1
|
Wang L, Xie Z, Ruan W, Lan F, Qin Q, Tu Y, Zhu W, Zhao J, Zheng P. In silico method and bioactivity evaluation to discover novel antimicrobial agents targeting FtsZ protein: Machine learning, virtual screening and antibacterial mechanism study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:601-616. [PMID: 39043879 DOI: 10.1007/s00210-024-03276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024]
Abstract
This research paper utilizes a fused-in-silico approach alongside bioactivity evaluation to identify active FtsZ inhibitors for drug discovery. Initially, ROC-guided machine learning was employed to obtain almost 13182 compounds from three libraries. After conducting virtual screening to assess the affinity of 2621 acquired compounds, cluster analysis and bonding model analysis led to the discovery of five hit compounds. Additionally, antibacterial activity assays and time-killing kinetics revealed that T3995 could eliminate Staphylococcus aureus ATCC6538 and Bacillus subtilis ATCC9732, with MIC values of 32 and 2 μg/mL. Further morphology and FtsZ polymerization assays indicated that T3995 could be an antimicrobial inhibitor by targeting FtsZ protein. Moreover, hemolytic toxicity evaluation demonstrated that T3995 is safe at or below 16 ug/mL concentration. Additionally, bonding model analysis explained how the compound T3995 can display antimicrobial activity by targeting the FtsZ protein. In conclusion, this study presents a promising FtsZ inhibitor that was discovered through a fused computer method and bioactivity evaluation.
Collapse
Affiliation(s)
- Linxiao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology, Normal University, Nanchang, 330013, China.
| | - Zhouling Xie
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology, Normal University, Nanchang, 330013, China
| | - Wei Ruan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology, Normal University, Nanchang, 330013, China
| | - Feixiang Lan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology, Normal University, Nanchang, 330013, China
| | - Qi Qin
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology, Normal University, Nanchang, 330013, China
| | - Yuanbiao Tu
- Cancer Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology, Normal University, Nanchang, 330013, China
| | - Jing Zhao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology, Normal University, Nanchang, 330013, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology, Normal University, Nanchang, 330013, China.
| |
Collapse
|
2
|
Smok-Kalwat J, Góźdź S, Macek P, Wasiński P, Khalavka M, Raczkiewicz P, Stepulak A, Depciuch J. FTIR monitoring of the 13-valent pneumococcal conjugate vaccine for lung cancer patients: Changes in amides vibrations correlated with biochemical assays. Vaccine 2024; 42:126459. [PMID: 39427598 DOI: 10.1016/j.vaccine.2024.126459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/03/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
Lung cancer is one of the most lethal cancers. Unfortunately, respiratory tract infections are very common in lung cancer patients, delaying appropriate anticancer therapy. To increase therapy efficiency, in this study we examined the effect of 13-Valent Pneumococcal Conjugate Vaccine on the immune response in lung cancer patients, which indirectly affects the success of anticancer therapy. The study was done using biochemical tests and Fourier Transform InfraRed (FTIR) spectroscopy. For this purpose, serum from lung cancer patients aged 52 ± 9 years (III and IV clinical stage; 79 %; n = 103) before and seven as well as 30 days after vaccination was collected. Obtained results showed increasing concentrations of immunoglobulin IgG and IgG2 groups in patients after vaccination in comparison with group before vaccination. This result was confirmed by FTIR spectroscopy, where higher absorbances of amides vibrations were observed after vaccination. Interestingly, lack of differences in the amides absorbances between patients 7 and 30 days after vaccination were noticed. FTIR spectra also showed changes in the ratio between amide I and amide III as well as between amide II and amide III in the groups of patients after vaccination. From deconvolution of made I range (1600 cm-1-1700 cm-1) decrease of the ratio between α-helix and β-sheet around 0.05 was noticed in serum collected from patients after vaccination in comparison with patients before vaccination. Using Principal Component Analysis (PCA) analysis of FTIR data it was observed that serum collected from all three analyzed groups of samples was possible to differentiate. The highest accuracy in differentiation group of samples before and 7 days after vaccination was visible in amide I, while before and 30 days after vaccination using amide II. Correlation between immunoglobulin IgG and IgG2 concentrations obtained by biochemical assays and FTIR were noticed only in the group of serum collected 30 days after vaccination, which suggested that FTIR spectroscopy reflects biochemical data.
Collapse
Affiliation(s)
- Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holycross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland.
| | - Stanisław Góźdź
- Department of Clinical Oncology, Holycross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland; Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
| | - Paweł Macek
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; Department of Epidemiology and Cancer Control, Holycross Cancer Center S. Artwińskiego St. 3, 25-734 Kielce, Poland
| | - Piotr Wasiński
- Department of Epidemiology and Cancer Control, Holycross Cancer Center S. Artwińskiego St. 3, 25-734 Kielce, Poland
| | - Maryna Khalavka
- Independent Unit of Spectroscopy and Chemical Imaging, Faculty of Biomedicine, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Przemyslaw Raczkiewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Depciuch
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland.
| |
Collapse
|
3
|
Bhuyan T, Choudhury K, Das P, Sharma S, Mazumder JA, Mohanta YK. Biosynthesis of pH-Responsive Mesoporous Silica Nanoparticles from Cucumber Peels for Targeting 3D Lung Tumor Spheroids. ACS APPLIED BIO MATERIALS 2024; 7:7494-7508. [PMID: 39467160 DOI: 10.1021/acsabm.4c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Lung adenocarcinoma is considered to be one of the primary causes of cancer-related deaths globally. Conventional treatments, such as chemotherapy and radiation therapy taken together, have not significantly lowered mortality rates. Repositioning of authorized anticancer medications supported by nanotechnology has therefore emerged as an effective strategy to close such gaps. In this context, mesoporous silica nanoparticles (MSNs) were biosynthesized from cucumber peels and were loaded with doxorubicin, a common anticancer drug to form doxorubicin-bound mesoporous silica nanoparticles (DMSNs). The study addresses a sustainable method for turning waste materials into MSNs, which can be used to create multifunctional nanosystems. The therapeutic module (DMSNs) was designed specifically to target 2D monolayer cells and 3D tumor spheroids of lung adenocarcinoma cancer. The DMSNs demonstrated notable antiproliferative activity and effective intracellular localization in addition to being biocompatible and innately fluorescent. Subsequent investigations revealed significant antibacterial activity against Staphylococcal infection, which is primarily prevalent in lung cancer patients. Thus, the developed MSNs held promising potential for anticancer drug delivery systems and have antibacterial potential to treat bacterial infections in patients with lung cancer. Furthermore, the cucumber peel-mediated synthesis of MSNs could also aid in the management of food waste and promote the adoption of the waste-to-health paradigm for sustainable solutions.
