1
|
Barati T, Mirzaei Z, Ebrahimi A, Shekari Khaniani M, Mansoori Derakhshan S. miR-449a: A Promising Biomarker and Therapeutic Target in Cancer and Other Diseases. Cell Biochem Biophys 2024; 82:1629-1650. [PMID: 38809350 DOI: 10.1007/s12013-024-01322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
In the regulation of gene expression, epigenetic factors like non-coding RNAs (ncRNAs) play an equal role in genetics. The role of microRNAs (miRNAs), which are members of the ncRNA family, in post-transcriptional gene regulation is well-documented and has important implications for both normal and abnormal biological processes, such as angiogenesis, proliferation, survival, and apoptosis. The purpose of this study was to synthesize previous research on miR-449a by analyzing published results from various databases, as there have been a number of investigations on miR-449's potential involvement in the development of human disorders. Based on our findings, miR-449 is strongly dysregulated in a wide range of diseases, from various cancers to cardiovascular diseases, cognitive impairments, and respiratory diseases, and it may play a pivotal role in the development of these problems. In addition, miR-449a functions as a crucial regulator of the expression of several well-known genes, including E2F-3, BCL2, NOTCH1, and SOX4. This, in turn, modulates various pathways and processes related to cancer, including Notch, PI3K, and TGF-β, and contributes to the improvement of cancer drug sensitivity. Curiously, abnormalities in the expression of this miRNA may serve as diagnostic or prognostic indicators for distinguishing between healthy people and patients or to evaluate the survival rates for specific disorders. This article provides a synopsis of the current understanding of miR-449a's role in human disease development through its regulation of gene expression and the biological processes related to these genes and their linked processes. In addition, we have covered the topic of miR-449a's potential as a clinical feature (diagnosis and prognosis) indicator for a range of disorders, both neoplastic and non-neoplastic. In general, our goal was to gain a thorough comprehension of the numerous functions of miR-449a in different disorders.
Collapse
Affiliation(s)
- Tahereh Barati
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Mirzaei
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ebrahimi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Gan X, Luo X, Chen J, Fang W, Nie M, Lu H, Liu Y, Wang X. Ilicicolin C suppresses the progression of prostate cancer by inhibiting PI3K/AKT/mTOR pathway. Mol Cell Biochem 2024:10.1007/s11010-024-05026-9. [PMID: 38801644 DOI: 10.1007/s11010-024-05026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Aberrant activation of the PI3K/AKT pathway is a driving factor in the development of prostate cancer. Therefore, inhibiting the function of the PI3K/AKT signaling pathway is a strategy for the treatment of prostate cancer. Ilicicolin C is an ascochlorin derivative isolated from the coral-derived fungus Acremonium sclerotigenum GXIMD 02501. Which has anti-inflammatory activity, but its activity against prostate cancer has not yet been elucidated. MTT assay, plate clone-formation assay, flow cytometry and real-time cell analysis technology were used to detect the effects of ilicicolin C on cell viability, proliferation, apoptosis and migration of prostate cancer cells. Molecular docking software and surface plasmon resonance technology were used to analyze the interaction between ilicicolin C and PI3K/AKT proteins. Western blot assay was performed to examine the changes in protein expression. Finally, QikProp software was used to simulate the process of ilicicolin C in vivo, and a zebrafish xenograft model was used to further verify the anti-prostate cancer activity of ilicicolin C in vivo. Ilicicolin C showed cytotoxic effects on prostate cancer cells, with the most significant effect on PC-3 cells. Ilicicolin C inhibited proliferation and migration of PC-3 cells. It could also block the cell cycle and induce apoptosis in PC-3 cells. In addition, ilicicolin C could bind to PI3K/AKT proteins. Furthermore, ilicicolin C inhibited the expression of PI3K, AKT and mTOR proteins and could also regulate the expression of downstream proteins in the PI3K/AKT/mTOR signaling pathway. Moreover, the calculations speculated that ilicicolin C was well absorbed orally, and the zebrafish xenograft model confirmed the in vivo anti-prostate cancer effect of ilicicolin C. Ilicicolin C emerges as a promising marine compound capable of inducing apoptosis of prostate cancer cells by counteracting the aberrant activation of PI3K/AKT/mTOR, suggesting that ilicicolin C may be a viable candidate for anti-prostate cancer drug development. These findings highlight the potential of ilicicolin C against prostate cancer and shed light on its mechanism of action.
