 5 PDR patients treated with intravitreal aflibercept injection (treatment group). Methods: Next-generation sequencing was performed to determine the miRNA profiles. Deregulated miRNAs were validated with quantitative real-time PCR (qRT-PCR) in another cohort. The mRNA profile data (GSE160310) of PDR patients were retrieved from the Gene Expression Omnibus (GEO) database. The function of differentially expressed miRNAs and mRNAs was annotated by bioinformatic analysis and literature study. Results: Twenty-nine miRNAs were significantly dysregulated in the three groups, of which 19,984 target mRNAs were predicted. Hsa-miR-3184-3p, hsa-miR-24-3p, and hsa-miR-197-3p were validated to be remarkably upregulated in no-treatment group versus controls, and significantly downregulated in treatment group versus no-treatment group. In the GSE160310 profile, 204 deregulated protein-coding mRNAs were identified, and finally 179 overlapped mRNAs between the 19,984 target mRNAs and 204 deregulated mRNAs were included for further analysis. Function analysis provided several roles of aflibercept-induced miRNAs, promoting the alternation of drug sensitivity or resistance-related mRNAs, and regulating critical mRNAs involved in angiogenesis and retinal fibrosis. Conclusion: Hsa-miR-3184-3p, hsa-miR-24-3p, and hsa-miR-197-3p were highly expressed in PDR patients, and intravitreal aflibercept injection could reverse this alteration. Intravitreal aflibercept injection may involve in regulating cell sensitivity or resistance to drug, angiogenesis, and retinal fibrosis.
Collapse
Affiliation(s)
- Ju Guo
- Department of Ophthalmology, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyi Zhou
- Department of Ophthalmology, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenhui Liu
- Department of Ophthalmology, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fangfang Dai
- People’s Hospital of Zhengzhou University and Henan Eye Institute, Zhengzhou, China
| | - Meng Pan
- Department of Ophthalmology, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangqi An
- Department of Ophthalmology, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinfeng Han
- People’s Hospital of Zhengzhou University and Henan Eye Institute, Zhengzhou, China
| | - Liping Du
- Department of Ophthalmology, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuemin Jin
- Department of Ophthalmology, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
29
|
Liu J, Hou Y, Lin L, Yu N, Zhang Y. MicroRNA-5195-3p alleviates high glucose‑induced injury in human ARPE-19 cells by targeting GMFB. PLoS One 2021; 16:e0260071. [PMID: 34793551 PMCID: PMC8601420 DOI: 10.1371/journal.pone.0260071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
Hyperglycemia is generally considered to be an important cause of diabetic retinopathy (DR). The aim of the present study was to investigate the role of miR-5195-3p in high glucose (HG)-induced human retinal pigment epithelial ARPE-19 cell injury. Here, we first found that the expression level of miR-5195-3p was significantly downregulated in HG-stimulated ARPE-19 cells using reverse transcription quantitative PCR. Overexpression of miR-5195-3p attenuated the impaired cell viability, increased apoptosis and pro-inflammatory cytokines secretion in ARPE-19 cells under HG condition using CCK-8 assay, flow cytometry and ELISA assay, respectively. Luciferase reporter assay showed that miR-5195-3p could specifically bind to the 3’UTR of glia maturation factor-β (GMFB). GMFB overexpression reversed, while knockdown enhanced the protective effects of miR-5195-3p overexpression against HG-induced ARPE-19 cell injury. In summary, miR-5195-3p targeting GMFB might be a potential therapeutic target for DR.