Collapse
Affiliation(s)
- Tamanna Bhuyan
- Nanobiotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Ninth Mile, Technocity, Baridua, Ri-Bhoi, 793101 Meghalaya, India
| | - Konika Choudhury
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pranjoli Das
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sanathoibi Sharma
- Nanobiotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Ninth Mile, Technocity, Baridua, Ri-Bhoi, 793101 Meghalaya, India
| | - Jahirul Ahmed Mazumder
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Yugal Kishore Mohanta
- Nanobiotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Ninth Mile, Technocity, Baridua, Ri-Bhoi, 793101 Meghalaya, India
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam603103, Tamil Nadu, India
| |
Collapse
|
4
|
Luo YH, Shen CI, Chiang CL, Chen YM. Immune signatures of patients with advanced non-small-cell lung cancer for efficacy prediction after immunotherapy. Ther Adv Med Oncol 2024; 16:17588359241284946. [PMID: 39391353 PMCID: PMC11465298 DOI: 10.1177/17588359241284946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Background Programmed cell death protein 1 ligand 1 (PD-L1) expression alone may not be the optimal predictor of immunotherapy (IO) efficacy in advanced non-small cell lung cancer (NSCLC). Evaluation of circulating immune signatures using mass cytometry is a promising technique for predicting IO response and prognosis. The utility of circulating immune signatures for efficacy prediction after IO in advanced NSCLC remains to be elucidated. Objectives To assess the feasibility of circulating immune cells and cytokines in predicting tumor response to IO in advanced NSCLC. Design A prospective observational study. Methods To investigate dynamic changes in immune signatures, blood specimens were prospectively collected from patients with NSCLC at baseline and following chemotherapy (C/T) and/or IO. Mass cytometry and enzyme-linked immunosorbent assay were used to characterize immune signatures and cytokine patterns to identify correlations between immune profiles and treatment efficacy. Results The study enrolled 45 patients. The proportion of circulating natural killer (NK) cells and CD8+ T cells significantly increased after IO alone treatment. Cell levels of PD-1+CD8+ T cells, PD-1+CD4+ T cells, TIM-3+CD8+ T cells, LAG-3+ NK cells, and LAG-3+CD8+ T cells significantly decreased in patients with treatment response to IO alone. Tumor necrosis factor-alpha (TNF-α) levels significantly increased after IO alone treatment. Patients with high PD-1+CD8+ T cells before IO alone treatment had lower overall survival (OS) compared to those with low levels. Patients with high LAG-3+CD8+ T cells before chemotherapy plus immunotherapy treatment had lower OS compared to those with low levels. Conclusion Responses to IO in NSCLC were correlated with declines in specific exhausted T cells, suggesting that IO may exert therapeutical efficacy by decreasing circulating exhausted T cells, which were associated with poorer survival, while also increasing TNF-α. These results highlight the prognostic value of monitoring changes in circulating exhausted T cells to predict IO response and survival outcomes in advanced lung cancer.
Collapse
Affiliation(s)
- Yung-Hung Luo
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-I Shen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Lu Chiang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei 11217, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
5
|
Zapata-García M, Moratiel-Pellitero A, Isla D, Gálvez E, Gascón-Ruiz M, Sesma A, Barbero R, Galeano J, del Campo R, Ocáriz M, Quílez E, Cruellas M, Remírez-Labrada A, Pardo J, Martínez-Lostao L, Domingo MP, Esteban P, Torres-Ramón I, Yubero A, Paño JR, Lastra R. Impact of antibiotics, corticosteroids, and microbiota on immunotherapy efficacy in patients with non-small cell lung cancer. Heliyon 2024; 10:e33684. [PMID: 39050456 PMCID: PMC11268177 DOI: 10.1016/j.heliyon.2024.e33684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Lung cancer is a leading cause of morbidity and mortality globally, with its high mortality rate attributed mainly to non-small cell lung cancer (NSCLC). Although immunotherapy with immune checkpoint inhibitors (ICI) has revolutionized its treatment, patient response is highly variable and lacking predictive markers. We conducted a prospective study on 55 patients with NSCLC undergoing ICI therapy to identify predictive markers of both response and immune-related adverse events (IrAEs) in the airway microbiota. We also analyzed the clinical evolution and overall survival (OS) with respect to treatments that affect the integrity of the microbiota, such as antibiotics and corticosteroids. Our results demonstrated that respiratory microbiota differ significantly in ICI responders: they have higher alpha diversity values and lower abundance of the Firmicutes phylum and the Streptococcus genus. Employing a logistic regression model, the abundance of Gemella was the major predictor of non-ICI response, whereas Lachnoanaerobaculum was the best predictor of a positive response to ICI. The most relevant results were that antibiotic consumption is linked to a lower ICI response, and the use of corticosteroids correlated with poorer overall survival. Whereas previous studies have focused on gut microbiota, our findings highlight the importance of the respiratory microbiota in predicting the treatment response. Future research should explore microbiota modulation strategies to enhance immunotherapy outcomes. Understanding the impact of antibiotics, corticosteroids, and microbiota on NSCLC immunotherapy will help personalize treatment and improve patient outcomes.
Collapse
Affiliation(s)
- María Zapata-García
- Medical Oncology Department, Lozano Blesa University Hospital Clinic, 50009, Zaragoza, Spain
- Health Research Institute of Aragón (IIS Aragón), 50009, Zaragoza, Spain
| | - Alba Moratiel-Pellitero
- Medical Oncology Department, Lozano Blesa University Hospital Clinic, 50009, Zaragoza, Spain
| | - Dolores Isla
- Medical Oncology Department, Lozano Blesa University Hospital Clinic, 50009, Zaragoza, Spain
- Health Research Institute of Aragón (IIS Aragón), 50009, Zaragoza, Spain
| | - Eva Gálvez
- Institute of Carbochemistry (ICB-CSIC), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Marta Gascón-Ruiz
- Health Research Institute of Aragón (IIS Aragón), 50009, Zaragoza, Spain
- Medical Oncology Department, Miguel Servet University Hospital, 50009, Zaragoza, Spain
| | - Andrea Sesma
- Health Research Institute of Aragón (IIS Aragón), 50009, Zaragoza, Spain
- Medical Oncology Department, Miguel Servet University Hospital, 50009, Zaragoza, Spain
| | - Raquel Barbero
- Microbiology Department, Ramón y Cajal University Hospital and IRYCIS, Madrid, Spain
| | - Javier Galeano
- Complex Systems Group, Universidad Politécnica de Madrid, Madrid, Spain
| | - Rosa del Campo
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCIII), Madrid, Spain
- Microbiology Department, Ramón y Cajal University Hospital and IRYCIS, Madrid, Spain
| | - Maitane Ocáriz
- Medical Oncology Department, Lozano Blesa University Hospital Clinic, 50009, Zaragoza, Spain
| | - Elisa Quílez
- Medical Oncology Department, Lozano Blesa University Hospital Clinic, 50009, Zaragoza, Spain
- Health Research Institute of Aragón (IIS Aragón), 50009, Zaragoza, Spain
| | - Mara Cruellas
- Medical Oncology Department, Vall d'Hebrón University Hospital, 08035, Barcelona, Spain
| | | | - Julián Pardo
- Health Research Institute of Aragón (IIS Aragón), 50009, Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCIII), Madrid, Spain
- Microbiology Department, Preventive Medicine and Public Health, University of Zaragoza, 50009, Zaragoza, Spain
| | - Luis Martínez-Lostao
