1
|
Geng H, Qi L, You L, Feng W, Yang X, Lei M. miR-361-3p overexpression promotes apoptosis and inflammation by regulating the USP49/IκBα/NF-κB pathway to aggravate sepsis-induced myocardial injury. Toxicol Res (Camb) 2024; 13:tfae190. [PMID: 39568464 PMCID: PMC11574052 DOI: 10.1093/toxres/tfae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/27/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
Background Sepsis is a major cause of in-hospital death, particularly in the intensive care unit. A huge amount of effort has been put into identifying reliable biomarkers to improve the prognosis of patients with sepsis. Among the numerous candidates, microRNAs have attracted attention because of their promising prognostic value. Multiple miRNAs have been suggested to play vital roles in manipulating the nuclear factor-kappa B (NF-κB) pathway, a key factor involved in sepsis. In this study, we attempted to elucidate the potential functions of miR-361-3p in sepsis-induced myocardial injury in vivo and in vitro. Methods A sepsis model was established by cecal ligation and puncture (CLP) in rats and by lipopolysaccharide (LPS) in H9c2 cells. The functions of miR-361-3p were revealed by assessing the level of biomarkers of myocardial injury and inflammation by Enzyme-linked immunosorbent assay, as well as the apoptosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling staining and flow cytometry. Binding of miR-361-3p and the 3' untranslated region of ubiquitin-specific peptidase 49 (Usp49) was revealed by Dual luciferase reporter gene assay. The interaction of USP49 and its downstream target NF-κB inhibitor alpha (IκBα) was revealed by Co-immunoprecipitation and western blot analysis. Results miR-361-3p antagomir inhibited myocardial injury and inflammation in CLP-induced rats, as evidenced by a decrease in the serum levels of cardiac troponin I, creatine kinase-MB, interleukin-1 beta (IL-1β), IL-6, and tumor necrosis factor-alpha and cell apoptosis. However, miR-361-3p agomir aggravated sepsis-induced myocardial injury. Moreover, miR-361-3p inhibition induced the inhibition of LPS-induced apoptosis and inflammation in H9c2 cells. miR-361-3p could inhibit the expression of Usp49 by binding to its 3' untranslated region. Furthermore, we demonstrated that Usp49 binds to IκBα and mediates its deubiquitination, leading to the stabilization of IκBα, which results in the cytoplasmic accumulation of NF-κB and eventually the suppression of NF-κB activity. Conclusion Taken together, our data demonstrate that miR-361-3p overexpression promotes apoptosis and inflammation by regulating the USP49/IκBα/NF-κB pathway to aggravate sepsis-induced myocardial injury.
Collapse
Affiliation(s)
- Huan Geng
- Trauma emergency center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358 Datong Road, Pudong new district, Shanghai 200137, China
| | - Luyao Qi
- Trauma emergency center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358 Datong Road, Pudong new district, Shanghai 200137, China
| | - Lijiao You
- Trauma emergency center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358 Datong Road, Pudong new district, Shanghai 200137, China
| | - Wentao Feng
- Trauma emergency center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358 Datong Road, Pudong new district, Shanghai 200137, China
| | - Xiaofang Yang
- Trauma emergency center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358 Datong Road, Pudong new district, Shanghai 200137, China
| | - Ming Lei
- Trauma emergency center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358 Datong Road, Pudong new district, Shanghai 200137, China
| |
Collapse
|
2
|
Lehto P, Skarp S, Saukko T, Säkkinen H, Syrjälä H, Kerkelä R, Saarimäki S, Bläuer S, Porvari K, Pakanen L, Karhu J, Ala-Kokko T. Postmortem analyses of myocardial microRNA expression in sepsis. Sci Rep 2024; 14:29476. [PMID: 39604475 PMCID: PMC11603066 DOI: 10.1038/s41598-024-81114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Sepsis can lead to myocardial depression, playing a significant role in sepsis pathophysiology, clinical care, and outcome. To gain more insight into the pathophysiology of the myocardial response in sepsis, we investigated the expression of microRNA in myocardial autopsy specimens in critically ill deceased with sepsis and non-septic controls. MATERIALS AND METHODS In this retrospective observational study, we obtained myocardial tissue samples collected during autopsy from adult patients deceased with sepsis (n = 15) for routine histological examination. We obtained control myocardial tissue specimens (n = 15) from medicolegal autopsies of cadavers whose cause of death was injury or who were found dead at home and the cause of death was coronary artery disease with sudden cardiac arrest. RNA was isolated from formalin-fixed paraffin- embedded (FFPE) cardiac samples using the RecoverAll Total Nucleic Acid Isolation Kit for FFPE (Invitrogen). Differentially expressed miRNAs were identified using edgeR v3.32. MicroRNA was considered up- or down-regulated if the false discovery rate was < 0.05 and logarithmic fold change (log2FC) ≥ 1 for up-regulated or log2FC ≤ -1 for down-regulated miRNAs. The mean difference and 95% confidence interval (CI) were calculated for normalized read counts. Predicted miRNA targets were retrieved using Ingenuity Pathway Analysis (IPA) software, and pathway enrichment and classification were performed using PantherDB. For miRNA - mRNA interaction analysis, differentially expressed genes were analyzed by 3`mRNA sequencing. RESULTS Differential expression analysis identified a total of 32 miRNAs in the myocardial specimens. Eight miRNAs had a significant change in the mean difference based on the 95% CI, with the largest increase in mean counts in septic samples with hsa-miR-12136 and the highest fold change with hsa-miR-146b-5p. The threshold for down-regulated miRNAs in sepsis compared to controls was obtained with hsa-miR-144-5p and hsa-miR-451a, with the latter having the largest decrease in mean counts and fold decrease. The miRNA - mRNA interaction analysis identified eight miRNAs with target genes also differentially expressed in septic hearts. The highest number of potential targets were identified for hsa-miR-363-3p. CONCLUSIONS Several regulatory miRNAs were up-or down-regulated in the myocardial tissue of patients deceased with sepsis compared to non-septic subjects. The predicted target genes of miRNAs and miRNA-mRNA interaction analysis are associated with biological functions related to cardiovascular functions, cell viability, cell adhesion, and regulation of inflammatory and immune response.
Collapse
Affiliation(s)
- Pasi Lehto
- Research Group of Intensive Care Medicine, Intensive Care Centre, Oulu University Hospital, University of Oulu and Medical Research Center (MRC), PO BOX 29, 90029, Oulu, Finland.
| | - Sini Skarp
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Centre Oulu, Biocenter Oulu, Oulu University Hospital and University of Oulu, University of Oulu, Oulu, Finland
| | - Taru Saukko
- Research Group of Intensive Care Medicine, Intensive Care Centre, Oulu University Hospital, University of Oulu and Medical Research Center (MRC), PO BOX 29, 90029, Oulu, Finland
| | - Hanna Säkkinen
- Research Group of Intensive Care Medicine, Intensive Care Centre, Oulu University Hospital, University of Oulu and Medical Research Center (MRC), PO BOX 29, 90029, Oulu, Finland
| | - Hannu Syrjälä
- Research Group of Intensive Care Medicine, Intensive Care Centre, Oulu University Hospital, University of Oulu and Medical Research Center (MRC), PO BOX 29, 90029, Oulu, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Centre Oulu, Biocenter Oulu, Oulu University Hospital and University of Oulu, University of Oulu, Oulu, Finland
| | - Samu Saarimäki
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Centre Oulu, Biocenter Oulu, Oulu University Hospital and University of Oulu, University of Oulu, Oulu, Finland
| | - Sonja Bläuer
- Research Group of Intensive Care Medicine, Intensive Care Centre, Oulu University Hospital, University of Oulu and Medical Research Center (MRC), PO BOX 29, 90029, Oulu, Finland
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Centre Oulu, Biocenter Oulu, Oulu University Hospital and University of Oulu, University of Oulu, Oulu, Finland
| | - Katja Porvari
- Department of Forensic Medicine, Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland
| | - Lasse Pakanen
- Department of Forensic Medicine, Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, Oulu, Finland
| | - Jaana Karhu
- Research Group of Intensive Care Medicine, Intensive Care Centre, Oulu University Hospital, University of Oulu and Medical Research Center (MRC), PO BOX 29, 90029, Oulu, Finland
| | - Tero Ala-Kokko
- Research Group of Intensive Care Medicine, Intensive Care Centre, Oulu University Hospital, University of Oulu and Medical Research Center (MRC), PO BOX 29, 90029, Oulu, Finland
| |
Collapse
|
3
|
Ying-Hao P, Yu-Shan Y, Song-Yi C, Hua J, Peng Y, Xiao-Hu C. Time of day-dependent alterations of ferroptosis in LPS-induced myocardial injury via Bmal-1/AKT/ Nrf2 in rat and H9c2 cell. Heliyon 2024; 10:e37088. [PMID: 39296207 PMCID: PMC11407985 DOI: 10.1016/j.heliyon.2024.e37088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Background One of the most prevalent causes of death in sepsis is sepsis-induced cardiomyopathy (SICM). Circadian disruption is involved in the progress of sepsis. However, the molecular mechanism remains unclear. Methods Here, we built LPS-induced SICM in-vivo and in-vitro models. LPS was administrated at the particular Zeitgeber times (ZT), ZT4-ZT10-ZT16-ZT22 and ZT10-ZT22 in vivo and vitro experiments, respectively. Results In vivo experiment, injection of LPS at ZT10 induced higher infiltration of inflammatory cells and content of intracellular Fe2+, and lower level of Glutathione peroxidase 4 (GPX4) and cardiac function than other ZTs (P < 0.05), which indicated that myocardial ferroptosis in septic rat presented a time of day-dependent manner. Bmal-1 protein and mRNA levels of injection of LPS at ZT10 were lower than those at other three ZTs (P < 0.05). The ratios of pAKT/AKT at ZT4 and ZT10 LPS injection were lower than those at ZT16 and ZT22 (P < 0.05). Nrf2 protein levels at ZT10 LPS injection were lower than those at other three ZTs (P < 0.05). These results indicated that the circadian of Bmal-1 and its downstream AKT/Nrf2 pathway in rat heart were inhibited under SICM condition. Consistent with in-vivo experiment, we found LPS could significantly reduce the expressions of Bmal-1 protein and mRNA in H9c2 cell. Up-regulation of Bmal-1 could reduce the cell death, oxidative stress, ferroptosis and activation of AKT/Nrf2 pathway at both ZT10 and ZT22 LPS administration. Conversely, its down-regulation presented opposite effects. AKT siRNA could weaken the effect of Bmal-1 pcDNA. Conclusion Ferroptosis presented the time of day-dependent manners via Bmal-1/AKT/Nrf2 in vivo and vitro models of SICM.