Collapse
Affiliation(s)
- Xia Gan
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Xiaowei Luo
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Jingqin Chen
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Wenxuan Fang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Mingyi Nie
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Humu Lu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, 530200, China.
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| |
Collapse
|
3
|
Mosca L, Pagano C, Tranchese RV, Grillo R, Cadoni F, Navarra G, Coppola L, Pagano M, Mele L, Cacciapuoti G, Laezza C, Porcelli M. Antitumoral Activity of the Universal Methyl Donor S-Adenosylmethionine in Glioblastoma Cells. Molecules 2024; 29:1708. [PMID: 38675528 PMCID: PMC11052366 DOI: 10.3390/molecules29081708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma (GBM), the most frequent and lethal brain cancer in adults, is characterized by short survival times and high mortality rates. Due to the resistance of GBM cells to conventional therapeutic treatments, scientific interest is focusing on the search for alternative and efficient adjuvant treatments. S-Adenosylmethionine (AdoMet), the well-studied physiological methyl donor, has emerged as a promising anticancer compound and a modulator of multiple cancer-related signaling pathways. We report here for the first time that AdoMet selectively inhibited the viability and proliferation of U87MG, U343MG, and U251MG GBM cells. In these cell lines, AdoMet induced S and G2/M cell cycle arrest and apoptosis and downregulated the expression and activation of proteins involved in homologous recombination DNA repair, including RAD51, BRCA1, and Chk1. Furthermore, AdoMet was able to maintain DNA in a damaged state, as indicated by the increased γH2AX/H2AX ratio. AdoMet promoted mitotic catastrophe through inhibiting Aurora B kinase expression, phosphorylation, and localization causing GBM cells to undergo mitotic catastrophe-induced death. Finally, AdoMet inhibited DNA repair and induced cell cycle arrest, apoptosis, and mitotic catastrophe in patient-derived GBM cells. In light of these results, AdoMet could be considered a potential adjuvant in GBM therapy.
Collapse
Affiliation(s)
- Laura Mosca
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| | - Cristina Pagano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (C.P.); (G.N.); (L.C.)
| | - Roberta Veglia Tranchese
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| | - Roberta Grillo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| | - Francesca Cadoni
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| | - Giovanna Navarra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (C.P.); (G.N.); (L.C.)
| | - Laura Coppola
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (C.P.); (G.N.); (L.C.)
| | - Martina Pagano
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Luciano Armanni 5, 80138 Naples, Italy;
| | - Giovanna Cacciapuoti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), Via Pansini 5, 80131 Naples, Italy;
| | - Marina Porcelli
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| |
Collapse
|
4
|
Remines M, Schoonover MG, Knox Z, Kenwright K, Hoffert KM, Coric A, Mead J, Ampfer J, Seye S, Strome ED. Profiling the compendium of changes in Saccharomyces cerevisiae due to mutations that alter availability of the main methyl donor S-Adenosylmethionine. G3 (BETHESDA, MD.) 2024; 14:jkae002. [PMID: 38184845 PMCID: PMC10989883 DOI: 10.1093/g3journal/jkae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/17/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
The SAM1 and SAM2 genes encode for S-Adenosylmethionine (AdoMet) synthetase enzymes, with AdoMet serving as the main cellular methyl donor. We have previously shown that independent deletion of these genes alters chromosome stability and AdoMet concentrations in opposite ways in Saccharomyces cerevisiae. To characterize other changes occurring in these mutants, we grew wildtype, sam1Δ/sam1Δ, and sam2Δ/sam2Δ strains in 15 different Phenotypic Microarray plates with different components and measured growth variations. RNA-Sequencing was also carried out on these strains and differential gene expression determined for each mutant. We explored how the phenotypic growth differences are linked to the altered gene expression, and hypothesize mechanisms by which loss of the SAM genes and subsequent AdoMet level changes, impact pathways and processes. We present 6 stories, discussing changes in sensitivity or resistance to azoles, cisplatin, oxidative stress, arginine biosynthesis perturbations, DNA synthesis inhibitors, and tamoxifen, to demonstrate the power of this novel methodology to broadly profile changes due to gene mutations. The large number of conditions that result in altered growth, as well as the large number of differentially expressed genes with wide-ranging functionality, speaks to the broad array of impacts that altering methyl donor abundance can impart. Our findings demonstrate that some cellular changes are directly related to AdoMet-dependent methyltransferases and AdoMet availability, some are directly linked to the methyl cycle and its role in production of several important cellular components, and others reveal impacts of SAM gene mutations on previously unconnected pathways.