- Microbiology Department, Preventive Medicine and Public Health, University of Zaragoza, 50009, Zaragoza, Spain
| | | | - Patricia Esteban
- Health Research Institute of Aragón (IIS Aragón), 50009, Zaragoza, Spain
| | - Irene Torres-Ramón
- Medical Oncology Department, Lozano Blesa University Hospital Clinic, 50009, Zaragoza, Spain
- Health Research Institute of Aragón (IIS Aragón), 50009, Zaragoza, Spain
| | - Alfonso Yubero
- Medical Oncology Department, Lozano Blesa University Hospital Clinic, 50009, Zaragoza, Spain
- Health Research Institute of Aragón (IIS Aragón), 50009, Zaragoza, Spain
| | - José Ramón Paño
- Health Research Institute of Aragón (IIS Aragón), 50009, Zaragoza, Spain
- ESCMID Fellow, Infectious Diseases Department, Lozano Blesa University Hospital Clinic, Zaragoza, Spain and University of Zaragoza, 50009, Zaragoza, Spain
| | - Rodrigo Lastra
- Medical Oncology Department, Lozano Blesa University Hospital Clinic, 50009, Zaragoza, Spain
- Health Research Institute of Aragón (IIS Aragón), 50009, Zaragoza, Spain
| |
Collapse
|
6
|
Song Y, Peng Y, Qin C, Jiang S, Lin J, Lai S, Wu J, Ding M, Du Y, Yu L, Xu T. Antibiotic use attenuates response to immune checkpoint blockade in urothelial carcinoma via inhibiting CD74-MIF/COPA: revealing cross-talk between anti-bacterial immunity and anti-tumor immunity through a tumor marker prognostic study. Int J Surg 2024; 111:01279778-990000000-01805. [PMID: 38995167 PMCID: PMC11745717 DOI: 10.1097/js9.0000000000001901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Immune checkpoint blockade (ICB) has emerged as a promising therapy for both resectable urothelial carcinoma (UC) patients preparing for radical surgery and unresectable UC patients, whereas the objective response rate of ICB remains unsatisfactory due to various factors. Antibiotic (ATB) use can influence intra-tumoral bacteria, which may further reduce ICB efficacy. The study aims to evaluate the effects of ATB use on prognosis and response in UC patients undergoing ICB, and explore potential molecular mechanisms of ATBs and intra-tumoral bacteria impacting UC immune microenvironment. MATERIALS AND METHODS Pooled analyses, synthesizing evidence from 12 studies and 3496 UC patients with ICB treatment, was conducted via a meta-analysis. In addition, single-cell RNA and single-cell microbiome data were analyzed based on eight UC samples and 63185 single cells. Bulk RNA sequencing and clinical data from a single-arm, multi-center, atezolizumab-treated, phase 2 trial, IMvigor210, were used for validation. The study is registered at PROSPERO (XXX) and at Research Registry (XXX). RESULTS ATB use exhibited worse overall survival (HR=1.46, 95%CI=[1.20, 1.77], P<0.001, heterogeneity I²=51%) and lower objective response (OR=0.43, 95%CI=[0.27, 0.68], P<0.001, heterogeneity I²=0%) in UC patients receiving ICB. Single-cell transcriptome and single-cell microbiome analyses identified the presence of intra-tumoral bacteria was obviously related to elevated anti-bacterial immune functions; and anti-bacterial immunity was positively correlated to anti-tumor immunity in UC immune microenvironment. Intra-tumoral bacteria could up-regulate CD74-MIF/COPA signaling of immune cells and activation of CD74-MIF/COPA mediated the promotion of T cell anti-tumor function induced by anti-bacterial immune cells. UC patients with higher CD74-MIF/COPA signaling carried better overall survival (HR=1.60, 95%CI=[1.19, 2.15], P=0.002) in IMvigor210 immunotherapy cohort. CONCLUSION ATB use reduces overall survival and objective response to ICB in UC patients. Anti-bacterial immune cell functions induced by intra-cellular bacteria in UC microenvironment might up-regulate the function of anti-tumor T immune cells via activating CD74-MIF/COPA, whereas ATB could inhibit the above process through killing intra-cellular bacteria and result in poorer clinical benefit of ICB. The use of ATB should be considered carefully during neoadjuvant immunotherapy period for resectable UC patients preparing for radical surgery and during immunotherapy period for unresectable UC patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yiqing Du
- Department of Urology, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Luping Yu
- Department of Urology, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Tao Xu
- Department of Urology, Peking University People’s Hospital, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Villar-Álvarez F, García-Ortega A, Entrenas-Castillo M. Impact of Respiratory Syncytial Virus in Patients With Chronic Respiratory Disease. OPEN RESPIRATORY ARCHIVES 2024; 6:100345. [PMID: 39026514 PMCID: PMC11255356 DOI: 10.1016/j.opresp.2024.100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Affiliation(s)
- Felipe Villar-Álvarez
- Pneumology Department, IIS Fundación Jiménez Díaz, CIBERES, Universidad Autónoma of Madrid, Madrid, Spain
| | | | | |
Collapse
|
8
|
Smok-Kalwat J, Mertowska P, Korona-Głowniak I, Mertowski S, Niedźwiedzka-Rystwej P, Bębnowska D, Gosik K, Stepulak A, Góźdź S, Roliński J, Górecka Z, Siwiec J, Grywalska E. Enhancing Immune Response in Non-Small-Cell Lung Cancer Patients: Impact of the 13-Valent Pneumococcal Conjugate Vaccine. J Clin Med 2024; 13:1520. [PMID: 38592328 PMCID: PMC10933946 DOI: 10.3390/jcm13051520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Non-small-cell lung cancer (NSCLC) is one of the most frequently diagnosed diseases among all types of lung cancer. Infectious diseases contribute to morbidity and mortality by delaying appropriate anti-cancer therapy in patients with NSCLC. Methods: The study aimed to evaluate the effectiveness of vaccination with the 13-valent pneumococcal conjugate vaccine (PCV13) in 288 newly diagnosed NSCLC patients. The analysis of the post-vaccination response was performed after vaccination by assessing the frequency of plasmablasts via flow cytometry and by assessing the concentration of specific anti-pneumococcal antibodies using enzyme-linked immunosorbent assays. Results: The results of the study showed that NSCLC patients responded to the vaccine with an increase in the frequencies of plasmablasts and antibodies but to a lesser extent than healthy controls. The immune system response to PCV13 vaccination was better in patients with lower-stage NSCLC. We found higher antibody levels after vaccination in NSCLC patients who survived 5 years of follow-up. Conclusions: We hope that our research will contribute to increasing patients' and physicians' awareness of the importance of including PCV13 vaccinations in the standard of oncological care, which will extend the survival time of patients and improve their quality of life.
Collapse
Affiliation(s)
- Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland; (J.S.-K.); (S.G.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland; (S.M.); (K.G.); (E.G.)
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland;
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland; (S.M.); (K.G.); (E.G.)
| | | | - Dominika Bębnowska
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (P.N.-R.); (D.B.)
| | - Krzysztof Gosik
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland; (S.M.); (K.G.); (E.G.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland;
| | - Stanisław Góźdź
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland; (J.S.-K.); (S.G.)
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Jacek Roliński
- Department of Clinical Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland;
| | - Zofia Górecka
- Department of Plastic and Reconstructive Surgery and Microsurgery, Medical University of Lublin, 8 Jaczewskiego Street, 20-090 Lublin, Poland;
| | - Jan Siwiec
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 8 Jaczewskiego Street, 20-090 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland; (S.M.); (K.G.); (E.G.)