Collapse
Affiliation(s)
- Pei Ying-Hao
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, Nanjing, China
| | - Yang Yu-Shan
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, Nanjing, China
- Department of Cardiology, the People's Hospital of Qingyang City, Gansu Province, China
| | - Cheng Song-Yi
- Department of Cardiology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing university of Chinese medicine, Jiangsu Province, Nanjing, China
| | - Jiang Hua
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, Nanjing, China
| | - Yu Peng
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, Nanjing, China
| | - Chen Xiao-Hu
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, Nanjing, China
| |
Collapse
|
4
|
Guo ZY, Tang YQ, Zhang ZB, Liu J, Zhuang YX, Li T. COVID-19: from immune response to clinical intervention. PRECISION CLINICAL MEDICINE 2024; 7:pbae015. [PMID: 39139990 PMCID: PMC11319938 DOI: 10.1093/pcmedi/pbae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has highlighted the pivotal role of the immune response in determining the progression and severity of viral infections. In this paper, we review the most recent studies on the complicated dynamics between SARS-CoV-2 and the host immune system, highlight the importance of understanding these dynamics in developing effective treatments and formulate potent management strategies for COVID-19. We describe the activation of the host's innate immunity and the subsequent adaptive immune response following infection with SARS-CoV-2. In addition, the review emphasizes the immune evasion strategies of the SARS-CoV-2, including inhibition of interferon production and induction of cytokine storms, along with the resulting clinical outcomes. Finally, we assess the efficacy of current treatment strategies, including antiviral drugs, monoclonal antibodies, and anti-inflammatory treatments, and discuss their role in providing immunity and preventing severe disease.
Collapse
Affiliation(s)
- Zheng-yang Guo
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Yan-qing Tang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Zi-bo Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Juan Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Yu-xin Zhuang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
5
|
Zhang M, Zhi D, Liu P, Wang Y, Duan M. Protective effects of Dioscin against sepsis-induced cardiomyopathy via regulation of toll-like receptor 4/MyD88/p65 signal pathway. Immun Inflamm Dis 2024; 12:e1229. [PMID: 38775678 PMCID: PMC11110714 DOI: 10.1002/iid3.1229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 02/19/2024] [Accepted: 03/08/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Dioscin has many pharmacological effects; however, its role in sepsis-induced cardiomyopathy (SIC) is unknown. Accordingly, we concentrate on elucidating the mechanism of Dioscin in SIC rat model. METHODS The SIC rat and H9c2 cell models were established by lipopolysaccharide (LPS) induction. The heart rate (HR), left ventricle ejection fraction (LVEF), mean arterial blood pressure (MAP), and heart weight index (HWI) of rats were evaluated. The myocardial tissue was observed by hematoxylin and eosin staining. 4-Hydroxy-2-nonenal (4-HNE) level in myocardial tissue was detected by immunohistochemistry. Superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) activities in serum samples of rats and H9c2 cells were determined by colorimetric assay. Bax, B-cell lymphoma-2 (Bcl-2), toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), phosphorylated-p65 (p-p65), and p65 levels in myocardial tissues of rats and treated H9c2 cells were measured by quantitative real-time PCR and Western blot. Viability and reactive oxygen species (ROS) accumulation of treated H9c2 cells were assayed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and dihydroethidium staining assays. RESULTS Dioscin decreased HR and HWI, increased LVEF and MAP, alleviated the myocardial tissue damage, and reduced 4-HNE level in SIC rats. Dioscin reversed LPS-induced reduction on SOD, CAT, GSH, and Bcl-2 levels, and increment on Bax and TLR4 levels in rats and H9c2 cells. Overexpressed TLR4 attenuated the effects of Dioscin on promoting viability, as well as dwindling TLR4, ROS and MyD88 levels, and p-p65/p65 value in LPS-induced H9c2 cells. CONCLUSION Protective effects of Dioscin against LPS-induced SIC are achieved via regulation of TLR4/MyD88/p65 signal pathway.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Critical Care Medicine, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Deyuan Zhi
- Department of Critical Care Medicine, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Pei Liu
- Department of Critical Care Medicine, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Yajun Wang
- Department of Critical Care Medicine, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Meili Duan
- Department of Critical Care Medicine, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
6
|
Lukić I, Mihić D, Varžić SC, Relatić KS, Zibar L, Loinjak D, Ćurić ŽB, Klobučar L, Maričić L. Septic Cardiomyopathy. Rev Cardiovasc Med 2024; 25:23. [PMID: 39077653 PMCID: PMC11262393 DOI: 10.31083/j.rcm2501023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 07/31/2024] Open
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis-induced myocardial dysfunction represents reversible myocardial dysfunction which ultimately results in left ventricular dilatation or both, with consequent loss of contractility. Studies on septic cardiomyopathy report a wide range of prevalence ranging from 10% to 70%. Myocardial damage occurs as a result of weakened myocardial circulation, direct myocardial depression, and mitochondrial dysfunction. Mitochondrial dysfunction is the leading problem in the development of septic cardiomyopathy and includes oxidative phosphorylation, production of reactive oxygen radicals, reprogramming of energy metabolism, and mitophagy. Echocardiography provides several possibilities for the diagnosis of septic cardiomyopathy. Systolic and diastolic dysfunction of left ventricular is present in 50-60% of patients with sepsis. Right ventricular dysfunction is present in 50-55% of cases, while isolated right ventricular dysfunction is present in 47% of cases. Left ventricle (LV) diastolic dysfunction is very common in septic shock, and it represents an early biomarker, it has prognostic significance. Right ventricular dysfunction associated with sepsis patients with worse early prognosis. Global longitudinal stress and magnetic resonance imaging (MRI) of the heart are sufficiently sensitive methods, but at the same time MRI of the heart is difficult to access in intensive care units, especially when dealing with critically ill patients. Previous research has identified two biomarkers as a result of the integrated mitochondrial response to stress, and these are fibroblast growth factor-21 (FGF-21) and growth differentiation factor-15 (GDF-15). Both of the mentioned biomarkers can be easily quantified in serum or plasma, but they are difficult to be specific in patients with multiple comorbidities. Mitochondrial dysfunction is also associated with reduced levels of miRNA (microRNA), some research showed significance of miRNA in sepsis-induced myocardial dysfunction, but further research is needed to determine the clinical significance of these molecules in septic cardiomyopathy. Therapeutic options in the treatment of septic cardiomyopathy are not specific, and include the optimization of hemodynamic parameters and the use of antibiotic thera-pies with targeted action. Future research aims to find mechanisms of targeted action on the initial mechanisms of the development of septic cardiomyopathy.
Collapse
Affiliation(s)
- Ivana Lukić
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Heart and Vascular Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Damir Mihić
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Pulmology and Intensive Care Medicine, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Silvija Canecki Varžić
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Endocrinology, University Hospital Centre Hospital Osijek, 31000 Osijek, Croatia
| | - Kristina Selthofer Relatić
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Heart and Vascular Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Lada Zibar
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Nephrology, University Hospital Merkur, Zagreb, 10000 Zagreb, Croatia
| | - Domagoj Loinjak
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Pulmology and Intensive Care Medicine, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Željka Breškić Ćurić
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Internal Medicine, General Hospital Vinkovci, 32100 Vinkovci, Croatia
| | - Lucija Klobučar
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Heart and Vascular Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Lana Maričić
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Heart and Vascular Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia
| |
Collapse
|
7
|
Zhang J, Zhu Y, Chen S, Xu Z, Zhang B, Liu A, He Q, Zhan J. Activation of cannabinoid receptors 2 alleviates myocardial damage in cecal ligation and puncture-induced sepsis by inhibiting pyroptosis. Immunol Lett 2023; 264:17-24. [PMID: 37918639 DOI: 10.1016/j.imlet.2023.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 10/28/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND It has been reported that cannabinoid receptors 2 (CB2 receptors) play an important role in the pathophysiological process of sepsis, which may also be associated with the regulation of pyroptosis, an inflammatory programmed cell death. The present study aimed to investigate the protective effect of CB2 receptors on myocardial damage in a model of septic mice by inhibiting pyroptosis. METHODS The C57BL/6 mice underwent cecal ligation and puncture (CLP) to induce sepsis. All mice were randomly divided into the sham, CLP, or CLP+HU308 group. Blood and heart tissue samples were collected 12 h after surgery. Hematoxylin and eosin staining was used for analyzing histopathological results. Creatine kinase isoenzymes (CK-MB) and IL-1β were measured using ELISA, while lactate dehydrogenase (LDH) level was determined using photoelectric colorimetry. The expression levels of CB2 receptors and pyroptosis-associated proteins (NLRP3, caspase-1, and GSDMD) were measured using western blotting. The location and distribution of CB2 receptors and caspase-1 in myocardial tissues were assessed by immunofluorescence. TUNEL staining was used to quantify the number of dead cells in myocardial tissues. RESULTS The CLP procedure increased CB2 receptor expression in mice. CB2 receptors were located in myocardial macrophages. Activating CB2 receptors decreased the levels of myocardial damage mediator LDH, CK-MB, and inflammatory cytokine IL-1β. The results also showed that CLP increased the pyroptosis in myocardial tissues, while CB2 agonist HU308 inhibited pyroptosis by decreasing the level of NLRP3 and activating caspase-1 and GSDMD. CONCLUSIONS CB2 receptor activation has a protective effect on the myocardium of mice with sepsis by inhibiting pyroptosis.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Yali Zhu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Shuxian Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Zujin Xu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Bin Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Anpeng Liu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Qianwen He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China.