Collapse
Affiliation(s)
- Jingjing Liu
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- * E-mail:
| | - Yongsheng Hou
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lili Lin
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Nannan Yu
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanyan Zhang
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
30
|
Liukkonen MPK, Paterno JJ, Kivinen N, Siintamo L, Koskela AKJ, Kaarniranta K. Epithelial-mesenchymal transition-related serum markers ET-1, IL-8 and TGF-β2 are elevated in a Finnish wet age-related macular degeneration cohort. Acta Ophthalmol 2021; 100:e1153-e1162. [PMID: 34699684 DOI: 10.1111/aos.15051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/16/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE It has been hypothesized that epithelial-mesenchymal transition (EMT) may occur in the retinal pigment epithelium of advanced stage age-related macular degeneration (AMD). Various serum and plasma growth factors and inflammatory mediators have been linked to AMD. We were interested in finding out whether systemic levels of EMT-associated markers were altered in the serum of wet AMD patients. Serum biomarkers associated with the various pathological processes of AMD may present an avenue towards identifying and characterizing the birth mechanisms of wet AMD, its progression and severity, paving the way towards the application of precision medicine. METHODS We chose to measure the serum levels of known biomarkers of EMT - EGF (epidermal growth factor), ET-1 (endothelin 1), IL-8 (interleukin 8), TGF-β1 and TGF-β2 (transforming growth factor-beta 1 and 2) and VEGF-A (vascular endothelial growth factor A) - using enzyme-linked immunosorbent assays. We measured them from 71 Finnish wet AMD patients who were receiving intravitreal anti-VEGF-A injection treatments, as well as 64 age-adjusted controls. RESULTS We found significantly elevated levels of ET-1, IL-8 and TGF-β2 in the serums of wet AMD patients. CONCLUSIONS ET-1, IL-8 and TGF-β2 appear to be useful serum biomarkers in understanding active wet AMD. However, we cannot conclude that local retinal EMT-processes could be observed from the corresponding systemic serum biomarkers in patients undergoing anti-VEGF-A treatments.
Collapse
Affiliation(s)
- Mikko P. K. Liukkonen
- Department of Ophthalmology Institute of Clinical Medicine University of Eastern Finland Kuopio Finland
| | - Jussi J. Paterno
- Department of Ophthalmology Institute of Clinical Medicine University of Eastern Finland Kuopio Finland
- Department of Ophthalmology Kuopio University Hospital Kuopio Finland
| | - Niko Kivinen
- Department of Ophthalmology Kuopio University Hospital Kuopio Finland
| | - Leea Siintamo
- Department of Ophthalmology Kuopio University Hospital Kuopio Finland
| | - Ali K. J. Koskela
- Department of Ophthalmology Institute of Clinical Medicine University of Eastern Finland Kuopio Finland
| | - Kai Kaarniranta
- Department of Ophthalmology Institute of Clinical Medicine University of Eastern Finland Kuopio Finland
- Department of Ophthalmology Kuopio University Hospital Kuopio Finland
| |
Collapse
|
31
|
Gesualdo C, Balta C, Platania CBM, Trotta MC, Herman H, Gharbia S, Rosu M, Petrillo F, Giunta S, Della Corte A, Grieco P, Bellavita R, Simonelli F, D'Amico M, Hermenean A, Rossi S, Bucolo C. Fingolimod and Diabetic Retinopathy: A Drug Repurposing Study. Front Pharmacol 2021; 12:718902. [PMID: 34603029 PMCID: PMC8484636 DOI: 10.3389/fphar.2021.718902] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/20/2021] [Indexed: 01/11/2023] Open
Abstract
This study aimed to investigate the interactions between fingolimod, a sphingosine 1-phosphate receptor (S1PR) agonist, and melanocortin receptors 1 and 5 (MCR1, MCR5). In particular, we investigated the effects of fingolimod, a drug approved to treat relapsing-remitting multiple sclerosis, on retinal angiogenesis in a mouse model of diabetic retinopathy (DR). We showed, by a molecular modeling approach, that fingolimod can bind with good-predicted affinity to MC1R and MC5R. Thereafter, we investigated the fingolimod actions on retinal MC1Rs/MC5Rs in C57BL/6J mice. Diabetes was induced in C57BL/6J mice through streptozotocin injection. Diabetic and control C57BL/6J mice received fingolimod, by oral route, for 12 weeks and a monthly intravitreally injection of MC1R antagonist (AGRP), MC5R antagonist (PG20N), and the selective S1PR1 antagonist (Ex 26). Diabetic animals treated with fingolimod showed a decrease of retinal vascular endothelial growth factor A (VEGFA) and vascular endothelial growth factor receptors 1 and 2 (VEGFR1 and VEGFR2), compared to diabetic control group. Fingolimod co-treatment with MC1R and MC5R selective antagonists significantly (p < 0.05) increased retinal VEGFR1, VEGFR2, and VEGFA levels compared to mice treated with fingolimod alone. Diabetic animals treated with fingolimod plus Ex 26 (S1PR1 selective blocker) had VEGFR1, VEGFR2, and VEGFA levels between diabetic mice group and the group of diabetic mice treated with fingolimod alone. This vascular protective effect of fingolimod, through activation of MC1R and MC5R, was evidenced also by fluorescein angiography in mice. Finally, molecular dynamic simulations showed a strong similarity between fingolimod and the MC1R agonist BMS-470539. In conclusion, the anti-angiogenic activity exerted by fingolimod in DR seems to be mediated not only through S1P1R, but also by melanocortin receptors.