| |
Collapse
|
9
|
Luo YH, Shen CI, Chiang CL, Huang HC, Chen YM. Dynamic immune signatures of patients with advanced non-small-cell lung cancer for infection prediction after immunotherapy. Front Immunol 2024; 15:1269253. [PMID: 38343550 PMCID: PMC10853389 DOI: 10.3389/fimmu.2024.1269253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Background Pulmonary infections are a crucial health concern for patients with advanced non-small-cell lung cancer (NSCLC). Whether the clinical outcome of pulmonary infection is influenced by immunotherapy(IO) remains unclear. By evaluating immune signatures, this study investigated the post-immunotherapy risk of pulmonary infection in patients with lung cancer and identified circulating biomarkers that predict post-immunotherapy infection. Methods Blood specimens were prospectively collected from patients with NSCLC before and after chemotherapy(C/T) and/or IO to explore dynamic changes in immune signatures. Real-world clinical data were extracted from medical records for outcome evaluation. Mass cytometry and ELISA were employed to analyze immune signatures and cytokine profiles to reveal potential correlations between immune profiles and the risk of infection. Results The retrospective cohort included 283 patients with advanced NSCLC. IO was associated with a lower risk of pneumonia (odds ratio=0.46, p=0.012). Patients receiving IO and remained pneumonia-free exhibited the most favorable survival outcomes compared with those who received C/T or developed pneumonia (p<0.001). The prospective cohort enrolled 30 patients. The proportion of circulating NK cells significantly increased after treatment in IO alone (p<0.001) and C/T+IO group (p<0.01). An increase in cell densities of circulating PD-1+CD8+(cytotoxic) T cells (p<0.01) and PD-1+CD4+ T cells (p<0.01) were observed in C/T alone group after treatment. In IO alone group, a decrease in cell densities of TIM-3+ and PD-1+ cytotoxic T cells (p<0.05), and PD-1+CD4+ T cells (p<0.01) were observed after treatment. In C/T alone and C/T+IO groups, cell densities of circulating PD-1+ cytotoxic T cells significantly increased in patients with pneumonia after treatment(p<0.05). However, in IO alone group, cell density of PD-1+ cytotoxic T cells significantly decreased in patients without pneumonia after treatment (p<0.05). TNF-α significantly increased after treatment with IO alone (p<0.05) but decreased after C/T alone (p<0.01). Conclusions Our results indicate that the incorporation of immunotherapy into treatment regimens may potentially offer protective effects against pulmonary infection. Protective effects are associated with reduction of exhausted T-cells and augmentation of TNF-α and NK cells. Exhausted T cells, NK cells, and TNF-α may play crucial roles in immune responses against infections. These observations highlight the potential utility of certain circulating biomarkers, particularly exhausted T cells, for predicting post-treatment infections.
Collapse
Affiliation(s)
- Yung-Hung Luo
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-I Shen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Lu Chiang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsu-Ching Huang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
10
|
Wang S, Chan SY, Deng Y, Khoo BL, Chua SL. Oxidative stress induced by Etoposide anti-cancer chemotherapy drives the emergence of tumor-associated bacteria resistance to fluoroquinolones. J Adv Res 2024; 55:33-44. [PMID: 36822389 PMCID: PMC10770098 DOI: 10.1016/j.jare.2023.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
INTRODUCTION Antibiotic-resistant bacterial infections, such as Pseudomonas aeruginosa and Staphylococcus aureus, are prevalent in lung cancer patients, resulting in poor clinical outcomes and high mortality. Etoposide (ETO) is an FDA-approved chemotherapy drug that kills cancer cells by damaging DNA through oxidative stress. However, it is unclear if ETO can cause unintentional side effects on tumor-associated microbial pathogens, such as inducing antibiotic resistance. OBJECTIVES We aimed to show that prolonged ETO treatment could unintendedly confer fluoroquinolone antibiotic resistance to P. aeruginosa, and evaluate the effect of tumor-associated P. aeruginosa on tumor progression. METHODS We employed experimental evolution assay to treat P. aeruginosa with prolonged ETO exposure, evaluated the ciprofloxacin resistance, and elucidated the gene mutations by DNA sequencing. We also established a lung tumor-P. aeruginosa bacterial model to study the role of ETO-evolved intra-tumoral bacteria in tumor progression using immunostaining and confocal microscopy. RESULTS ETO could generate oxidative stress and lead to gene mutations in P. aeruginosa, especially the gyrase (gyrA) gene, resulting in acquired fluoroquinolone resistance. We further demonstrated using a microfluidic-based lung tumor-P. aeruginosa coculture model that bacteria can evolve ciprofloxacin (CIP) resistance in a tumor microenvironment. Moreover, ETO-induced CIP-resistant (EICR) mutants could form multicellular biofilms which protected tumor cells from ETO killing and enabled tumor progression. CONCLUSION Overall, our preclinical proof-of-concept provides insights into how anti-cancer chemotherapy could inadvertently allow tumor-associated bacteria to acquire antibiotic resistance mutations and shed new light on the development of novel anti-cancer treatments based on anti-bacterial strategies.
Collapse
Affiliation(s)
- Shan Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region China
| | - Shepherd Yuen Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region China
| | - Yanlin Deng
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region China; Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), China; City University of Hong Kong-Shenzhen Futian Research Institute, Shenzhen, China.
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region China; State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region China; Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen, China; Research Centre for Deep Space Explorations (RCDSE), The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region China.
| |
Collapse
|
11
|
Chen J, Chen S, Luo H, Long S, Yang X, He W, Wu W, Wang S. The negative effect of concomitant medications on immunotherapy in non-small cell lung cancer: An umbrella review. Int Immunopharmacol 2023; 124:110919. [PMID: 37722262 DOI: 10.1016/j.intimp.2023.110919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Conflicting results about the effect of concomitant medications on immunotherapy in non-small cell lung cancer (NSCLC) were reported by many meta-analyses (MAs), and the certainty of evidence linking concomitant medications with immunotherapy efficacy has not been quantified, which may cause some evidence to be misinterpreted. METHODS Four databases including Embase, Cochrane Library, PubMed, and Web of Science were searched from inception to January 2023 in English. Based on prospective or retrospective clinical controlled trials including immunotherapy with concomitant medications or not in NSCLC, quantitative MAs reporting the efficacy of immunotherapy with binary direct comparison and enough extractable data were collected. The methodological quality, reporting quality, and risk of bias of included MAs were evaluated respectively. New meta-analyses were conducted and their evidence certainty was classified as nonsignificant, weak, suggestive, highly suggestive, or convincing. RESULTS Fifteen MAs with 5 medications were included. After being assessed by AMSTAR-2, PRISMA, and ROBIS, the major shortcomings were focused on the registration of protocol, literature retrieval or data extraction, implementation of sensitivity analysis or evidence certainty assessment, and incomplete reporting in the section of method and result. New pooled analyses indicated that antibiotics (HR = 1.545[1.318-1.811]), steroids (HR = 1.784[1.520-2.093]), proton pump inhibitors (PPIs) (HR = 1.303[1.048-1.621]) and opioids (HR = 1.910[1.213-3.006]) could shorten overall survival (OS) in patients with NSCLC receiving immunotherapy. Besides, antibiotics (HR = 1.285[1.129-1.462]) and steroids (HR = 1.613[1.315-1.979]) were harmful to progression-free survival (PFS) in these patients significantly. No negative effect was found in nonsteroidal anti-inflammatory drugs and the objective response rate of all medications. High-level evidence suggested that using PPIs before or after the initiation of immunotherapy and using steroids during the first-course immunotherapy could weaken the OS of patients with NSCLC. Meanwhile, the negative effects of antibiotics and opioids on OS or PFS were only supported by moderate or low-level evidence. CONCLUSIONS The concurrent usage of PPIs or steroids adversely affects the survival of patients with NSCLC receiving immunotherapy. Future investigations are required to ascertain whether these adverse effects are primarily attributed to the comorbidities or the concurrent medications.