| | - Jia Zhan
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China.
| |
Collapse
|
8
|
Piccioni A, Franza L, Rosa F, Candelli M, Covino M, Ferrara M, Volonnino G, Bertozzi G, Vittoria Zamponi M, Maiese A, Savioli G, Franceschi F, La Russa R. The role of SARS-COV-2 infection in promoting abnormal immune response and sepsis: A comparison between SARS-COV-2-related sepsis and sepsis from other causes. INFECTIOUS MEDICINE 2023; 2:202-211. [PMID: 38073889 PMCID: PMC10699677 DOI: 10.1016/j.imj.2023.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 12/22/2024]
Abstract
BACKGROUND COVID-19 caused by SARS-CoV-2 virus is characterized by respiratory compromise and immune system involvement, even leading to serious disorders, such as cytokine storm. METHODS We then conducted a literature review on the topic of sepsis and covid-19, and in parallel conducted an experimental study on the histological finding of patients who died from SARS-Covid 19 infection and a control group. RESULTS Sepsis associated with covid-19 infection has some similarities and differences from that from other causes. CONCLUSION In this paper the complex interplay between the 2 disorders was discussed, focusing on the similarities and on the effect that one could have on the other. A preliminary experimental section that demonstrates the multisystemic involvement in subjects who die from SARS-CoV-2 is also proposed.
Collapse
Affiliation(s)
- Andrea Piccioni
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 1-00168 Rome, Italy
| | - Laura Franza
- Università Cattolica del Sacro Cuore, 1-00168 Rome, Italy
| | - Federico Rosa
- Università Cattolica del Sacro Cuore, 1-00168 Rome, Italy
| | - Marcello Candelli
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 1-00168 Rome, Italy
| | - Marcello Covino
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 1-00168 Rome, Italy
- Università Cattolica del Sacro Cuore, 1-00168 Rome, Italy
| | - Michela Ferrara
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00186 Rome, Italy
| | - Gianpietro Volonnino
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00186 Rome, Italy
| | - Giuseppe Bertozzi
- Department of Clinical and Experimental Medicine, Institute of Legal Medicine, University of Foggia, 71100 Foggia, Italy
| | - Maria Vittoria Zamponi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00186 Rome, Italy
| | - Aniello Maiese
- Department of Surgical, Medical, and Molecular Pathology and Critical Care Medicine, University of Pisa, via Roma 55, 56126 Pisa, Italy
| | - Gabriele Savioli
- Emergency Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Francesco Franceschi
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 1-00168 Rome, Italy
- Università Cattolica del Sacro Cuore, 1-00168 Rome, Italy
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, Institute of Legal Medicine, University of Foggia, 71100 Foggia, Italy
| |
Collapse
|
9
|
Mezzetti E, Costantino A, Leoni M, Pieretti R, Di Paolo M, Frati P, Maiese A, Fineschi V. Autoimmune Heart Disease: A Comprehensive Summary for Forensic Practice. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1364. [PMID: 37629654 PMCID: PMC10456745 DOI: 10.3390/medicina59081364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023]
Abstract
Autoimmune heart disease is a non-random condition characterised by immune system-mediated aggression against cardiac tissue. Cardiac changes often exhibit nonspecific features and, if unrecognised, can result in fatal outcomes even among seemingly healthy young individuals. In the absence of reliable medical history, the primary challenge lies in differentiating between the various cardiopathies. Numerous immunohistochemical and genetic studies have endeavoured to characterise distinct types of cardiopathies, facilitating their differentiation during autopsy examinations. However, the presence of a standardised protocol that forensic pathologists can employ to guide their investigations would be beneficial. Hence, this summary aims to present the spectrum of autoimmune cardiopathies, including emerging insights such as SARS-CoV-2-induced cardiopathies, and proposes the utilisation of practical tools, such as blood markers, to aid forensic pathologists in their routine practice.
Collapse
Affiliation(s)
- Eleonora Mezzetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Andrea Costantino
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Matteo Leoni
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Rebecca Pieretti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Marco Di Paolo
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (P.F.); (V.F.)
| | - Aniello Maiese
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (P.F.); (V.F.)
| |
Collapse
|
10
|
Wu M, Li G, Wang W, Ren H. Emerging roles of microRNAs in septic cardiomyopathy. Front Pharmacol 2023; 14:1181372. [PMID: 37475718 PMCID: PMC10354437 DOI: 10.3389/fphar.2023.1181372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023] Open
Abstract
As one of the serious complications of sepsis, septic cardiomyopathy has gained more and more attention, because of its high morbidity and mortality. With the in-depth study of septic cardiomyopathy, several methods have been adopted clinically but have poor therapeutic effects due to failure to find precise therapeutic targets. In recent years, microRNAs have been found to be related to the pathogenesis, diagnosis, and treatment of septic cardiomyopathy via regulating immunity and programmed cell death. This paper reviews the role of microRNAs in septic cardiomyopathy, aiming to provide new targets for the diagnosis and treatment of septic cardiomyopathy.
Collapse
Affiliation(s)
| | | | - Wenjun Wang
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hongsheng Ren
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
11
|
Zohora FT, Aliyu M, Saboor-Yaraghi AA. Secretome-based acellular therapy of bone marrow-derived mesenchymal stem cells in degenerative and immunological disorders: A narrative review. Heliyon 2023; 9:e18120. [PMID: 37496898 PMCID: PMC10366432 DOI: 10.1016/j.heliyon.2023.e18120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/25/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
The bone marrow (BM) plays a pivotal role in homeostasis by supporting hematopoiesis and immune cells' activation, maturation, interaction, and deployment. "BMSC-derived secretome" refers to the complete repertoire of secreted molecules, including nucleic acids, chemokines, growth factors, cytokines, and lipids from BM-derived mesenchymal stem cells (BMSCs). BMSC-derived secretomes are the current molecular platform for acellular therapy. Secretomes are highly manipulable and can be synthesised in vast quantities using commercially accessible cell lines in the laboratory. Secretomes are less likely to elicit an immunological response because they contain fewer surface proteins. Moreover, the delivery of BMSC-derived secretomes has been shown in numerous studies to be an effective, cell-free therapy method for alleviating the symptoms of inflammatory and degenerative diseases. As a result, secretome delivery from BMSCs has the same therapeutic effects as BMSCs transplantation but may have fewer adverse effects. Additionally, BMSCs' secretome has therapeutic promise for organoids and parabiosis studies. This review focuses on recent advances in secretome-based cell-free therapy, including its manipulation, isolation, characterisation, and delivery systems. The diverse bioactive molecules of secretomes that successfully treat inflammatory and degenerative diseases of the musculoskeletal, cardiovascular, nervous, respiratory, reproductive, gastrointestinal, and anti-ageing systems were also examined in this review. However, secretome-based therapy has some unfavourable side effects that may restrict its uses. Some of the adverse effects of this modal therapy were briefly mentioned in this review.
Collapse
Affiliation(s)
- Fatema Tuz Zohora
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia
| | - Mansur Aliyu
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran
- Department of Medical Microbiology, Faculty of Clinical Science, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Ali Akbar Saboor-Yaraghi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran
| |
Collapse
|
12
|
Lin H, Ji F, Lin KQ, Zhu YT, Yang W, Zhang LH, Zhao JG, Pei YH. LPS-aggravated Ferroptosis via Disrupting Circadian Rhythm by Bmal1/AKT/p53 in Sepsis-Induced Myocardial Injury. Inflammation 2023:10.1007/s10753-023-01804-7. [PMID: 37046145 DOI: 10.1007/s10753-023-01804-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023]
Abstract
Circadian disruption is involved in the progress of sepsis-induced cardiomyopathy (SICM), one of the leading causes of death in sepsis. The molecular mechanism remains ambiguous. In this study, LPS was used to build SICM model in H9c2 cell. The results suggested that LPS induced cytotoxicity via increasing ferroptosis over the time of course. After screening the expressions of six circadian genes, the circadian swing of Bmal1 was dramatically restrained by LPS in H9c2 cell of SIMC vitro model. PcDNA and siRNA were used to upregulate and downregulate Bmal1 and confirmed that Bmal1 inhibited LPS-triggered ferroptosis in H9c2 cells. Then, the results suggested that AKT/p53 pathway was restrained by LPS in H9c2 cell. Rescue test indicated that Bmal1 inhibited LPS-triggered ferroptosis via AKT/p53 pathway in H9c2 cells. In summary, our findings demonstrated that LPS induced cytotoxicity via increasing ferroptosis over the time of course in H9c2 cells and Bmal1 inhibited this toxicity of LPS via AKT/p53 pathway. Although further studies are needed, our findings may contribute to a new insight to mechanism of SICM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Emergency, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu Province, China
| | - Fang Ji
- Department of Intensive Care Unit, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu Province, China
| | - Kong-Qin Lin
- Department of Emergency, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu Province, China
| | - Yu-Tao Zhu
- Department of Emergency, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu Province, China
| | - Wen Yang
- Department of Emergency, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu Province, China
| | - Long-Hai Zhang
- Department of Intensive Care Unit, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu Province, China
| | - Jian-Gao Zhao
- Department of Neurology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu Province, China.