Collapse
Affiliation(s)
- Carlo Gesualdo
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Cornel Balta
- "Aurel Ardelean" Institute of Life Sciences, Vasile Godis Western University of Arad, Arad, Romania
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Hildegard Herman
- "Aurel Ardelean" Institute of Life Sciences, Vasile Godis Western University of Arad, Arad, Romania
| | - Sami Gharbia
- "Aurel Ardelean" Institute of Life Sciences, Vasile Godis Western University of Arad, Arad, Romania
| | - Marcel Rosu
- "Aurel Ardelean" Institute of Life Sciences, Vasile Godis Western University of Arad, Arad, Romania
| | | | - Salvatore Giunta
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Alberto Della Corte
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paolo Grieco
- Pharmacy Department, University of Naples Federico II, Naples, Italy
| | - Rosa Bellavita
- Pharmacy Department, University of Naples Federico II, Naples, Italy
| | - Francesca Simonelli
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele D'Amico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anca Hermenean
- "Aurel Ardelean" Institute of Life Sciences, Vasile Godis Western University of Arad, Arad, Romania.,Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Arad, Romania
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
32
|
Chien JY, Chou YY, Ciou JW, Liu FY, Huang SP. The Effects of Two Nrf2 Activators, Bardoxolone Methyl and Omaveloxolone, on Retinal Ganglion Cell Survival during Ischemic Optic Neuropathy. Antioxidants (Basel) 2021; 10:antiox10091466. [PMID: 34573098 PMCID: PMC8470542 DOI: 10.3390/antiox10091466] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022] Open
Abstract
Nonarteritic anterior ischemic optic neuropathy (NAION) is one of the most common acute optic neuropathies that affect the over 55-year-old population. NAION causes the loss of visual function, and it has no safe and effective therapy. Bardoxolone methyl (methyl 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate; CDDO-Me; RTA 402) is a semisynthetic triterpenoid with effects against antioxidative stress and inflammation in neurodegeneration and kidney disease that activates the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Moreover, RTA 402 is an FDA-approved compound for the treatment of solid tumors, lymphoid malignancies, melanoma, and chronic kidney disease. Omaveloxolone (RTA 408) is an activator of Nrf2 and an inhibitor of NFκB, possessing antioxidative and anti-inflammatory activities in mitochondrial bioenergetics. RTA 408 is also under clinical investigation for Friedreich ataxia (FA). In this study, a rodent anterior ischemic optic neuropathy (rAION) model induced by photothrombosis was used to examine the therapeutic effects of RTA 402 and RTA 408. Treatment with RTA402 results in antiapoptotic, antioxidative stress, anti-inflammatory, and myelin-preserving effects on retinal ganglion cell (RGC) survival and visual function via regulation of NQO1 and HO-1, reduced IL-6 and Iba1 expression in macrophages, and promoted microglial expression of TGF-β and Ym1 + 2 in the retina and optic nerve. However, these effects were not observed after RTA 408 treatment. Our results provide explicit evidence that RTA 402 modulates the Nrf2 and NFκB signaling pathways to protect RGCs from apoptosis and maintain the visual function in an rAION model. These findings indicate that RTA 402 may a potential therapeutic agent for ischemic optic neuropathy.
Collapse
Affiliation(s)
- Jia-Ying Chien
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
| | - Yu-Yau Chou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan; (Y.-Y.C.); (J.-W.C.); (F.-Y.L.)
| | - Jhih-Wei Ciou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan; (Y.-Y.C.); (J.-W.C.); (F.-Y.L.)
| | - Fang-Yun Liu
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan; (Y.-Y.C.); (J.-W.C.); (F.-Y.L.)
| | - Shun-Ping Huang
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan; (Y.-Y.C.); (J.-W.C.); (F.-Y.L.)