Collapse
Affiliation(s)
- Jixin Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
| | - Shuqi Chen
- Department of Acupuncture, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
| | - Huiyan Luo
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
| | - Shunqin Long
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
| | - Xiaobing Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
| | - Wenfeng He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
| | - Wanyin Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China.
| | - Sumei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China.
| |
Collapse
|
12
|
Mezi S, Pomati G, Fiscon G, Amirhassankhani S, Zizzari IG, Napoletano C, Rughetti A, Rossi E, Schinzari G, Tortora G, Lanzetta G, D’Amati G, Nuti M, Santini D, Botticelli A. A network approach to define the predictive role of immune profile on tumor response and toxicity of anti PD-1 single agent immunotherapy in patients with solid tumors. Front Immunol 2023; 14:1199089. [PMID: 37483633 PMCID: PMC10361061 DOI: 10.3389/fimmu.2023.1199089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Background The immune profile of each patient could be considered as a portrait of the fitness of his/her own immune system. The predictive role of the immune profile in immune-related toxicities (irAEs) development and tumour response to treatment was investigated. Methods A prospective, multicenter study evaluating, through a multiplex assay, the soluble immune profile at the baseline of 53 patients with advanced cancer, treated with immunotherapy as single agent was performed. Four connectivity heat maps and networks were obtained by calculating the Spearman correlation coefficients for each group: responder patients who developed cumulative toxicity (R-T), responders who did not develop cumulative toxicity (R-NT), non-responders who developed cumulative toxicity (NR-T), non-responders who did not develop cumulative toxicity (NR-NT). Results A statistically significant up-regulation of IL-17A, sCTLA4, sCD80, I-CAM-1, sP-Selectin and sEselectin in NR-T was detected. A clear loss of connectivity of most of the soluble immune checkpoints and cytokines characterized the immune profile of patients with toxicity, while an inversion of the correlation for ICAM-1 and sP-selectin was observed in NR-T. Four connectivity networks were built for each group. The highest number of connections characterized the NR-T. Conclusions A connectivity network of immune dysregulation was defined for each subgroup of patients, regardless of tumor type. In patients with the worst prognosis (NR-T) the peculiar connectivity model could facilitate their early and timely identification, as well as the design of a personalized treatment approach to improve outcomes or prevent irAEs.
Collapse
Affiliation(s)
- Silvia Mezi
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Giulia Pomati
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Fiscon
- Department of Computer, Control, and Management Engineering “Antonio Ruberti”, “Sapienza” University of Rome, Rome, Italy
| | - Sasan Amirhassankhani
- Department of Urology, S. Orsola-Malpighi Hospital University of Bologna, Bologna, Italy
| | - Ilaria Grazia Zizzari
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome “Sapienza”, Rome, Italy
| | - Chiara Napoletano
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome “Sapienza”, Rome, Italy
| | - Aurelia Rughetti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome “Sapienza”, Rome, Italy
| | - Ernesto Rossi
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Giovanni Schinzari
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Medical Oncology, Universitá Cattolica del Sacro Cuore, Rome, Italy
| | - Giampaolo Tortora
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Medical Oncology, Universitá Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Lanzetta
- Clinical Oncology Unit, Istituto Neurotraumatologico Italiano (I.N.I.) Grottaferrata, via di S.Anna snc, Grottaferrata, Italy
| | - Giulia D’Amati
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Marianna Nuti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome “Sapienza”, Rome, Italy
| | - Daniele Santini
- Department of Medico-Surgical Sciences and Biotechnology, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | - Andrea Botticelli
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
13
|
Botticelli A, Cirillo A, Pomati G, Cortesi E, Rossi E, Schinzari G, Tortora G, Tomao S, Fiscon G, Farina L, Scagnoli S, Pisegna S, Ciurluini F, Chiavassa A, Amirhassankhani S, Ceccarelli F, Conti F, Di Filippo A, Zizzari IG, Napoletano C, Rughetti A, Nuti M, Mezi S, Marchetti P. Immune-related toxicity and soluble profile in patients affected by solid tumors: a network approach. Cancer Immunol Immunother 2023; 72:2217-2231. [PMID: 36869232 PMCID: PMC10264536 DOI: 10.1007/s00262-023-03384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/22/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have particular, immune-related adverse events (irAEs), as a consequence of interfering with self-tolerance mechanisms. The incidence of irAEs varies depending on ICI class, administered dose and treatment schedule. The aim of this study was to define a baseline (T0) immune profile (IP) predictive of irAE development. METHODS A prospective, multicenter study evaluating the immune profile (IP) of 79 patients with advanced cancer and treated with anti-programmed cell death protein 1 (anti-PD-1) drugs as a first- or second-line setting was performed. The results were then correlated with irAEs onset. The IP was studied by means of multiplex assay, evaluating circulating concentration of 12 cytokines, 5 chemokines, 13 soluble immune checkpoints and 3 adhesion molecules. Indoleamine 2, 3-dioxygenase (IDO) activity was measured through a modified liquid chromatography-tandem mass spectrometry using the high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) method. A connectivity heatmap was obtained by calculating Spearman correlation coefficients. Two different networks of connectivity were constructed, based on the toxicity profile. RESULTS Toxicity was predominantly of low/moderate grade. High-grade irAEs were relatively rare, while cumulative toxicity was high (35%). Positive and statistically significant correlations between the cumulative toxicity and IP10 and IL8, sLAG3, sPD-L2, sHVEM, sCD137, sCD27 and sICAM-1 serum concentration were found. Moreover, patients who experienced irAEs had a markedly different connectivity pattern, characterized by disruption of most of the paired connections between cytokines, chemokines and connections of sCD137, sCD27 and sCD28, while sPDL-2 pair-wise connectivity values seemed to be intensified. Network connectivity analysis identified a total of 187 statistically significant interactions in patients without toxicity and a total of 126 statistically significant interactions in patients with toxicity. Ninety-eight interactions were common to both networks, while 29 were specifically observed in patients who experienced toxicity. CONCLUSIONS A particular, common pattern of immune dysregulation was defined in patients developing irAEs. This immune serological profile, if confirmed in a larger patient population, could lead to the design of a personalized therapeutic strategy in order to prevent, monitor and treat irAEs at an early stage.
Collapse
Affiliation(s)
- Andrea Botticelli
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185, Rome, Italy
| | - Alessio Cirillo
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185, Rome, Italy.
| | - Giulia Pomati
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Enrico Cortesi
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185, Rome, Italy
| | - Ernesto Rossi
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Giovanni Schinzari
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
- Medical Oncology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Giampaolo Tortora
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
- Medical Oncology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Silverio Tomao
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185, Rome, Italy
| | - Giulia Fiscon
- Department of Computer, Control, and Management Engineering "Antonio Ruberti", Sapienza University of Rome, Via Ariosto 25, 00185, Rome, Italy
| | - Lorenzo Farina
- Department of Computer, Control, and Management Engineering "Antonio Ruberti", Sapienza University of Rome, Via Ariosto 25, 00185, Rome, Italy
| | - Simone Scagnoli
- Department of Medical and Surgical Sciences and Translational Medicine, University of Rome "Sapienza", 00185, Rome, Italy
| | - Simona Pisegna
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185, Rome, Italy
| | - Fabio Ciurluini
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185, Rome, Italy
| | - Antonella Chiavassa
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185, Rome, Italy
| | - Sasan Amirhassankhani
- Guy's and St Thomas' NHS Foundation Trust, Westminster Bridge Rd, Bishop's, London, SE1 7EH, UK
| | - Fulvia Ceccarelli
- Arthritis Center, Dipartimento Di Scienze Cliniche Internistiche, Anestesiologiche E Cardiovascolari, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Fabrizio Conti
- Arthritis Center, Dipartimento Di Scienze Cliniche Internistiche, Anestesiologiche E Cardiovascolari, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Alessandra Di Filippo
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome "Sapienza", 00161, Rome, Italy
| | - Ilaria Grazia Zizzari
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome "Sapienza", 00161, Rome, Italy
| | - Chiara Napoletano
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome "Sapienza", 00161, Rome, Italy
| | - Aurelia Rughetti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome "Sapienza", 00161, Rome, Italy
| | - Marianna Nuti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome "Sapienza", 00161, Rome, Italy
| | - Silvia Mezi
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185, Rome, Italy
| | | |
Collapse
|
14
|
Seelbinder B, Lohinai Z, Vazquez-Uribe R, Brunke S, Chen X, Mirhakkak M, Lopez-Escalera S, Dome B, Megyesfalvi Z, Berta J, Galffy G, Dulka E, Wellejus A, Weiss GJ, Bauer M, Hube B, Sommer MOA, Panagiotou G. Candida expansion in the gut of lung cancer patients associates with an ecological signature that supports growth under dysbiotic conditions. Nat Commun 2023; 14:2673. [PMID: 37160893 PMCID: PMC10169812 DOI: 10.1038/s41467-023-38058-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 04/11/2023] [Indexed: 05/11/2023] Open
Abstract
Candida species overgrowth in the human gut is considered a prerequisite for invasive candidiasis, but our understanding of gut bacteria promoting or restricting this overgrowth is still limited. By integrating cross-sectional mycobiome and shotgun metagenomics data from the stool of 75 male and female cancer patients at risk but without systemic candidiasis, bacterial communities in high Candida samples display higher metabolic flexibility yet lower contributional diversity than those in low Candida samples. We develop machine learning models that use only bacterial taxa or functional relative abundances to predict the levels of Candida genus and species in an external validation cohort with an AUC of 78.6-81.1%. We propose a mechanism for intestinal Candida overgrowth based on an increase in lactate-producing bacteria, which coincides with a decrease in bacteria that regulate short chain fatty acid and oxygen levels. Under these conditions, the ability of Candida to harness lactate as a nutrient source may enable Candida to outcompete other fungi in the gut.