Collapse
Affiliation(s)
- McKayla Remines
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Makailyn G Schoonover
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Zoey Knox
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Kailee Kenwright
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Kellyn M Hoffert
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Amila Coric
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - James Mead
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Joseph Ampfer
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Serigne Seye
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Erin D Strome
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| |
Collapse
|
5
|
Redondo-Muñoz M, Rodriguez-Baena FJ, Aldaz P, Caballé-Mestres A, Moncho-Amor V, Otaegi-Ugartemendia M, Carrasco-Garcia E, Olias-Arjona A, Lasheras-Otero I, Santamaria E, Bocanegra A, Chocarro L, Grier A, Dzieciatkowska M M, Bigas C, Martin J, Urdiroz-Urricelqui U, Marzo F, Santamaria E, Kochan G, Escors D, Larrayoz IM, Heyn H, D'Alessandro A, Attolini CSO, Matheu A, Wellbrock C, Benitah SA, Sanchez-Laorden B, Arozarena I. Metabolic rewiring induced by ranolazine improves melanoma responses to targeted therapy and immunotherapy. Nat Metab 2023; 5:1544-1562. [PMID: 37563469 PMCID: PMC10513932 DOI: 10.1038/s42255-023-00861-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/07/2023] [Indexed: 08/12/2023]
Abstract
Resistance of melanoma to targeted therapy and immunotherapy is linked to metabolic rewiring. Here, we show that increased fatty acid oxidation (FAO) during prolonged BRAF inhibitor (BRAFi) treatment contributes to acquired therapy resistance in mice. Targeting FAO using the US Food and Drug Administration-approved and European Medicines Agency-approved anti-anginal drug ranolazine (RANO) delays tumour recurrence with acquired BRAFi resistance. Single-cell RNA-sequencing analysis reveals that RANO diminishes the abundance of the therapy-resistant NGFRhi neural crest stem cell subpopulation. Moreover, by rewiring the methionine salvage pathway, RANO enhances melanoma immunogenicity through increased antigen presentation and interferon signalling. Combination of RANO with anti-PD-L1 antibodies strongly improves survival by increasing antitumour immune responses. Altogether, we show that RANO increases the efficacy of targeted melanoma therapy through its effects on FAO and the methionine salvage pathway. Importantly, our study suggests that RANO could sensitize BRAFi-resistant tumours to immunotherapy. Since RANO has very mild side-effects, it might constitute a therapeutic option to improve the two main strategies currently used to treat metastatic melanoma.
Collapse
Grants
- P30 CA046934 NCI NIH HHS
- Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- Departamento de Salud del Gobierno de Navarra, Spain (Grant Ref. No: GºNa 71/17)
- Marta Redondo-Muñoz is funded by a PhD studentship from the Department of Industry of the Government of Navarra, Spain. MRM acknowledges funding from the Grupo Español Multidisciplinar de Melanoma
- The University of Colorado School of Medicine Metabolomics Core is supported in part by the University of Colorado Cancer Center award from the National Cancer Institute P30CA046934
- David Escors Acknowledges funding from The Spanish Association against Cancer (AECC), PROYE16001ESCO), Biomedicine Project Grant from the Department of Health of the Government of Navarre-FEDER funds (BMED 050-2019, 51-2021) ; Strategic projects from the Department of Industry, Government of Navarre (AGATA, Ref. 0011-1411-2020-000013; LINTERNA, Ref. 0011-1411-2020-000033; DESCARTHES, 0011-1411-2019-000058).
- Research in the S.A.B. laboratory is supported partially by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 787041), the Government of Cataluña (SGR grant), the Government of Spain (MINECO), the La Marató/TV3 Foundation, the Foundation Lilliane Bettencourt, the Spanish Association for Cancer Research (AECC) and The Worldwide Cancer Research Foundation (WCRF)
- Work in B.S-L´s lab is funded by:PID2019-106852-RBI00 funded by MCIN/AEI/ 10.13039/501100011033, the Melanoma Research Alliance (https://doi.org/10.48050/pc.gr.91574 to B.S-L) and the FERO Foundation.