| | - Ying-Hao Pei
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
| |
Collapse
|
13
|
Vanhorebeek I, Van den Berghe G. The epigenetic legacy of ICU feeding and its consequences. Curr Opin Crit Care 2023; 29:114-122. [PMID: 36794929 PMCID: PMC9994844 DOI: 10.1097/mcc.0000000000001021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
PURPOSE OF REVIEW Many critically ill patients face physical, mental or neurocognitive impairments up to years later, the etiology remaining largely unexplained. Aberrant epigenetic changes have been linked to abnormal development and diseases resulting from adverse environmental exposures like major stress or inadequate nutrition. Theoretically, severe stress and artificial nutritional management of critical illness thus could induce epigenetic changes explaining long-term problems. We review supporting evidence. RECENT FINDINGS Epigenetic abnormalities are found in various critical illness types, affecting DNA-methylation, histone-modification and noncoding RNAs. They at least partly arise de novo after ICU-admission. Many affect genes with functions relevant for and several associate with long-term impairments. As such, de novo DNA-methylation changes in critically ill children statistically explained part of their disturbed long-term physical/neurocognitive development. These methylation changes were in part evoked by early-parenteral-nutrition (early-PN) and statistically explained harm by early-PN on long-term neurocognitive development. Finally, long-term epigenetic abnormalities beyond hospital-discharge have been identified, affecting pathways highly relevant for long-term outcomes. SUMMARY Epigenetic abnormalities induced by critical illness or its nutritional management provide a plausible molecular basis for their adverse effects on long-term outcomes. Identifying treatments to further attenuate these abnormalities opens perspectives to reduce the debilitating legacy of critical illness.
Collapse
Affiliation(s)
- Ilse Vanhorebeek
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
14
|
Yang Y, Shao M, Cheng W, Yao J, Ma L, Wang Y, Wang W. A Pharmacological Review of Tanshinones, Naturally Occurring Monomers from Salvia miltiorrhiza for the Treatment of Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3801908. [PMID: 36793978 PMCID: PMC9925269 DOI: 10.1155/2023/3801908] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/23/2022] [Accepted: 11/25/2022] [Indexed: 02/09/2023]
Abstract
Cardiovascular diseases (CVDs) are a set of heart and blood vessel disorders that include coronary heart disease (CHD), rheumatic heart disease, and other conditions. Traditional Chinese Medicine (TCM) has definite effects on CVDs due to its multitarget and multicomponent properties, which are gradually gaining national attention. Tanshinones, the major active chemical compounds extracted from Salvia miltiorrhiza, exhibit beneficial improvement on multiple diseases, especially CVDs. At the level of biological activities, they play significant roles, including anti-inflammation, anti-oxidation, anti-apoptosis and anti-necroptosis, anti-hypertrophy, vasodilation, angiogenesis, combat against proliferation and migration of smooth muscle cells (SMCs), as well as anti-myocardial fibrosis and ventricular remodeling, which are all effective strategies in preventing and treating CVDs. Additionally, at the cellular level, Tanshinones produce marked effects on cardiomyocytes, macrophages, endothelia, SMCs, and fibroblasts in myocardia. In this review, we have summarized a brief overview of the chemical structures and pharmacological effects of Tanshinones as a CVD treatment to expound on different pharmacological properties in various cell types in myocardia.
Collapse
Affiliation(s)
- Ye Yang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
| | - Mingyan Shao
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenkun Cheng
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Junkai Yao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
| | - Lin Ma
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Wang
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Hobai IA. CARDIOMYOCYTE REPROGRAMMING IN ANIMAL MODELS OF SEPTIC SHOCK. Shock 2023; 59:200-213. [PMID: 36730767 DOI: 10.1097/shk.0000000000002024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ABSTRACT Cardiomyocyte reprogramming plays a pivotal role in sepsis-induced cardiomyopathy through the induction or overexpression of several factors and enzymes, ultimately leading to the characteristic decrease in cardiac contractility. The initial trigger is the binding of LPS to TLR-2, -3, -4, and -9 and of proinflammatory cytokines, such as TNF, IL-1, and IL-6, to their respective receptors. This induces the nuclear translocation of nuclear factors, such as NF-κB, via activation of MyD88, TRIF, IRAK, and MAPKs. Among the latter, ROS- and estrogen-dependent p38 and ERK 1/2 are proinflammatory, whereas JNK may play antagonistic, anti-inflammatory roles. Nuclear factors induce the synthesis of cytokines, which can amplify the inflammatory signal in a paracrine fashion, and of several effector enzymes, such as NOS-2, NOX-1, and others, which are ultimately responsible for the degradation of cardiomyocyte contractility. In parallel, the downregulation of enzymes involved in oxidative phosphorylation causes metabolic reprogramming, followed by a decrease in ATP production and the release of fragmented mitochondrial DNA, which may augment the process in a positive feedback loop. Other mediators, such as NO, ROS, the enzymes PI3K and Akt, and adrenergic stimulation may play regulatory roles, but not all signaling pathways that mediate cardiac dysfunction of sepsis do that by regulating reprogramming. Transcription may be globally modulated by miRs, which exert protective or amplifying effects. For all these mechanisms, differentiating between modulation of cardiomyocyte reprogramming versus systemic inflammation has been an ongoing but worthwhile experimental challenge.
Collapse
Affiliation(s)
- Ion A Hobai
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, GRB 444, Boston, MA
| |
Collapse
|
16
|
Maiese A, Manetti AC, Santoro P, Del Duca F, De Matteis A, Turillazzi E, Frati P, Fineschi V. FOXO3 Depletion as a Marker of Compression-Induced Apoptosis in the Ligature Mark: An Immunohistochemical Study. Int J Mol Sci 2023; 24:ijms24021396. [PMID: 36674912 PMCID: PMC9866130 DOI: 10.3390/ijms24021396] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
One of the most challenging issues in forensic pathology is lesion vitality demonstration, particularly in cases of hanging. Over the past few years, immunohistochemistry has been applied to this field with promising results. In particular, protein and transcription factors involved in the apoptotic process have been studied as vitality markers for the ligature mark. This study represents an implementation of our previous studies on ligature mark vitality demonstration. In this study, we evaluated the FOXO3 expression in post-mortem cervical skin samples through an immunohistochemical analysis. To evaluate FOXO3 expression, anti-FOXO3 antibodies (GTX100277) were used. The study group comprised 21 cases, 8 women and 13 men, whereas the control group consisted of 13 cases of subjects who died due to other causes. Decomposition and no clear circumstantial data were exclusion criteria. We found that FOXO3 is decreased in hanging cases compared with normal skin in other causes of death (p-value < 0.05). No differences were seen concerning the type of hanging material (hard or soft), type of hanging (complete or incomplete), and position of the knot. Our results suggest that FOXO3 depletion could be a valid immunohistochemical marker of ligature mark vitality.
Collapse
Affiliation(s)
- Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, PI, Italy
- Correspondence:
| | - Alice Chiara Manetti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, PI, Italy
| | - Paola Santoro
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, RM, Italy
| | - Fabio Del Duca
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, RM, Italy
| | - Alessandra De Matteis
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, RM, Italy
| | - Emanuela Turillazzi
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, PI, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, RM, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, RM, Italy
| |
Collapse
|
17
|
Yin L, Chen Y, Fu T, Liu L, Xia Q. Identification of candidate blood biomarkers for the diagnosis of septicaemic melioidosis based on WGCNA. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:252-259. [DOI: 10.1080/21691401.2022.2126490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Li Yin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, PR China
| | - Yuanyuan Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, PR China
| | - Tingting Fu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, PR China
| | - Lin Liu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, PR China
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, PR China
| |
Collapse
|
18
|
Forini F, Pitto L. Editorial for Special Issue: "MicroRNA in Cardiac Health and Disease". Int J Mol Sci 2022; 23:ijms232415567. [PMID: 36555208 PMCID: PMC9778875 DOI: 10.3390/ijms232415567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, evolutionarily conserved, non-coding RNA molecules that influence most, if not all biological events, with cardiovascular development and homeostasis being no exceptions [...].
Collapse
|
19
|
Formosa A, Turgeon P, dos Santos CC. Role of miRNA dysregulation in sepsis. Mol Med 2022; 28:99. [PMID: 35986237 PMCID: PMC9389495 DOI: 10.1186/s10020-022-00527-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022] Open
Abstract
Background Sepsis is defined as a state of multisystem organ dysfunction secondary to a dysregulated host response to infection and causes millions of deaths worldwide annually. Novel ways to counteract this disease are needed and such tools may be heralded by a detailed understanding of its molecular pathogenesis. MiRNAs are small RNA molecules that target mRNAs to inhibit or degrade their translation and have important roles in several disease processes including sepsis. Main body The current review adopted a strategic approach to analyzing the widespread literature on the topic of miRNAs and sepsis. A pubmed search of “miRNA or microRNA or small RNA and sepsis not review” up to and including January 2021 led to 1140 manuscripts which were reviewed. Two hundred and thirty-three relevant papers were scrutinized for their content and important themes on the topic were identified and subsequently discussed, including an in-depth look at deregulated miRNAs in sepsis in peripheral blood, myeloid derived suppressor cells and extracellular vesicles. Conclusion Our analysis yielded important observations. Certain miRNAs, namely miR-150 and miR-146a, have consistent directional changes in peripheral blood of septic patients across numerous studies with strong data supporting a role in sepsis pathogenesis. Furthermore, a large body of literature show miRNA signatures of clinical relevance, and lastly, many miRNAs deregulated in sepsis are associated with the process of endothelial dysfunction. This review offers a widespread, up-to-date and detailed discussion of the role of miRNAs in sepsis and is meant to stimulate further work in the field due to the potential of these small miRNAs in prompt diagnostics, prognostication and therapeutic agency. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00527-z.