Collapse
Affiliation(s)
- Bastian Seelbinder
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology- Hans Knöll Institute, Jena, Germany
| | - Zoltan Lohinai
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Ruben Vazquez-Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Sascha Brunke
- Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Xiuqiang Chen
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology- Hans Knöll Institute, Jena, Germany
| | - Mohammad Mirhakkak
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology- Hans Knöll Institute, Jena, Germany
| | - Silvia Lopez-Escalera
- Chr. Hansen A/S, Human Health Innovation, Hoersholm, Denmark
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Balazs Dome
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
| | - Zsolt Megyesfalvi
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
| | - Judit Berta
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | | | - Edit Dulka
- County Hospital of Torokbalint, Torokbalint, Hungary
| | - Anja Wellejus
- Chr. Hansen A/S, Human Health Innovation, Hoersholm, Denmark
| | - Glen J Weiss
- Department of Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Bernhard Hube
- Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Gianni Panagiotou
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology- Hans Knöll Institute, Jena, Germany.
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany.
- Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.
| |
Collapse
|
15
|
Yang S, Zhao S, Ye Y, Jia L, Lou Y. Global research trends on the links between gut microbiota and cancer immunotherapy: A bibliometric analysis (2012-2021). Front Immunol 2022; 13:952546. [PMID: 36090978 PMCID: PMC9449151 DOI: 10.3389/fimmu.2022.952546] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background There is a crosstalk between gut microbiota (GM) and cancer immunotherapy (CI). The purpose of this study is to use bibliometric analysis to identify the highly cited papers relating to GM/CI and explore the research status and development trends of the GM/CI research. Methods A literature search regarding GM/CI publications from 2012 to 2021 was undertaken on July 4, 2022. The article titles, journals, authors, institutions, countries, total citations, keywords, and other information were extracted from the Science Citation Index Expanded (SCIE) of Web of Science Core Collection (WoSCC). The Bibliometrix of R package and VOSviewer were used for bibliometric analysis. Results A total of 665 papers were extracted. The number of papers has increased rapidly over the past decade, especially after 2018. The United States and China had the most publications and made great contributions to this field. Th5e Univ Texas MD Anderson Canc Ctr and Univ Paris Saclay were absolutely in the leading position in GM/CI. The most influential authors were Zitvogel L and Routy B. Frontiers in Immunology had the most publications and Science had the most total citations. Historical direct citation analysis explained the historical evolution in GM/CI. Highly cited papers and high-frequency keywords illustrated the current status and trends of GM/CI. Four clusters were identified and the important topics included the role of GM and antibiotics in CI, the methods of targeting GM to improve CI outcomes, the mechanism by which GM affects CI and the application of ICIs in melanoma. “Tumor microbiome”, “proton pump inhibitors” and “prognosis” may be the new focus of attention in the next few years. Conclusion This study filtered global publications on GM/CI correlation and analyzed their bibliometric characteristics, identified the most cited papers in GM/CI, and gained insight into the status, hotspots and trends of global GM/CI research, which may inform researchers and practitioners of future directions.
Collapse
Affiliation(s)
- Shanshan Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Suya Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yixiang Ye
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Liqun Jia
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Liqun Jia, ; Yanni Lou,
| | - Yanni Lou
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Liqun Jia, ; Yanni Lou,
| |
Collapse
|
16
|
Yang L, Xu X, Liu Q. Establishment of a Risk Prediction Model for Pulmonary Infection in Patients with Advanced Cancer. Appl Bionics Biomech 2022; 2022:6149884. [PMID: 35677196 PMCID: PMC9170436 DOI: 10.1155/2022/6149884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Abstract
Objective Based on clinical data, the risk prediction model of pulmonary infection in patients with advanced cancer was established to predict the risk of pulmonary infection in patients with advanced cancer, and intervention measures were given in advance. Methods The clinical data of 2755 patients were divided into infection group and control group according to whether they were complicated with lung infection. 1609 patients' data from January 2016 to December 2018 served as the training set, and 1166 patients' data from January 2019 to December 2020 served as the testing set. Demographics, whether the primary cancer was lung cancer, lung metastasis, the pathological classification of lung cancer patients, the number of metastases, history of surgery, history of chemotherapy, history of radiotherapy, history of central venous catheterization, history of hypertension, diabetes, and whether with myelosuppression were recorded. The presence of concurrent pulmonary infection was recorded and defined as the primary outcome variable. Stepwise forward algorithms were applied to informative predictors based on Akaike's information criterion. Multivariable logistic regression analysis was used to develop the nomogram. An independent testing dataset was used to validate the nomogram. Receiver-operating characteristic curves and the Hosmer-Lemeshow test were used to assess model performance. Results The sample included 2755 patients with advanced cancer. An independently validated dataset included 1166 patients with advanced cancer. In the training dataset, gender, age, lung cancer as primary cancer, the pathological classification of lung cancer patients, history of chemotherapy, history of radiation therapy, history of surgery, the number of metastases, presence of central venous catheterization, and myelosuppression were identified as predictors and assembled into the nomogram. The area under curve demonstrated adequate discrimination in the validation dataset (0.77; 95% confidence interval, 0.74 to 0.79). The nomogram was well calibrated, with a Hosmer-Lemeshow χ 2 statistic of 12.4 (P = 0.26) in the testing dataset. Conclusions The present study has proposed an effective nomogram with potential application in facilitating the individualized prediction of risk of pulmonary infection in patients with advanced cancer.