- Department of Ophthalmology, Tzu Chi University, Hualien 970, Taiwan
- Correspondence: ; Tel.: +886-3-8565301 (ext. 2664)
| |
Collapse
|
33
|
Tabak S, Feinshtein V, Schreiber-Avissar S, Beit-Yannai E. Non-Pigmented Ciliary Epithelium-Derived Extracellular Vesicles Loaded with SMAD7 siRNA Attenuate Wnt Signaling in Trabecular Meshwork Cells In Vitro. Pharmaceuticals (Basel) 2021; 14:ph14090858. [PMID: 34577558 PMCID: PMC8468932 DOI: 10.3390/ph14090858] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Primary open-angle glaucoma is established by the disruption of trabecular meshwork (TM) function. The disruption leads to increased resistance to the aqueous humor (AH), generated by the non-pigmented ciliary epithelium (NPCE). Extracellular vesicles (EVs) participate in the communication between the NPCE and the TM tissue in the ocular drainage system. The potential use of NPCE-derived EVs to deliver siRNA to TM cells has scarcely been explored. NPCE-derived EVs were isolated and loaded with anti-fibrotic (SMAD7) siRNA. EV’s structural integrity and siRNA loading efficiency were estimated via electron microscopy and fluorescence. Engineered EVs were added to pre-cultured TM cells and qRT-PCR was used to verify the transfer of selected siRNA to the cells. Western blot analysis was used to evaluate the qualitative effects on Wnt-TGFβ2 proteins’ expression. EVs loaded with exogenous siRNA achieved a 53% mRNA knockdown of SMAD7 in TM cells, resulting in a significant elevation in the levels of β-Catenin, pGSK3β, N-Cadherin, K-Cadherin, and TGFβ2 proteins in TM cells. NPCE-derived EVs can be used for efficient siRNA molecule delivery into TM cells, which may prove to be beneficial as a therapeutic target to lower intraocular pressure (IOP).
Collapse
|
34
|
Yu Y, Ren KM, Chen XL. Expression and role of P-element-induced wimpy testis-interacting RNA in diabetic-retinopathy in mice. World J Diabetes 2021; 12:1116-1130. [PMID: 34326959 PMCID: PMC8311480 DOI: 10.4239/wjd.v12.i7.1116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/11/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND As one of the major microvascular complications of diabetes, diabetic retinopathy (DR) is the leading cause of blindness in the working age population. Because the extremely complex pathogenesis of DR has not been fully clarified, the occurrence and development of DR is closely related to tissue ischemia and hypoxia and neovascularization The formation of retinal neovascularization (RNV) has great harm to the visual acuity of patients.
AIM To investigate the expression of P-element-induced wimpy testis-interacting RNA (piRNA) in proliferative DR mice and select piRNA related to RNV.
METHODS One hundred healthy C57BL/6J mice were randomly divided into a normal group as control group (CG) and proliferative DR (PDR) group as experimental group (EG), with 50 mice in each group. Samples were collected from both groups at the same time, and the lesions of mice were evaluated by hematoxylin and eosin staining and retinal blood vessel staining. The retinal tissues were collected for second-generation high-throughput sequencing, and the differentially expressed piRNA between the CG and EG was detected, and polymerase chain reaction (PCR) was conducted for verification. The differentially obtained piRNA target genes and expression profiles were enrichment analysis based on gene annotation (Gene Ontology) and Kyoto Encyclopedia of Genes and Genomes.
RESULTS In the CG there was no perfusion area, neovascularization and endothelial nucleus broke through the inner boundary membrane of retinap. In the EG, there were a lot of nonperfused areas, new blood vessels and endothelial nuclei breaking through the inner boundary membrane of the retina. There was a statistically significant difference in the number of vascular endothelial nuclei breaking through the inner retinal membrane between the two groups. High-throughput sequencing analysis showed that compared with the CG, a total of 79 piRNAs were differentially expressed in EG, among which 43 piRNAs were up-regulated and 36 piRNAs were down-regulated. Bioinformatics analysis showed that the differentially expressed piRNAs were mainly concentrated in the signaling pathways of angiogenesis and cell proliferation. Ten piRNAs were selected for PCR, and the results showed that the expression of piR-MMU-40373735, piR-MMU-61121420, piR-MMU-55687822, piR-MMU-1373887 were high, and the expression of piR-MMU-7401535, piR-MMU-4773779, piR-MMU-1304999, and piR-MMU-5160126 were low, which were consistent with the sequencing results.
CONCLUSION In the EG, the abnormal expression of piRNA is involved in the pathway of angiogenesis and cell proliferation, suggesting that piRNAs have some regulatory function in proliferative diabetic-retinopathy.