Collapse
|
20
|
Li J, Sun G, Ma H, Wu X, Li C, Ding P, Lu S, Li Y, Yang P, Li C, Yang J, Peng Y, Meng Z, Wang L. Identification of immune-related hub genes and miRNA-mRNA pairs involved in immune infiltration in human septic cardiomyopathy by bioinformatics analysis. Front Cardiovasc Med 2022; 9:971543. [PMID: 36204577 PMCID: PMC9530044 DOI: 10.3389/fcvm.2022.971543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract Septic cardiomyopathy (SCM) is a serious complication caused by sepsis that will further exacerbate the patient's prognosis. However, immune-related genes (IRGs) and their molecular mechanism during septic cardiomyopathy are largely unknown. Therefore, our study aims to explore the immune-related hub genes (IRHGs) and immune-related miRNA-mRNA pairs with potential biological regulation in SCM by means of bioinformatics analysis and experimental validation. Method Firstly, screen differentially expressed mRNAs (DE-mRNAs) from the dataset GSE79962, and construct a PPI network of DE-mRNAs. Secondly, the hub genes of SCM were identified from the PPI network and the hub genes were overlapped with immune cell marker genes (ICMGs) to further obtain IRHGs in SCM. In addition, receiver operating characteristic (ROC) curve analysis was also performed in this process to determine the disease diagnostic capability of IRHGs. Finally, the crucial miRNA-IRHG regulatory network of IRHGs was predicted and constructed by bioinformatic methods. Real-time quantitative reverse transcription-PCR (qRT-PCR) and dataset GSE72380 were used to validate the expression of the key miRNA-IRHG axis. Result The results of immune infiltration showed that neutrophils, Th17 cells, Tfh cells, and central memory cells in SCM had more infiltration than the control group; A total of 2 IRHGs were obtained by crossing the hub gene with the ICMGs, and the IRHGs were validated by dataset and qRT-PCR. Ultimately, we obtained the IRHG in SCM: THBS1. The ROC curve results of THBS1 showed that the area under the curve (AUC) was 0.909. Finally, the miR-222-3p/THBS1 axis regulatory network was constructed. Conclusion In summary, we propose that THBS1 may be a key IRHG, and can serve as a biomarker for the diagnosis of SCM; in addition, the immune-related regulatory network miR-222-3p/THBS1 may be involved in the regulation of the pathogenesis of SCM and may serve as a promising candidate for SCM therapy.
Collapse
Affiliation(s)
- Jingru Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guihu Sun
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Haocheng Ma
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xinyu Wu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chaozhong Li
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Peng Ding
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Si Lu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanyan Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ping Yang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chaguo Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunzhu Peng
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhaohui Meng
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Zhaohui Meng
| | - Luqiao Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Luqiao Wang
| |
Collapse
|
21
|
Expression of MicroRNAs in Sepsis-Related Organ Dysfunction: A Systematic Review. Int J Mol Sci 2022; 23:ijms23169354. [PMID: 36012630 PMCID: PMC9409129 DOI: 10.3390/ijms23169354] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a critical condition characterized by increased levels of pro-inflammatory cytokines and proliferating cells such as neutrophils and macrophages in response to microbial pathogens. Such processes lead to an abnormal inflammatory response and multi-organ failure. MicroRNAs (miRNA) are single-stranded non-coding RNAs with the function of gene regulation. This means that miRNAs are involved in multiple intracellular pathways and thus contribute to or inhibit inflammation. As a result, their variable expression in different tissues and organs may play a key role in regulating the pathophysiological events of sepsis. Thanks to this property, miRNAs may serve as potential diagnostic and prognostic biomarkers in such life-threatening events. In this narrative review, we collect the results of recent studies on the expression of miRNAs in heart, blood, lung, liver, brain, and kidney during sepsis and the molecular processes in which they are involved. In reviewing the literature, we find at least 122 miRNAs and signaling pathways involved in sepsis-related organ dysfunction. This may help clinicians to detect, prevent, and treat sepsis-related organ failures early, although further studies are needed to deepen the knowledge of their potential contribution.
Collapse
|
22
|
Zhang G, Dong D, Wan X, Zhang Y. Cardiomyocyte death in sepsis: Mechanisms and regulation (Review). Mol Med Rep 2022; 26:257. [PMID: 35703348 PMCID: PMC9218731 DOI: 10.3892/mmr.2022.12773] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/20/2022] [Indexed: 11/06/2022] Open
Abstract
Sepsis‑induced cardiac dysfunction is one of the most common types of organ dysfunction in sepsis; its pathogenesis is highly complex and not yet fully understood. Cardiomyocytes serve a key role in the pathophysiology of cardiac function; due to the limited ability of cardiomyocytes to regenerate, their loss contributes to decreased cardiac function. The activation of inflammatory signalling pathways affects cardiomyocyte function and modes of cardiomyocyte death in sepsis. Prevention of cardiomyocyte death is an important therapeutic strategy for sepsis‑induced cardiac dysfunction. Thus, understanding the signalling pathways that activate cardiomyocyte death and cross‑regulation between death modes are key to finding therapeutic targets. The present review focused on advances in understanding of sepsis‑induced cardiomyocyte death pathways, including apoptosis, necroptosis, mitochondria‑mediated necrosis, pyroptosis, ferroptosis and autophagy. The present review summarizes the effect of inflammatory activation on cardiomyocyte death mechanisms, the diversity of regulatory mechanisms and cross‑regulation between death modes and the effect on cardiac function in sepsis to provide a theoretical basis for treatment of sepsis‑induced cardiac dysfunction.
Collapse
Affiliation(s)
- Geping Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Dan Dong
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xianyao Wan
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yongli Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
23
|
Shen H, Xie K, Li M, Yang Q, Wang X. N 6-methyladenosine (m 6A) methyltransferase METTL3 regulates sepsis-induced myocardial injury through IGF2BP1/HDAC4 dependent manner. Cell Death Dis 2022; 8:322. [PMID: 35840562 PMCID: PMC9287338 DOI: 10.1038/s41420-022-01099-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/09/2022]
Abstract
Recent studies have identified that N6-methyladenosine (m6A) extensively participates in the myocardial injury pathophysiological process. However, the role of m6A on sepsis-induced myocardial injury is still unclear. Here, we investigated the functions and mechanism of m6A methyltransferase METTL3 for septic myocardial injury. Results illustrated that the m6A modification level and METTL3 up-regulated in the lipopolysaccharide (LPS)-induced cardiomyocytes (H9C2 cells). Methylated RNA immunoprecipitation sequencing (MeRIP-Seq) revealed the m6A profile of the septic myocardial injury cellular model. Functionally, METTL3 knockdown repressed the inflammatory damage of cardiomyocytes induced by LPS. Mechanistically, we found that HDAC4 had remarkable m6A modification sites on its 3'-UTR genome, acting as the downstream target of METTL3. Besides, m6A reader IGF2BP1 recognized the m6A modification sites on HDAC4 mRNA and enhanced its RNA stability. In conclusion, the findings illustrated a role of METTL3/IGF2BP1/m6A/HDAC4 axis on sepsis-induced myocardial injury, which might provide novel therapeutic strategy for septic myocardial injury.
Collapse
Affiliation(s)
- Hao Shen
- Department of Intensive Care Unit, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Keliang Xie
- Department of Intensive Care Unit, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Miaomiao Li
- Department of Pediatric surgery, Tianjin Children's Hospital, Tianjin, 300074, China
| | - Qianyu Yang
- Department of Pediatric surgery, Tianjin Children's Hospital, Tianjin, 300074, China
| | - Xiaoye Wang
- Department of Intensive Care Unit, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
24
|
Maiese A, Manetti AC, Iacoponi N, Mezzetti E, Turillazzi E, Di Paolo M, La Russa R, Frati P, Fineschi V. State-of-the-Art on Wound Vitality Evaluation: A Systematic Review. Int J Mol Sci 2022; 23:6881. [PMID: 35805886 PMCID: PMC9266385 DOI: 10.3390/ijms23136881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 12/29/2022] Open
Abstract
The vitality demonstration refers to determining if an injury has been caused ante- or post-mortem, while wound age means to evaluate how long a subject has survived after the infliction of an injury. Histology alone is not enough to prove the vitality of a lesion. Recently, immunohistochemistry, biochemistry, and molecular biology have been introduced in the field of lesions vitality and age demonstration. The study was conducted according to the preferred reporting items for systematic review (PRISMA) protocol. The search terms were "wound", "lesion", "vitality", "evaluation", "immunohistochemistry", "proteins", "electrolytes", "mRNAs", and "miRNAs" in the title, abstract, and keywords. This evaluation left 137 scientific papers. This review aimed to collect all the knowledge on vital wound demonstration and provide a temporal distribution of the methods currently available, in order to determine the age of lesions, thus helping forensic pathologists in finding a way through the tangled jungle of wound vitality evaluation.