Collapse
Affiliation(s)
- Liangliang Yang
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Critical Care Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Xiaolong Xu
- Department of Critical Care Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Qingquan Liu
- Department of Critical Care Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| |
Collapse
|
17
|
Wu L, Chen Y, Wan L, Wen Z, Liu R, Li L, Song Y, Wang L. Identification of unique transcriptomic signatures and key genes through RNA sequencing and integrated WGCNA and PPI network analysis in HIV infected lung cancer. Cancer Med 2022; 12:949-960. [PMID: 35608130 PMCID: PMC9844649 DOI: 10.1002/cam4.4853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 05/04/2022] [Indexed: 01/26/2023] Open
Abstract
With the widespread use of highly active antiretroviral therapy (HARRT), the survival time of AIDS patients has been greatly extended. However, the incidence of lung cancer in HIV-infected patients is increasing and has become a major problem threatening the survival of AIDS patients. The aim of this study is to use Weighted Gene Co-expression Network Analysis (WGCNA) and differential gene analysis to find possible key genes involved in HIV-infected lung cancer. In this study, using lung tissue samples from five pairs of HIV-infected lung cancer patients, second-generation sequencing was performed and transcriptomic data were obtained. A total of 132 HIV-infected lung cancer-related genes were screened out by WGCNA and differential gene expression analysis methods. Based on gene annotation analysis, these genes were mainly enriched in mitosis-related functions and pathways. In addition, in protein-protein interaction (PPI) analysis, a total of 39 hub genes were identified. Among them, five genes (ASPM, CDCA8, CENPF, CEP55, and PLK1) were present in both three hub gene lists (intersection gene, DEGs, and WCGNA module) suggesting that these five genes may become key genes involved in HIV-infected lung cancer.
Collapse
Affiliation(s)
- Liwei Wu
- Department of Thoracic SurgeryShanghai Public Health Clinical Center, Fudan University ShanghaiShanghaiChina
| | - Yongfang Chen
- Department of PharmacyShanghai Public Health Clinical CenterShanghaiChina
| | - Laiyi Wan
- Department of Thoracic SurgeryShanghai Public Health Clinical Center, Fudan University ShanghaiShanghaiChina
| | - Zilu Wen
- Department of Thoracic SurgeryShanghai Public Health Clinical Center, Fudan University ShanghaiShanghaiChina,Department of Scientific ResearchShanghai Public Health Clinical Center, Fudan UniversityShanghaiChina
| | - Rong Liu
- Department of PharmacyShanghai Public Health Clinical CenterShanghaiChina
| | - Leilei Li
- Department of Thoracic SurgeryShanghai Public Health Clinical Center, Fudan University ShanghaiShanghaiChina
| | - Yanzheng Song
- Department of Thoracic SurgeryShanghai Public Health Clinical Center, Fudan University ShanghaiShanghaiChina,TB CenterShanghai Emerging and Re‐emerging Infectious Disease Institute, Fudan UniversityShanghaiChina
| | - Lin Wang
- Department of Thoracic SurgeryShanghai Public Health Clinical Center, Fudan University ShanghaiShanghaiChina,TB CenterShanghai Emerging and Re‐emerging Infectious Disease Institute, Fudan UniversityShanghaiChina
| |
Collapse
|
18
|
Intratumoral Microbiota Impacts the First-Line Treatment Efficacy and Survival in Non-Small Cell Lung Cancer Patients Free of Lung Infection. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:5466853. [PMID: 35178229 PMCID: PMC8844104 DOI: 10.1155/2022/5466853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022]
Abstract
Background It has been known that there are microecology disorders during lung cancer development. Theoretically, intratumoral microbiota (ITM) can impact the lung cancer (LC) survival and treatment efficacy. This study conducted a follow-up investigation of non-small cell lung cancer (NSCLC) patients without lung infection to prove whether ITM indeed impacts the first-line treatment efficacy and survival. Methods We enrolled all patients diagnosed with NSCLC in our department from 2017 to 2019, whose tumor samples were available (through surgery or biopsy) and sent for pathogen-targeted sequencing. All patients received the first-line treatment according to the individual situation. In the short term, the efficacy of the first-line treatment was recorded. During the follow-up, the survival status, progress events, and overall survival (OS) period were recorded if a patient was contacted. Results Firstly, 53 patients were included, and our following analysis focused on the stage III and stage IV cases with ADC, SCC, or ASC tumors (47 cases). Several bacteria are associated with the LC status and progression, including N stages, metastasis sites, epidermal growth factor receptor (EGFR) mutation, first-line outcome, and later survival. The risk bacteria include Serratia marcescens, Actinomyces neesii, Enterobacter cloacae, and Haemophilus parainfluenzae; and the protective (against LC development and progression) ones include Staphylococcus haemolyticus and Streptococcus crista. In the logistic regression, the two-year survival can be predicted using the results of four bacteria (Haemophilus parainfluenzae, Serratia marcescens, Acinetobacter jungii, and Streptococcus constellation), with an accuracy rate of 90.7%. Conclusion ITM have links to malignancy, EGFR mutation, first-line outcome, and survival of NSCLC. Our results implied the potential anti-NSCLC activity of antibiotics when used reasonably. It is still necessary to deepen the understanding of the characteristics of ITM and its interactions with NSCLC tumors and the immune cells, which is significant in individualized approaches to the LC treatment.
Collapse
|
19
|
Abu Khalaf S, Dandachi D, Granwehr BP, Rodriguez-Barradas MC. Cancer immunotherapy in adult patients with HIV. J Investig Med 2022; 70:883-891. [PMID: 35086858 DOI: 10.1136/jim-2021-002205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 11/03/2022]
Abstract
The availability of antiretroviral therapy (ART) has increased the life expectancy of people with HIV (PWH) and reduced the incidence of AIDS-associated malignancies, yet PWH have a significantly increased incidence of malignancy and less favorable outcomes of cancer treatment compared with the general population.Immunotherapy has revolutionized cancer therapy, becoming the standard of care for various malignancy treatments. However, PWH are an underserved population with limited access to clinical trials and cancer treatment.This review of the available evidence on different classes of cancer immunotherapy in PWH is mostly based on case reports, case series, but few prospective studies and clinical trials due to the exclusion of PWH from most oncologic clinical trials. The results of the available evidence support the safety of immunotherapy in PWH. Immunotherapy has similar effectiveness in PWH, an acceptable toxicity profile, and has no clinically significant impact on HIV viral load and CD4-T cell count. In addition, there is no reported change in the incidence of opportunistic infections and other complications for PWH with well-controlled viremia.This review aims to briefly summarize the current state of immunotherapy in cancer, guide clinicians in the management of immunotherapy in cancer PWH, and encourage the inclusion of PWH in clinical trials of cancer immunotherapy.