Collapse
Affiliation(s)
- Yong Yu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Kai-Ming Ren
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xiao-Long Chen
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
35
|
Kato A, Fujishima K, Takami K, Inoue N, Takase N, Suzuki N, Suzuki K, Kuwayama S, Yamada A, Sakai K, Horita R, Nozaki M, Yoshida M, Hirano Y, Yasukawa T, Ogura Y. Remote screening of diabetic retinopathy using ultra-widefield retinal imaging. Diabetes Res Clin Pract 2021; 177:108902. [PMID: 34102247 DOI: 10.1016/j.diabres.2021.108902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/15/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
AIMS To study the possibility of constructing a remote interpretation system for retinal images. METHODS An ultra-widefield (UWF) retinal imaging device was installed in the internal medicine department specializing in diabetes to obtain fundus images of patients with diabetes. Remote interpretation was conducted at Nagoya City University using a cloud server. The medical data, severity of retinopathy, and frequency of ophthalmologic visits were analyzed. RESULTS Four hundred ninety-nine patients (mean age, 62.5 ± 13.4 years) were included. The duration of diabetes in 240 (48.1%) patients was less than 10 years and 433 (86.7%) patients had a hemoglobin (Hb) A1c below 8%. Regarding the retinopathy severity, 360 (72.1%) patients had no diabetic retinopathy (NDR), 63 (12.6%) mild nonproliferative retinopathy (NPDR), 38 (7.64%) moderate NPDR, 13 (2.6%) severe NPDR, and 25 (5.0%) PDR. Two hundred forty-one (48.3%) patients had an ophthalmologic consultation within 1 year, 104 (20.8%) had no history of an ophthalmologic consultation. DR was not present in 86 (82.7%) patients who had never had an ophthalmologic examination, 30 (78.9%) patients with severe NPDR or PDR had had an ophthalmologic visit within 1 year. The frequency of ophthalmic visits was correlated negatively with age, diabetes duration, HbA1c, and severity of retinopathy. CONCLUSION Remote interpretation of DR using UWF retinal imaging was useful for retinopathy screening. During the COVID-19 pandemic, a remote screening system that can ensure compulsory social distancing and reduce the number of ophthalmic visits can be a safe system for patients and clinicians.
Collapse
Affiliation(s)
- Aki Kato
- Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
| | | | - Kazuhisa Takami
- Kizawa Memorial Hospital, 590 Shimokobi, Kobi-cho, Minokamo, Gifu 505-8503, Japan.
| | - Naomi Inoue
- Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
| | - Noriaki Takase
- Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
| | - Norihiro Suzuki
- Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
| | - Katsuya Suzuki
- Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
| | - Soichiro Kuwayama
- Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
| | - Akiko Yamada
- Kizawa Memorial Hospital, 590 Shimokobi, Kobi-cho, Minokamo, Gifu 505-8503, Japan.
| | - Katsuhisa Sakai
- Kizawa Memorial Hospital, 590 Shimokobi, Kobi-cho, Minokamo, Gifu 505-8503, Japan.
| | - Ryosuke Horita
- Kizawa Memorial Hospital, 590 Shimokobi, Kobi-cho, Minokamo, Gifu 505-8503, Japan.