Collapse
Affiliation(s)
- Marta Redondo-Muñoz
- Cancer Signaling Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
- Health Research Institute of Navarre (IdiSNA), Pamplona, Spain
| | | | - Paula Aldaz
- Cancer Signaling Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
- Health Research Institute of Navarre (IdiSNA), Pamplona, Spain
| | - Adriá Caballé-Mestres
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Verónica Moncho-Amor
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain
| | | | - Estefania Carrasco-Garcia
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain
| | - Ana Olias-Arjona
- Cancer Signaling Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
- Health Research Institute of Navarre (IdiSNA), Pamplona, Spain
| | - Irene Lasheras-Otero
- Cancer Signaling Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
- Health Research Institute of Navarre (IdiSNA), Pamplona, Spain
| | - Eva Santamaria
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Bocanegra
- Health Research Institute of Navarre (IdiSNA), Pamplona, Spain
- Oncoimmunology Group, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Luisa Chocarro
- Health Research Institute of Navarre (IdiSNA), Pamplona, Spain
- Oncoimmunology Group, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Abby Grier
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Monika Dzieciatkowska M
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Claudia Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Josefina Martin
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Uxue Urdiroz-Urricelqui
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Florencio Marzo
- Health Research Institute of Navarre (IdiSNA), Pamplona, Spain
| | - Enrique Santamaria
- Health Research Institute of Navarre (IdiSNA), Pamplona, Spain
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Grazyna Kochan
- Health Research Institute of Navarre (IdiSNA), Pamplona, Spain
- Oncoimmunology Group, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - David Escors
- Health Research Institute of Navarre (IdiSNA), Pamplona, Spain
- Oncoimmunology Group, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Ignacio Marcos Larrayoz
- Biomarkers and Molecular Signaling Group, Center for Biomedical Research of La Rioja (CIBIR), Foundation Rioja Salud, Logroño, Spain
- Unidad Predepartamental de Enfermería, Universidad de La Rioja (UR), Logroño, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Angelo D'Alessandro
- Oncoimmunology Group, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Claudia Wellbrock
- Cancer Signaling Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
- Department of Health Sciences, Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | | | - Imanol Arozarena
- Cancer Signaling Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain.
- Health Research Institute of Navarre (IdiSNA), Pamplona, Spain.
| |
Collapse
|
6
|
Liu F, Zhou H, Peng Y, Qiao Y, Wang P, Si C, Wang X, Gong J, Chen K, Song F. Plasma One-Carbon Metabolism-Related Micronutrients and the Risk of Breast Cancer: Involvement of DNA Methylation. Nutrients 2023; 15:3621. [PMID: 37630812 PMCID: PMC10458034 DOI: 10.3390/nu15163621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Findings of epidemiologic studies focusing on the association between one-carbon metabolism-related micronutrients and breast cancer risk, along with the involvement of DNA methylation, have been inconsistent and incomprehensive. We conducted a case-control study in China including 107 paired participants and comprehensively detected 12 plasma one-carbon metabolism-related micronutrients. Genomic DNA methylation was measured using an 850 K chip and differential methylation probes (DMPs) were identified. Multivariate logistic regression was performed to estimate the associations between plasma micronutrients and the odds of breast cancer. The mediation of selected DMPs in micronutrient breast cancer associations was examined using mediation analyses. An inverse association of plasma folate, methionine cycling-related micronutrients (methionine, S-adenosylmethionine, and S-adenosylhomocysteine), and all micronutrients in the choline metabolism and enzymatic factor groups, and a positive association of methionine cycling-related cysteine with breast cancer risk were observed. Nine micronutrients (methionine, cysteine, SAM, folate, choline, betaine, P5P, vitamins B2, and B12) were related to global or probe-specific methylation levels (p < 0.05). The selected DMPs mediated the micronutrient breast cancer associations with an average mediation proportion of 36.43%. This study depicted comprehensive associations between circulating one-carbon metabolism-related micronutrients and breast cancer risk mediated by DNA methylation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China; (F.L.); (H.Z.); (Y.P.); (Y.Q.); (P.W.); (C.S.); (X.W.); (J.G.)