Collapse
Affiliation(s)
- Aniello Maiese
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Alice Chiara Manetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Naomi Iacoponi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Eleonora Mezzetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Emanuela Turillazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Marco Di Paolo
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Institute of Legal Medicine, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy;
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Institute of Legal Medicine, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy;
| |
Collapse
|
25
|
Zhang L, Li B, Li W, Jiang J, Chen W, Yang H, Pan D. miR-107 Attenuates Sepsis-Induced Myocardial Injury by Targeting PTEN and Activating the PI3K/AKT Signaling Pathway. Cells Tissues Organs 2022; 212:523-534. [PMID: 35717938 DOI: 10.1159/000525476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022] Open
Abstract
Sepsis is a public health problem worldwide. This study investigated the mechanism of miR-107 on sepsis-induced myocardial injury. Sepsis rat models were established by cecal ligation and puncture (CLP), and the cell model was established using lipopolysaccharide (LPS)-induced cardiomyocytes. Cardiac function indexes of rats were measured using echocardiography. Pathological changes in the rat myocardium were observed using histological staining. Expression of miR-107 in the serum of rats and in cardiomyocytes was detected after the treatment with miR-107 mimic and/or pcDNA3.1-PTEN, followed by assessment of cell cycle, proliferation, and apoptosis. Binding sites of miR-107 and PTEN were predicted. PTEN, PI3K, p-PI3K, AKT, and p-AKT levels in LPS-induced cardiomyocytes were measured. miR-107 was significantly downregulated in the serum of CLP rats and LPS-induced cardiomyocytes. miR-107 overexpression remarkably improved cardiac function and histological changes, decreased inflammatory factors, and alleviated the sepsis-induced myocardial injury in rats. In LPS-induced cardiomyocytes, miR-107 overexpression increased cardiomyocyte proliferation, inhibited apoptosis, and enhanced the proportion of cardiomyocytes arrested in S and G2/M phases. miR-107 targeted PTEN. PTEN overexpression partially reversed the inhibition of miR-107 mimic on cardiomyocyte apoptosis. miR-107 overexpression activated the PI3K/AKT pathway by inhibiting PTEN. To conclude, miR-107 activates the PI3K/AKT pathway by inhibiting PTEN, thus attenuating sepsis-induced myocardial injury and LPS-induced cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Cardiology, Guilin People's Hospital, Guilin, China
| | - Bin Li
- Department of Cardiology, Guilin People's Hospital, Guilin, China
| | - Wei Li
- Department of Cardiology, Guilin People's Hospital, Guilin, China
| | - Jingbo Jiang
- Department of Cardiology, Guilin People's Hospital, Guilin, China
| | - Wei Chen
- Department of Cardiology, Guilin People's Hospital, Guilin, China
| | - Huayun Yang
- Department of Cardiology, Guilin People's Hospital, Guilin, China
| | - Diguang Pan
- Department of Cardiology, Guilin People's Hospital, Guilin, China
| |
Collapse
|
26
|
Shen NN, Wang JL, Fu YP. The microRNA Expression Profiling in Heart Failure: A Systematic Review and Meta-Analysis. Front Cardiovasc Med 2022; 9:856358. [PMID: 35783849 PMCID: PMC9240229 DOI: 10.3389/fcvm.2022.856358] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/27/2022] [Indexed: 12/16/2022] Open
Abstract
Background Heart failure (HF) is a main consequence of cardiovascular diseases worldwide. Abnormal expression levels of microRNAs (miRNAs) in HF are observed in current studies. Novel biomarkers miRNAs may play an important role in the development of HF. Nevertheless, the inconsistency of miRNA expression limits the clinical application. We thus perform this systematic review of the miRNAs expression profiling to identify potential HF biomarkers. Methods The electronic databases of Embase, Medline, and Cochrane Library were systematically searched to identify the miRNA expression profiles between HF subjects and non-HF controls before May 26th, 2021. The pooled results were shown as log10 odds ratios (logORs) with 95% confidence intervals (CI) using random-effect models. Subgroup analyses were conducted according to species, region, and sample source. The quality assessment of included studies was independently conducted based on Diagnostic Accuracy Study 2 (QUADAS-2). The sensitivity analysis was conducted based on sample size. Results A total of 55 miRNA expression articles reporting 276 miRNAs of HF were included. 47 consistently up-regulated and 10 down-regulated miRNAs were identified in the overall analysis, with the most up-regulated miR-21 (logOR 8.02; 95% CI: 6.76–9.27, P < 0.001) and the most down-regulated miR-30c (logOR 6.62; 95% CI: 3.04–10.20, P < 0.001). The subgroup analysis of sample source identified 35 up-regulated and 10 down-regulated miRNAs in blood sample, the most up-regulated and down-regulated miRNAs were miR-210-3p and miR-30c, respectively. In the region sub-groups, let-7i-5p and miR-129 were most up-regulated and down-regulated in Asian countries, while in non-Asian countries, let-7e-5p and miR-30c were the most dysregulated. It’s worth noting that miR-622 was consistently up-regulated in both Asian and non-Asian countries. Sensitivity analysis showed that 46 out of 58 (79.31%) miRNAs were dysregulated. Conclusion A total of 57 consistently dysregulated miRNAs related to HF were confirmed in this study. Seven dysregulated miRNAs (miR-21, miR-30c, miR-210-3p, let-7i-5p, miR-129, let-7e-5p, and miR-622) may be considered as potential non-invasive biomarkers for HF. However, further validation in larger-scale studies are needed to verify our conclusions.
Collapse
Affiliation(s)
- Nan-Nan Shen
- Department of Pharmacy, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Jia-Liang Wang
- Department of Pharmacy, Affiliated Hospital of Shaoxing University, Shaoxing, China
- *Correspondence: Jia-Liang Wang,
| | - Yong-ping Fu
- Department of Cardiology, Affiliated Hospital of Shaoxing University, Shaoxing, China
- Yong-ping Fu,
| |
Collapse
|
27
|
Mokhtari B, Yavari R, Badalzadeh R, Mahmoodpoor A. An Overview on Mitochondrial-Based Therapies in Sepsis-Related Myocardial Dysfunction: Mitochondrial Transplantation as a Promising Approach. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:3277274. [PMID: 35706715 PMCID: PMC9192296 DOI: 10.1155/2022/3277274] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022]
Abstract
Sepsis is defined as a life-threatening organ failure due to dysregulated host response to infection. Despite current advances in our knowledge about sepsis, it is still considered as a major global health challenge. Myocardial dysfunction is a well-defined manifestation of sepsis which is related to worse outcomes in septic patients. Given that the heart is a mitochondria-rich organ and the normal function of mitochondria is essential for successful modulation of septic response, the contribution of mitochondrial damage in sepsis-related myocardial dysfunction has attracted the attention of many scientists. It is widely accepted that mitochondrial damage is involved in sepsis-related myocardial dysfunction; however, effective and potential treatment modalities in clinical setting are still lacking. Mitochondrial-based therapies are potential approaches in sepsis treatment. Although various therapeutic strategies have been used for mitochondrial function improvement, their effects are limited when mitochondria undergo irreversible alterations under septic challenge. Therefore, application of more effective approaches such as mitochondrial transplantation has been suggested. This review highlights the crucial role of mitochondrial damage in sepsis-related myocardial dysfunction, then provides an overview on mitochondrial-based therapies and current approaches to mitochondrial transplantation as a novel strategy, and proposes future directions for more researches in this field.
Collapse
Affiliation(s)
- Behnaz Mokhtari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Yavari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Intensive Care Unit, Emam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Evidence-Based Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Gong CW, Yuan MM, Qiu BQ, Wang LJ, Zou HX, Hu T, Lai SQ, Liu JC. Identification and Validation of Ferroptosis-Related Biomarkers in Septic Cardiomyopathy via Bioinformatics Analysis. Front Genet 2022; 13:827559. [PMID: 35495160 PMCID: PMC9043284 DOI: 10.3389/fgene.2022.827559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
Septic cardiomyopathy (SCM) is a cardiac dysfunction caused by severe sepsis and septic shock that increases the risk of heart failure and death and its molecular mechanism remains unclear. Ferroptosis, a novel form of programmed cell death, has been reported to be present in the heart tissue of patients with sepsis, which demonstrated that ferroptosis may be a potential mechanism of myocardial injury in SCM. Therefore, we explored the role of ferroptosis-related genes (FRGs) in SCM and aimed to identify pivotal ferroptosis-related targets in SCM and potential therapeutic targets involved in the pathological process of SCM. To explore the regulatory mechanisms of ferroptosis in SCM, we identified differentially expressed genes (DEGs) in SCM and FRGs by bioinformatics analysis, and further identified hub genes. And the crucial microRNAs (miRNAs)-FRGs regulatory network was subsequently constructed. Finally, several candidate drugs associated with the hub genes were predicted, and Real-time quantitative reverse Transcription PCR (qRT-PCR) and western blotting analysis were performed to confirm the abnormal expression of hub genes. In this study, we identified several FRGs that may be involved in the pathogenesis of SCM, which helps us further clarify the role of ferroptosis in SCM and deeply understand the molecular mechanisms and potential therapeutic targets of SCM.
Collapse
Affiliation(s)
- Cheng-Wu Gong
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ming-Ming Yuan
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bai-Quan Qiu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li-Jun Wang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hua-Xi Zou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tie Hu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Song-Qing Lai
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Ji-Chun Liu, ; Song-Qing Lai,
| | - Ji-Chun Liu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Ji-Chun Liu, ; Song-Qing Lai,
| |
Collapse
|
29
|
Not Only COVID-19: Prevalence and Management of Latent Mycobacterium Tuberculosis Infection in Three Penitentiary Facilities in Southern Italy. Healthcare (Basel) 2022; 10:healthcare10020386. [PMID: 35206999 PMCID: PMC8872010 DOI: 10.3390/healthcare10020386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Latent Mycobacterium tuberculosis infection (LTBI) and active tuberculosis in prisoners are higher than the general population and are two public health concerns, especially in low- and middle-income countries. We conducted a cross-sectional study to determine the prevalence and the factors associated with LTBI among the inmate population detained in three Southern Italian penitentiaries. Tuberculin intradermal reaction skin test was performed on the inmates who agreed to participate in the study. In case of positivity, the QuantiFERON-TB test was performed. In those positive to QuantiFERON, chest X-ray films were performed, and treatment initiated. A total of 381 inmates accepted to participate. The prevalence of LTBI was 4.2%. In the analysis, LTBI was associated with no self-reported contact with active tuberculosis patients within the prisons, and 10% of subjects admitted the use of inhaled drugs. No HIV coinfections were found. No cases of active symptomatic tuberculosis were identified during the study period. Our results confirm that incarceration increases the risk of tuberculous infection. Non-EU nationality and a history of drug addiction appear to be major risk factors for tuberculosis infection in the penitentiary setting. Reinforcing tuberculosis control is essential to prevent its transmission in prisons.