| | - Miho Nozaki
- Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
| | - Munenori Yoshida
- Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
| | - Yoshio Hirano
- Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
| | - Tsutomu Yasukawa
- Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
| | - Yuichiro Ogura
- Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
| |
Collapse
|
36
|
Niu Y, Zhang W, Shi J, Liu Y, Zhang H, Lin N, Li X, Qin L, Yang Z, Su Q. The Relationship Between Circulating Growth Differentiation Factor 15 Levels and Diabetic Retinopathy in Patients With Type 2 Diabetes. Front Endocrinol (Lausanne) 2021; 12:627395. [PMID: 33790859 PMCID: PMC8005561 DOI: 10.3389/fendo.2021.627395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/25/2021] [Indexed: 12/22/2022] Open
Abstract
Objective Growth differentiation factor 15 (GDF-15) is a member of the TGF-β superfamily that has anti-inflammatory properties. The objective of this study was to evaluate the relationship between circulating GDF-15 levels and diabetic retinopathy (DR) in patients with type 2 diabetes. Materials/Methods A case-control study was performed in which 402 patients with type 2 diabetes were enrolled. Of these, 171 patients had DR and the remaining 231 patients without DR acted as controls. The plasma GDF-15 levels were measured using ELISA, while DR was diagnosed using the canon ophthalmic digital imaging system and the Canon EOS 10D digital camera (Canon, Tokyo, Japan) through a non-pharmacologically dilated pupil. Results The levels of GDF-15 were significantly higher in patients with DR [168.9 (112.9-228.3) pg/ml vs. 127.8 (96.1-202.8) pg/ml, P < 0.001] compared to controls. Results of the Spearman correlation analysis showed that the GDF-15 levels were positively associated with the duration of diabetes morbidity, fasting plasma glucose, systolic blood pressure, albumin/creatinine ratio, creatinine, and liver enzymes, but negatively associated with eGFR (both P < 0.001). The participants in the highest GDF-15 quartile had a significantly increased risk for DR (OR = 2.15, 95% CI 1.53-3.02) after adjusting for potential cofounders. Conclusions The circulating GDF-15 levels are positively associated with DR independent of potential cofounders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhen Yang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Novel Short-Chain Quinones to Treat Vision Loss in a Rat Model of Diabetic Retinopathy. Int J Mol Sci 2021; 22:ijms22031016. [PMID: 33498409 PMCID: PMC7864174 DOI: 10.3390/ijms22031016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic retinopathy (DR), one of the leading causes of blindness, is mainly diagnosed based on the vascular pathology of the disease. Current treatment options largely focus on this aspect with mostly insufficient therapeutic long-term efficacy. Mounting evidence implicates mitochondrial dysfunction and oxidative stress in the central etiology of DR. Consequently, drug candidates that aim at normalizing mitochondrial function could be an attractive therapeutic approach. This study compared the mitoprotective compounds, idebenone and elamipretide, side-by-side against two novel short-chain quinones (SCQs) in a rat model of DR. The model effectively mimicked type 2 diabetes over 21 weeks. During this period, visual acuity was monitored by measuring optokinetic response (OKR). Vision loss occurred 5–8 weeks after the onset of hyperglycemia. After 10 weeks of hyperglycemia, visual function was reduced by 65%. From this point, the right eyes of the animals were topically treated once daily with the test compounds. The left, untreated eye served as an internal control. Only three weeks of topical treatment significantly restored vision from 35% to 58–80%, while visual acuity of the non-treated eyes continued to deteriorate. Interestingly, the two novel SCQs restored visual acuity better than idebenone or elamipretide. This was also reflected by protection of retinal pathology against oxidative damage, retinal ganglion cell loss, reactive gliosis, vascular leakage, and retinal thinning. Overall, mitoprotective and, in particular, SCQ-based compounds have the potential to be developed into effective and fast-acting drug candidates against DR.
Collapse
|
38
|
Chang X, Zhu G, Cai Z, Wang Y, Lian R, Tang X, Ma C, Fu S. miRNA, lncRNA and circRNA: Targeted Molecules Full of Therapeutic Prospects in the Development of Diabetic Retinopathy. Front Endocrinol (Lausanne) 2021; 12:771552. [PMID: 34858342 PMCID: PMC8631471 DOI: 10.3389/fendo.2021.771552] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetic retinopathy (DR) is a common diabetic complication and the main cause of blindness worldwide, which seriously affects the quality of life of patients. Studies have shown that noncoding RNA (ncRNA) has distinct differentiated expression in DR and plays an important role in the occurrence and development of DR. ncRNAs represented by microRNAs (miRNAs), lncRNAs (lncRNAs), and circRNAs (circRNAs) have been shown to be widely involved in the regulation of gene expression and affect multiple biological processes of retinopathy. This article will review three RNAs related to the occurrence and development of DR on the basis of previous studies (especially their effects on retinal microangiopathy, retinal pigment epithelial cells, and retinal nerve cells) and discuss their underlying mechanisms and connections. Overall, this review will help us better understand the role of ncRNAs in the occurrence and development of DR and provide ideas for exploring potential therapeutic directions and targets.
Collapse
Affiliation(s)
- Xingyu Chang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Guomao Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Zongyan Cai
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yaqi Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Rongna Lian
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xulei Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Endocrine Disease, Lanzhou, China
| | - Chengxu Ma
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Songbo Fu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Endocrine Disease, Lanzhou, China
- *Correspondence: Songbo Fu,
| |
Collapse
|