| | - Fangfang Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China; (F.L.); (H.Z.); (Y.P.); (Y.Q.); (P.W.); (C.S.); (X.W.); (J.G.)
| |
Collapse
|
7
|
Remines M, Schoonover M, Knox Z, Kenwright K, Hoffert KM, Coric A, Mead J, Ampfer J, Seye S, Strome ED. Profiling The Compendium Of Changes In Saccharomyces cerevisiae Due To Mutations That Alter Availability Of The Main Methyl Donor S-Adenosylmethionine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544294. [PMID: 37333147 PMCID: PMC10274911 DOI: 10.1101/2023.06.09.544294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The SAM1 and SAM2 genes encode for S-AdenosylMethionine (AdoMet) synthetase enzymes, with AdoMet serving as the main methyl donor. We have previously shown that independent deletion of these genes alters chromosome stability and AdoMet concentrations in opposite ways in S. cerevisiae. To characterize other changes occurring in these mutants, we grew wildtype, sam1∆/sam1∆, and sam2∆/sam2∆ strains in 15 different Phenotypic Microarray plates with different components, equal to 1440 wells, and measured for growth variations. RNA-Sequencing was also carried out on these strains and differential gene expression determined for each mutant. In this study, we explore how the phenotypic growth differences are linked to the altered gene expression, and thereby predict the mechanisms by which loss of the SAM genes and subsequent AdoMet level changes, impact S. cerevisiae pathways and processes. We present six stories, discussing changes in sensitivity or resistance to azoles, cisplatin, oxidative stress, arginine biosynthesis perturbations, DNA synthesis inhibitors, and tamoxifen, to demonstrate the power of this novel methodology to broadly profile changes due to gene mutations. The large number of conditions that result in altered growth, as well as the large number of differentially expressed genes with wide-ranging functionality, speaks to the broad array of impacts that altering methyl donor abundance can impart, even when the conditions tested were not specifically selected as targeting known methyl involving pathways. Our findings demonstrate that some cellular changes are directly related to AdoMet-dependent methyltransferases and AdoMet availability, some are directly linked to the methyl cycle and its role is production of several important cellular components, and others reveal impacts of SAM gene mutations on previously unconnected pathways.
Collapse
Affiliation(s)
- McKayla Remines
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Makailyn Schoonover
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Zoey Knox
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Kailee Kenwright
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Kellyn M. Hoffert
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Amila Coric
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - James Mead
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Joseph Ampfer
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Serigne Seye
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Erin D. Strome
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| |
Collapse
|
8
|
S-Adenosylmethionine Inhibits Colorectal Cancer Cell Migration through Mirna-Mediated Targeting of Notch Signaling Pathway. Int J Mol Sci 2022; 23:ijms23147673. [PMID: 35887021 PMCID: PMC9320859 DOI: 10.3390/ijms23147673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Metastasis is a leading cause of mortality and poor prognosis in colorectal cancer (CRC). Thus, the identification of new compounds targeting cell migration represents a major clinical challenge. Recent findings evidenced a central role for dysregulated Notch in CRC and a correlation between Notch overexpression and tumor metastasis. MicroRNAs (miRNAs) have been reported to cross-talk with Notch for its regulation. Therefore, restoring underexpressed miRNAs targeting Notch could represent an encouraging therapeutic approach against CRC. In this context, S-adenosyl-L-methionine (AdoMet), the universal biological methyl donor, being able to modulate the expression of oncogenic miRNAs could act as a potential antimetastatic agent. Here, we showed that AdoMet upregulated the onco-suppressor miRNAs-34a/-34c/-449a and inhibited HCT-116 and Caco-2 CRC cell migration. This effect was associated with reduced expression of migration-/EMT-related protein markers. We also found that, in colorectal and triple-negative breast cancer cells, AdoMet inhibited the expression of Notch gene, which, by luciferase assay, resulted the direct target of miRNAs-34a/-34c/-449a. Gain- and loss-of-function experiments with miRNAs mimics and inhibitors demonstrated that AdoMet exerted its inhibitory effects by upregulating miRNAs-34a/-34c/-449a. Overall, these data highlighted AdoMet as a novel Notch inhibitor and suggested that the antimetastatic effects of AdoMet involve the miRNA-mediated targeting of Notch signaling pathway.