Collapse
|
30
|
Maiese A, Baronti A, Manetti AC, Di Paolo M, Turillazzi E, Frati P, Fineschi V. Death after the Administration of COVID-19 Vaccines Approved by EMA: Has a Causal Relationship Been Demonstrated? Vaccines (Basel) 2022; 10:308. [PMID: 35214765 PMCID: PMC8875435 DOI: 10.3390/vaccines10020308] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 02/06/2023] Open
Abstract
More than eight billion doses of COVID-19 vaccines have been administered globally so far and 44.29% of people are fully vaccinated. Pre-authorization clinical trials were carried out and the safety of vaccines is still continuously monitored through post-commercialization surveillance. However, some people are afraid of vaccine side effects, claiming they could lead to death, and hesitate to get vaccinated. Herein, a literature review of COVID-19-vaccine-related deaths has been carried out according to the PRISMA standards to understand if there is a causal relationship between vaccination and death and to highlight the real extent of such events. There have been 55 cases of death after COVID-19 vaccination reported and a causal relationship has been excluded in 17 cases. In the remaining cases, the causal link between the vaccine and the death was not specified (8) or considered possible (15), probable (1), or very probable/demonstrated (14). The causes of deaths among these cases were: vaccine-induced immune thrombotic thrombocytopenia (VITT) (32), myocarditis (3), ADEM (1), myocardial infarction (1), and rhabdomyolysis (1). In such cases, the demonstration of a causal relationship is not obvious, and more studies, especially with post-mortem investigations, are needed to deepen understanding of the possible pathophysiological mechanisms of fatal vaccine side effects. In any event, given the scarcity of fatal cases, the benefits of vaccination outweigh the risks and the scientific community needs to be cohesive in asserting that vaccination is fundamental to containing the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Aniello Maiese
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (A.M.); (A.B.); (A.C.M.); (M.D.P.); (E.T.)
| | - Arianna Baronti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (A.M.); (A.B.); (A.C.M.); (M.D.P.); (E.T.)
| | - Alice Chiara Manetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (A.M.); (A.B.); (A.C.M.); (M.D.P.); (E.T.)
| | - Marco Di Paolo
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (A.M.); (A.B.); (A.C.M.); (M.D.P.); (E.T.)
| | - Emanuela Turillazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (A.M.); (A.B.); (A.C.M.); (M.D.P.); (E.T.)
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Institute of Legal Medicine, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy;
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Institute of Legal Medicine, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy;
| |
Collapse
|
31
|
Zheng Y, Cheng J, Zhang AF, Wang Y, Dai C, Li J. Acetylation of histone 3 promotes miR-29a expression and downregulates STAT3 in sepsis. Injury 2022; 53:416-421. [PMID: 34615595 DOI: 10.1016/j.injury.2021.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/24/2021] [Accepted: 09/12/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND MiR-29a targets signal transducers and activators of transcription 3 (STAT3) and negatively regulates its expression. Both miR-29a and STAT3 have been implicated in sepsis and upregulated miR-29a was associated with sepsis. However, the regulation of miR-29a in sepsis is not well elucidated. METHODS We treated TC-1 cells with interleukin (IL)-6 and the expression of miR-29a and STAT3 was measured. We pre-treated TC-1 cells with histone deacetylase inhibitor Trichostatin A, DNA methylation inhibitor 5-Azacytidine or histone acetyltransferase inhibitor A-485, then treated cells with IL-6 and analyzed the expression of miR-29a and STAT3. We measured the expression of histone deacetylases and histone acetyltransferase, and glycolysis in IL-6-treated TC-1 cells. We administrated miR-29a inhibitor or STAT3 inhibitor to septic mice and the survival rate and expression of anti-apoptotic factors were measured. RESUTLS IL-6 promoted miR-29a expression while suppressed STAT3 expression. Upregulation of miR-29a was associated with sepsis. Histone acetylation promoted miR-29a expression. IL-6 promoted glycolysis in TC-1 cells, which resulted in Acetyl-CoA accumulation. Inhibition of miR-29a promoted survival rate in septic mice while inhibiting STAT3 exacerbated death in mice. The protection of miR-29a inhibition against sepsis was abolished when STAT3 was inhibited. CONCLUSION Histone acetylation promoted miR-29a expression, resulting in downregulation of STAT3 and exacerbation of sepsis.
Collapse
Affiliation(s)
- Yun Zheng
- Department of Emergency ICU, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Anhui, Hefei, Shushan District, 230031, China
| | - Jun Cheng
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Anhui, Hefei, Shushan District, 230031, China
| | - AFang Zhang
- Department of Emergency ICU, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Anhui, Hefei, Shushan District, 230031, China
| | - YuYang Wang
- Department of Emergency ICU, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Anhui, Hefei, Shushan District, 230031, China
| | - ChengCai Dai
- Department of Emergency ICU, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Anhui, Hefei, Shushan District, 230031, China
| | - JiaBin Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Anhui, Hefei, Shushan District, 230031, China.
| |
Collapse
|
32
|
Cytokine Storm in COVID-19: Immunopathogenesis and Therapy. Medicina (B Aires) 2022; 58:medicina58020144. [PMID: 35208467 PMCID: PMC8876409 DOI: 10.3390/medicina58020144] [Citation(s) in RCA: 133] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/07/2022] [Accepted: 01/15/2022] [Indexed: 12/15/2022] Open
Abstract
A cytokine storm is a hyperinflammatory state secondary to the excessive production of cytokines by a deregulated immune system. It manifests clinically as an influenza-like syndrome, which can be complicated by multi-organ failure and coagulopathy, leading, in the most severe cases, even to death. The term cytokine storm was first used in 1993 to describe the graft-versus-host disease following allogeneic hematopoietic stem cell transplantation. It was then reused to define the adverse syndromes secondary to the administration of immunostimulating agents, such as anti-CD28 antibodies or bioengineered immune cells, i.e., CAR T-cell therapy. Currently, the concept of cytokine storm has been better elucidated and extended to the pathogenesis of many other conditions, such as sepsis, autoinflammatory disease, primary and secondary hemophagocytic lymphohistiocytosis, and multicentric Castleman disease. Moreover, cytokine storm has recently emerged as a key aspect in the novel Coronavirus disease 2019, as affected patients show high levels of several key pro-inflammatory cytokines, such as IL-1, IL-2, IL-6, TNF-α, IFN-γ, IP-10, GM-CSF, MCP-1, and IL-10, some of which also correlate with disease severity. Therefore, since the onset of the pandemic, numerous agents have been tested in the effort to mitigate the cytokine storm in COVID-19 patients, some of which are effective in reducing mortality, especially in critically ill patients, and are now becoming standards of care, such as glucocorticoids or some cytokine inhibitors. However, the challenge is still far from being met, and other therapeutic strategies are being tested in the hope that we can eventually overcome the disease.
Collapse
|
33
|
De Simone S, Giacani E, Bosco MA, Vittorio S, Ferrara M, Bertozzi G, Cipolloni L, La Russa R. The Role of miRNAs as New Molecular Biomarkers for Dating the Age of Wound Production: A Systematic Review. Front Med (Lausanne) 2022; 8:803067. [PMID: 35096893 PMCID: PMC8795691 DOI: 10.3389/fmed.2021.803067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/22/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The timing of wounds production is a significant issue in forensic pathology. Although various methods have been evaluated, obtaining an accurate dating of lesions is still a challenge. The pathologist uses many parameters to value wound age, such as histological and immunohistochemical. In recent years, there have been many studies regarding the use of miRNAs in wound-age estimation; indeed, miRNAs have multiple potential uses in forensic pathology. SCOPE This review aims to verify the efficacy and feasibility of miRNAs as a tool for determining the timing of lesions. MATERIALS AND METHODS The authors conducted the systematic review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. PubMed was used as a search engine to find articles published between January, 1st 2016 and October, 1st 2021, to evaluate the current state of the art regarding wound-age estimation. RESULTS A total of 256 articles were collected; after screening according to PRISMA guidelines, the systematic review included 8 articles. The studies included in this review were all Original articles evaluating the use of biomarkers for wound-age determination. DISCUSSION AND CONCLUSION The literature review showed that analysis of miRNA is an innovative field of study with significant potentiality in forensic pathology. There are few studies, and almost all of them are at an early stage. The challenge is to understand how to standardize the samples' selection to obtain reliable experimental data. This observation represents a necessary prerequisite to planning further clinical trials.