Collapse
Affiliation(s)
- Suha Abu Khalaf
- Department of Medicine, Division of Infectious Diseases, University of Missouri System, Columbia, Missouri, USA
| | - Dima Dandachi
- Department of Medicine, Division of Infectious Diseases, University of Missouri System, Columbia, Missouri, USA
| | - Bruno P Granwehr
- Department of Medicine, Division of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Maria C Rodriguez-Barradas
- Infectious Diseases Section, Michael E DeBakey VAMC, Houston, Texas, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
20
|
Wang H, Yang R, Jin J, Wang Z, Li W. Impact of concomitant idiopathic pulmonary fibrosis on prognosis in lung cancer patients: A meta-analysis. PLoS One 2021; 16:e0259784. [PMID: 34767608 PMCID: PMC8589161 DOI: 10.1371/journal.pone.0259784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023] Open
Abstract
Background Current studies showed that idiopathic pulmonary fibrosis (IPF) may lead to a poor prognosis of lung cancer. We conducted a meta-analysis to explore the impact of concomitant IPF in lung cancer and its prognostic value. Methods We searched the databases of PubMed, Web of Science, Embase up to Feb 10th, 2021 for relevant researches and merged the hazard ratios (HRs) and 95% confidence intervals (CIs) to evaluate the association between concomitant IPF and overall survival (OS) in patients with lung cancer. Results Twelve studies involving 58424 patients were included in our meta-analysis. The results indicated that concomitant IPF was correlated with poor prognosis of lung cancer patients (HR = 1.99, 95%CI, 1.59–2.51). The association remained consistent after subgroup analysis and meta-regression stratified by study region, sample size, tumor histology, and therapy. In addition, our results were robust even after sensitivity analysis. Conclusions Concomitant IPF may be a prognostic factor of lung cancer, which can lead to poor survival. However, further studies were necessary for evidence in clinical application.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Ruiyuan Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Jing Jin
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Zhoufeng Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
21
|
Petrelli F, Morelli AM, Luciani A, Ghidini A, Solinas C. Risk of Infection with Immune Checkpoint Inhibitors: A Systematic Review and Meta-analysis. Target Oncol 2021; 16:553-568. [PMID: 34224061 PMCID: PMC8256230 DOI: 10.1007/s11523-021-00824-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The relative risk (RR) of infection for patients treated with immune checkpoint inhibitors (ICIs) is unknown. OBJECTIVES This study evaluated the risk of infection for patients with solid tumors undergoing ICI therapy based on a systematic review and meta-analysis. PATIENTS AND METHODS The Cochrane Library, EMBASE, and Pubmed databases were searched up to 1 December 2020. Randomized trials comparing any ICI alone, with chemotherapy (CT), or with other agents versus placebo, CT, or other agents were included. Three independent reviewers extracted the data. The primary outcome was the RR of all-grade (G) and G3-5 infections for patients receiving ICI-based treatments. Random or fixed-effect models were used according to statistical heterogeneity. RESULTS A total of 21,451 patients from N = 36 studies were eligible. ICIs were associated with a similar risk of all-grade infections (RR = 1.02; 95% CI 0.84-1.24; P = 0.85) versus non-ICI treatments (G1-5 events: 9.6 versus 8.3%). When the ICIs alone were compared to CT, their use was associated with 42% less risk of all-grade infections (RR = 0.58, 95% CI 0.4-0.85; P = 0.01). Compared to CT, the combination of ICIs and CT increased the risk of all-grade (RR = 1.37, 95% CI 1.23-1.53; P < 0.01) and severe infections (RR = 1.52, 95% CI 1.17-1.96; P < 0.01). In anti-PD-1, anti-PD-L1, anti-CTLA-4, monotherapy, and combination trials, the RR of all-grade infections was 0.72 (95% CI 0.49-1.05; P = 0.09), 1.18 (95% CI 0.95-1.46; P = 0.13), 1.74 (95% CI 1.13-2.67; P = 0.01), 0.97 (95% CI 0.79-1.19; P = 0.75) and 2.26 (95% CI 1.34-3.8; P < 0.01), respectively. CONCLUSIONS Compared to CT alone, ICIs were safer and are recommended for frail patients. Conversely, CT + ICIs or ICIs combinations increased infection risk. Further studies are required to identify high-risk patients and evaluate the need for CT dose reduction or prophylactic myeloid growth factors.
Collapse
Affiliation(s)
| | | | | | | | - Cinzia Solinas
- Medical Oncology, ATS Sardegna, Via Mannironi, 24047, Nuoro, NU, Italy.
| |
Collapse
|
22
|
Liang X, Dang S. Mitochondrial Dynamics Related Genes - MFN1, MFN2 and DRP1 Polymorphisms are Associated with Risk of Lung Cancer. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:695-703. [PMID: 34163214 PMCID: PMC8214204 DOI: 10.2147/pgpm.s314860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/29/2021] [Indexed: 11/23/2022]
Abstract
Purpose This study aimed to evaluate the associations between mitochondrial dynamics related genes -MFN1, MFN2 and DRP1 polymorphisms and risk of lung cancer. Methods Six polymorphisms of MFN1, MFN2 and DRP1 were genotyped in 600 cases and 600 controls using a MassARRAY platform. Results The MFN1 rs13098637-C and DRP1 rs879255689-A alleles were associated with an increased risk of lung cancer (prs13098637=0.004, prs879255689=0.005), while MFN2 rs4240897-A and rs2236058-G were related to a decreased risk of disease (p<0.001). The rs13098637-TC/CC and rs879255689-GA/AA were determined as risk genotypes for lung cancer (prs13098637=0.014, prs879255689=0.013), whereas the rs4240897-GA/AA and rs2236058-GG were identified as protective genotypes against lung cancer risk (p<0.001). Genetic model analysis showed that rs13098637 was correlated with an elevated risk of lung cancer in dominant and log-additive models (pdominant=0.007, plog-additive=0.004). Moreover, rs879255689 was associated with an increased risk of disease in all three models (pdominant=0.014, precessive=0.028, plog-additive=0.005). In contrast, rs4240897 and rs2236058 were related to reduced risk of disease in all three models (rs4240897: pall<0.001; rs2236058: pdominant=0.008, precessive<0.001, plog-additive<0.001). In addition, these associations were related to the smoking status and pathological type of lung cancer patients. Conclusion These results shed new light on the association between mitochondrial dynamics related genes and risk of lung cancer.
Collapse
Affiliation(s)
- Xiaohua Liang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Shengqiang Dang
- Department of Oncology, Chang'an Hospital of Xi'an, Xi'an, Shaanxi, 710016, People's Republic of China
| |
Collapse
|
23
|
Pederzoli F, Bandini M, Raggi D, Marandino L, Basile G, Alfano M, Colombo R, Salonia A, Briganti A, Gallina A, Montorsi F, Necchi A. Is There a Detrimental Effect of Antibiotic Therapy in Patients with Muscle-invasive Bladder Cancer Treated with Neoadjuvant Pembrolizumab? Eur Urol 2021; 80:319-322. [PMID: 34053782 DOI: 10.1016/j.eururo.2021.05.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/14/2021] [Indexed: 12/13/2022]
Abstract
In locally advanced and metastatic malignancies, antibiotic (ATB) therapy has a negative effect on immunotherapy efficacy. Therefore, we aimed to evaluate whether ATB therapy and use of specific ATB classes with concomitant neoadjuvant pembrolizumab affected pathologic complete response (ypT0N0) and relapse-free survival (RFS) for patients with clinical T2-4N0M0 bladder cancer enrolled in the PURE-01 study. Of the 149 patients evaluated, 48 (32%) received any concomitant ATB therapy. The ATB class most commonly administered was fluoroquinolones (16 patients; 33%). In the ATB cohort, seven patients (15%) achieved ypT0N0 status, compared to 50 (50%; p < 0.001) in the untreated group. Moreover, ATB use was negatively associated with ypT0N0 status (odds ratio 0.18, 95% confidence interval [CI] 0.05-0.48; p = 0.001). The 24-mo RFS rate was 63% (95% CI 48-83%) in the ATB group versus 90% (95% CI 83-97) in the untreated group. We found that ATB use was associated with a higher recurrence rate (hazard ratio [HR] 2.64, 95% CI 1.08-6.50; p = 0.03). Exploratory analyses showed that fluoroquinolone use was associated with a higher recurrence rate (HR 3.28, 95% CI 1.12-9.60; p = 0.03). Our study revealed an association between ATB use and neoadjuvant immunotherapy efficacy in an intention-to-cure population, highlighting the need for future studies to better investigate this relationship. PATIENT SUMMARY: The efficacy of immunotherapy for cancer is influenced by several patient and tumor factors, including the use of antibiotics. We found that antibiotics taken at the same time as immunotherapy drugs were associated with lower rates of complete response and of recurrence-free survival among patients with muscle-invasive bladder cancer. These findings need to be confirmed in future studies.
Collapse
Affiliation(s)
- Filippo Pederzoli
- Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Bandini
- Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Daniele Raggi
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Marandino
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppe Basile
- Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Alfano
- Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Renzo Colombo
- Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Salonia
- Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Alberto Briganti
- Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Gallina
- Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Montorsi
- Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Necchi
- Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy; Department of Medical Oncology, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|