Collapse
|
9
|
S-Adenosylmethionine, a Promising Antitumor Agent in Oral and Laryngeal Cancer. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Squamous cell carcinoma of the head and neck (HNSCC), which includes cancers of the oral cavity and larynx, is one of the most common and highly aggressive malignancies worldwide, despite significant efforts committed in recent decades in its detection, prevention, and treatment. The intrinsic or acquired drug resistance during treatment is the main limitation to chemotherapy, increasing mortality and cancer recurrence. Therefore, there is a growing scientific interest in identifying and developing adjuvant chemotherapies able to improve currently available treatments. S-Adenosylmethionine (AdoMet), a safe and nontoxic natural cofactor with pleiotropic effects on multiple cellular processes and the main biological methyl donor in transmethylation reactions, has been considerably studied as a therapeutic compound. Its application, alone or in combination with other drugs, is emerging as a potentially effective strategy for cancer treatment and for chemoprevention. This review summarizes the structural, pharmacological, and clinical aspects of AdoMet and provides an overview of the recent results highlighting its anticancer activity in the treatment of oral and laryngeal cancer, with particular emphasis on its molecular mechanisms and the promising chemoprotective and synergistic effects exerted in combination with cisplatin and specific microRNAs.
Collapse
|
10
|
Kambis TN, Tofilau HMN, Gawargi FI, Chandra S, Mishra PK. Regulating Polyamine Metabolism by miRNAs in Diabetic Cardiomyopathy. Curr Diab Rep 2021; 21:52. [PMID: 34902085 PMCID: PMC8668854 DOI: 10.1007/s11892-021-01429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 11/08/2022]
Abstract
PURPOSE OF REVIEW Insulin is at the heart of diabetes mellitus (DM). DM alters cardiac metabolism causing cardiomyopathy, ultimately leading to heart failure. Polyamines, organic compounds synthesized by cardiomyocytes, have an insulin-like activity and effect on glucose metabolism, making them metabolites of interest in the DM heart. This review sheds light on the disrupted microRNA network in the DM heart in relation to developing novel therapeutics targeting polyamine biosynthesis to prevent/mitigate diabetic cardiomyopathy. RECENT FINDINGS Polyamines prevent DM-induced upregulation of glucose and ketone body levels similar to insulin. Polyamines also enhance mitochondrial respiration and thereby regulate all major metabolic pathways. Non-coding microRNAs regulate a majority of the biological pathways in our body by modulating gene expression via mRNA degradation or translational repression. However, the role of miRNA in polyamine biosynthesis in the DM heart remains unclear. This review discusses the regulation of polyamine synthesis and metabolism, and its impact on cardiac metabolism and circulating levels of glucose, insulin, and ketone bodies. We provide insights on potential roles of polyamines in diabetic cardiomyopathy and putative miRNAs that could regulate polyamine biosynthesis in the DM heart. Future studies will unravel the regulatory roles these miRNAs play in polyamine biosynthesis and will open new doors in the prevention/treatment of adverse cardiac remodeling in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Tyler N Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | - Flobater I Gawargi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surabhi Chandra
- Department of Biology, University of Nebraska-Kearney, Kearney, NE, 68845, USA
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
11
|
S-Adenosylmethionine Increases the Sensitivity of Human Colorectal Cancer Cells to 5-Fluorouracil by Inhibiting P-Glycoprotein Expression and NF-κB Activation. Int J Mol Sci 2021; 22:ijms22179286. [PMID: 34502219 PMCID: PMC8431578 DOI: 10.3390/ijms22179286] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is the second deadliest cancer worldwide despite significant advances in both diagnosis and therapy. The high incidence of CRC and its poor prognosis, partially attributed to multi-drug resistance and antiapoptotic activity of cancer cells, arouse strong interest in the identification and development of new treatments. S-Adenosylmethionine (AdoMet), a natural compound and a nutritional supplement, is well known for its antiproliferative and proapoptotic effects as well as for its potential in overcoming drug resistance in many kinds of human tumors. Here, we report that AdoMet enhanced the antitumor activity of 5-Fluorouracil (5-FU) in HCT 116p53+/+ and in LoVo CRC cells through the inhibition of autophagy, induced by 5-FU as a cell defense mechanism to escape the drug cytotoxicity. Multiple drug resistance is mainly due to the overexpression of drug efflux pumps, such as P-glycoprotein (P-gp). We demonstrate here that AdoMet was able to revert the 5-FU-induced upregulation of P-gp expression and to decrease levels of acetylated NF-κB, the activated form of NF-κB, the major antiapoptotic factor involved in P-gp-related chemoresistance. Overall, our data show that AdoMet, was able to overcome 5-FU chemoresistance in CRC cells by targeting multiple pathways such as autophagy, P-gp expression, and NF-κB signaling activation and provided important implications for the development of new adjuvant therapies to improve CRC treatment and patient outcomes.
Collapse
|
12
|
Singh DD, Yadav DK. TNBC: Potential Targeting of Multiple Receptors for a Therapeutic Breakthrough, Nanomedicine, and Immunotherapy. Biomedicines 2021; 9:biomedicines9080876. [PMID: 34440080 PMCID: PMC8389539 DOI: 10.3390/biomedicines9080876] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous, recurring cancer associated with a high rate of metastasis, poor prognosis, and lack of therapeutic targets. Although target-based therapeutic options are approved for other cancers, only limited therapeutic options are available for TNBC. Cell signaling and receptor-specific targets are reportedly effective in patients with TNBC under specific clinical conditions. However, most of these cancers are unresponsive, and there is a requirement for more effective treatment modalities. Further, there is a lack of effective biomarkers that can distinguish TNBC from other BC subtypes. ER, PR, and HER2 help identify TNBC and are widely used to identify patients who are most likely to respond to diverse therapeutic strategies. In this review, we discuss the possible treatment options for TNBC based on its inherent subtype receptors and pathways, such as p53 signaling, AKT signaling, cell cycle regulation, DNA damage, and programmed cell death, which play essential roles at multiple stages of TNBC development. We focus on poly-ADP ribose polymerase 1, androgen receptor, vascular endothelial growth factor receptor, and epidermal growth factor receptor as well as the application of nanomedicine and immunotherapy in TNBC and discuss their potential applications in drug development for TNBC.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India;
| | - Dharmendra Kumar Yadav
- Department of Pharmacy and Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Hambakmoeiro 191, Yeonsu-gu, Incheon 21924, Korea
- Correspondence: ; Tel.: +82-32-820-4948
| |
Collapse
|
13
|
Mutual Correlation between Non-Coding RNA and S-Adenosylmethionine in Human Cancer: Roles and Therapeutic Opportunities. Cancers (Basel) 2021; 13:cancers13133264. [PMID: 34209866 PMCID: PMC8268931 DOI: 10.3390/cancers13133264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Non-coding RNAs and S-adenosylmethionine, the methyl donor required in all epigenetic methylation reactions, have emerged in recent years as crucial players in the modulation of gene expression in different types of human cancers. This review summarizes the most recent findings on reciprocal regulation between AdoMet and non-coding RNAs. AdoMet was found to exert anticancer activity through epigenetic regulation of non-coding RNAs, including microRNAs, long non-coding RNAs and circular RNAs. On the other hand, several microRNAs and long non-coding RNAs have been reported to display regulatory effects on the expression of genes involved in AdoMet synthesis and metabolism. Increasing knowledge on the relationship between AdoMet and non-coding RNAs will provide insights for further development of diagnostic and therapeutic strategies for cancer treatments. Abstract Epigenetics includes modifications in DNA methylation, histone and chromatin structure, and expression of non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Knowledge of the relationships between S-adenosylmethionine (AdoMet or SAM), the universal methyl donor for all epigenetic methylation reactions and miRNAs or lncRNAs in human cancer may provide helpful insights for the development of new end more effective anticancer therapeutic approaches. In recent literature, a complex network of mutual interconnections between AdoMet and miRNAs or lncRNAs has been reported and discussed. Indeed, ncRNAs expression may be regulated by epigenetic mechanisms such as DNA and RNA methylation and histone modifications. On the other hand, miRNAs or lncRNAs may influence the epigenetic apparatus by modulating the expression of its enzymatic components at the post-transcriptional level. Understanding epigenetic mechanisms, such as dysregulation of miRNAs/lncRNAs and DNA methylation, has become of central importance in modern research. This review summarizes the recent findings on the mechanisms by which AdoMet and miRNA/lncRNA exert their bioactivity, providing new insights to develop innovative and more efficient anticancer strategies based on the interactions between these epigenetic modulators.
Collapse
|