Collapse
Affiliation(s)
- Stefania De Simone
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Elena Giacani
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Maria Antonella Bosco
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Simona Vittorio
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Michela Ferrara
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Bertozzi
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Luigi Cipolloni
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
34
|
Mo G, Mo J, Tan X, Wang J, Yan Z, Liu Y. Yin Yang 1 (YY1)-induced long intergenic non-protein coding RNA 472 (LINC00472) aggravates sepsis-associated cardiac dysfunction via the micro-RNA-335-3p (miR-335-3p)/Monoamine oxidase A (MAOA) cascade. Bioengineered 2022; 13:1049-1061. [PMID: 35112970 PMCID: PMC8973897 DOI: 10.1080/21655979.2021.2017589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 11/15/2022] Open
Abstract
As a leading complication of sepsis, sepsis-induced cardiac dysfunction (SICD) contributed to the high mortality of patients with sepsis. Long non-coding RNA (LncRNA) LINC00472 has been reported to be in sepsis-induced disease. Nonetheless, its biological function and underlying molecular in SICD remain largely unknown. In this study, in vivo and in vitro SICD models were established via LPS treatment. H&E staining was employed for the evaluation of myocardial injury. ELISA assay was performed to detect cardiac Troponin I (cTnI), creatine kinase-MB (CK-MB), interleukin (IL)-1β, and tumor necrosis factor-α (TNF-α) levels. Cardiomyocyte viability and apoptosis were assessed via CCK-8 and flow cytometry assays. The transcriptional regulation of YY1 on LINC00472 was demonstrated via ChIP assay. Besides, the interaction between YY1 and LINC00472, as well as the association between miR-335-3p and LINC00472 or MAOA were verified via luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Herein, highly expressed LINC00472 was observed in both in vivo and in vitro SICD models. LINC00472 knockdown substantially attenuated LPS-induced inhibition on cardiomyocyte viability and reversed cardiomyocyte apoptosis and inflammatory response mediated by LPS treatment. YY1 induced LINC00472 upregulation, thereby promoting cardiomyocyte dysfunction induced by LPS. In addition, MAOA upregulation or miR-335-3p inhibition could partly reverse the suppressive effect on LPS-induced cardiomyocyte dysfunction mediated by LINC00472 knockdown. Based on our results, it seemed that YY1-activated LINC00472 might contribute to SICD progression via the miR-335-3p/MAOA pathway.
Collapse
Affiliation(s)
- Guixi Mo
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang City, Guangdong Province, China
| | - Jian Mo
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang City, Guangdong Province, China
| | - Xiujuan Tan
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang City, Guangdong Province, China
| | - Jingjing Wang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang City, Guangdong Province, China
| | - Zhenyi Yan
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang City, Guangdong Province, China
| | - Yijun Liu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang City, Guangdong Province, China
| |
Collapse
|
35
|
Huang L, Wu C, Xu D, Cui Y, Tang J. Screening of Important Factors in the Early Sepsis Stage Based on the Evaluation of ssGSEA Algorithm and ceRNA Regulatory Network. Evol Bioinform Online 2021; 17:11769343211058463. [PMID: 34866895 PMCID: PMC8637398 DOI: 10.1177/11769343211058463] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Sepsis is a dysregulated host response to pathogens. Delay in sepsis diagnosis has become a primary cause of patient death. This study determines some factors to prevent septic shock in its early stage, contributing to the early treatment of sepsis. Methods: The sequencing data (RNA- and miRNA-sequencing) of patients with septic shock were obtained from the NCBI GEO database. After re-annotation, we obtained lncRNAs, miRNA, and mRNA information. Then, we evaluated the immune characteristics of the sample based on the ssGSEA algorithm. We used the WGCNA algorithm to obtain genes significantly related to immunity and screen for important related factors by constructing a ceRNA regulatory network. Result: After re-annotation, we obtained 1708 lncRNAs, 129 miRNAs, and 17 326 mRNAs. Also, through the ssGSEA algorithm, we obtained 5 important immune cells. Finally, we constructed a ceRNA regulation network associated with SS pathways. Conclusion: We identified 5 immune cells with significant changes in the early stage of septic shock. We also constructed a ceRNA network, which will help us explore the pathogenesis of septic shock.
Collapse
Affiliation(s)
- Liou Huang
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Chunrong Wu
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Dan Xu
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yuhui Cui
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianguo Tang
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Song J, Yu R, Qi J, Wang X, Shen Q. Aberrant long non-coding RNA cancer susceptibility 15 (CASC15) plays a diagnostic biomarker and regulates inflammatory reaction in neonatal sepsis. Bioengineered 2021; 12:10373-10381. [PMID: 34870560 PMCID: PMC8809971 DOI: 10.1080/21655979.2021.1996514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Neonatal sepsis (NS) is one of the important causes of neonatal death. There are many studies to confirm the role of long non-coding RNA (lncRNA) in neonatal infectious diseases. This study aimed to explore the level of cancer susceptibility 15 (CASC15) and its effect on inflammatory response in NS. Seventy-nine neonatal pneumonia (NP) patients and 80 NS patients were enrolled in this study. Reverse Transcription-quantitative PCR (RT-qPCR) was used to determine the expression levels of CASC15 and miR-144-3p. Receiver operating characteristic (ROC) curve was drawn to evaluate the diagnostic value of CASC15 in NS. RAW264.7 cells were stimulated with LPS to simulate the inflammatory response in NS patients, and the regulation and mechanism of CASC15 on the inflammatory response were explored in this in vitro cell model. Serum CASC15 was upregulated in NS patients, and it had the ability to distinguish NS patients from NP patients. LPS stimulation increased the expression of CASC15 and simultaneously stimulated the secretion of inflammatory cytokines, while the knockdown of CASC15 alleviated the inflammatory response induced by LPS stimulation. Besides, serum miR-144-3p was reduced in NS patients, and luciferase reporter genes showed that miR-144-3p was a direct target of CASC15. Overexpression of CASC15 may promote the inflammatory response of NS by targeted regulating the expression of miR-144-3p, which may provide us with new insights in the treatment of NS.
Collapse
Affiliation(s)
- Jia Song
- Department of Neonatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, China
| | - Ruihua Yu
- Department of Neonatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, China
| | - Jianhong Qi
- Department of Neonatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, China
| | - Xiaokang Wang
- Department of Neonatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, China
| | - Qingqing Shen
- Department of Neonatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, China
| |
Collapse
|
37
|
Liu J, Yang Y, Lu R, Liu Q, Hong S, Zhang Z, Hu G. MicroRNA-381-3p signatures as a diagnostic marker in patients with sepsis and modulates sepsis-steered cardiac damage and inflammation by binding HMGB1. Bioengineered 2021; 12:11936-11946. [PMID: 34784841 PMCID: PMC8810158 DOI: 10.1080/21655979.2021.2006967] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/18/2023] Open
Abstract
Immune response imbalance and cardiac dysfunction caused by sepsis are the main reasons for death in sepsis. This study aimed to confirm the expression and diagnostic possibility of microRNA-381-3p (miR-381-3p) and its mechanism in sepsis. Quantitative real-time PCR (qRT-PCR) and receiver operating characteristic (ROC) were used to reveal the levels and clinical significance of miR-381-3p. Pearson correlation was conducted to provide the correlations between miR-381-3p and several indexes of sepsis. The H9c2 cell models were constructed by lipopolysaccharide (LPS), and cecal ligation and puncture (CLP) was applied to establish the Sprague-Dawley (SD) rat models. Cell Counting Kit-8 (CCK-8) and flow cytometry were the methods to detect the cell viability and death rate of H9c2. Enzyme-linked immunosorbent assay (ELISA) was performed to evaluate the concentration of inflammatory cytokines. The target gene of miR-381-3p was validated via the luciferase report system. The low expression of miR-381-3p was found in the serum of patients with sepsis. The lessened miR-381-3p could be a marker in the discrimination of sepsis patients. Overexpression of miR-381-3p could repress the mRNA expression of HMGB1, inhibit the cell apoptosis and inflammatory response, and motivate the viability of sepsis cells. At the same time, enhanced miR-381-3p promoted the inhibition of inflammation and cardiac dysfunction in the rat model of sepsis. Collectively, reduced levels of serum miR-381-3p can be used as an index to detect sepsis patients. MiR-381-3p restored the inflammatory response and myocardial dysfunction caused by sepsis via HMGB1.
Collapse
Affiliation(s)
- Jian Liu
- Department of Intensive Medicine, Shengli Oilfield Central Hospital, Dongying, China
| | - Yadong Yang
- Department of Emergency, Shengli Oilfield Central Hospital, Dongying, China
| | - Rong Lu
- Department of Laboratory, Shengli Oilfield Central Hospital, Dongying, China
| | - Qin Liu
- Department of Intensive Medicine, Shengli Oilfield Central Hospital, Dongying, China
| | - Shukun Hong
- Department of Intensive Medicine, Shengli Oilfield Central Hospital, Dongying, China
| | - Zhaolong Zhang
- Department of Intensive Medicine, Shengli Oilfield Central Hospital, Dongying, China
| | - Guoxin Hu
- Department of Emergency, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|
38
|
Manetti AC, Maiese A, Baronti A, Mezzetti E, Frati P, Fineschi V, Turillazzi E. MiRNAs as New Tools in Lesion Vitality Evaluation: A Systematic Review and Their Forensic Applications. Biomedicines 2021; 9:1731. [PMID: 34829960 PMCID: PMC8615694 DOI: 10.3390/biomedicines9111731] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Wound vitality demonstration is one of the most challenging fields in forensic pathology. In recent years, researchers focused on the application of histological and immunohistochemical staining in this sphere of study. It is based on the detection of inflammation, red cell infiltration, and tissue alterations at the histological examination, all of which are supposedly present in antemortem rather than post-mortem wounds. Nevertheless, some doubts about the reliability of those markers have arisen. Furthermore, the lack of a standardized protocol and the operator dependency of this approach make the proper interpretation of its results difficult. Moreover, a differential miRNAs expression has been demonstrated in antemortem and post-mortem wounds. Herein, a systematic review concerning the current knowledge about the use of miRNAs in lesion vitality evaluation is carried out, to encourage researchers to deepen this peculiar study area. A compendium about the potential miRNAs that may be further investigated as vitality markers is also provided. The aim is to collect all available data about this topic to direct further studies on this field and highlight the future applications of miRNAs in forensic pathology. We found 20 articles and a total of 51 miRNAs that are involved in inflammation and wound healing. Further studies are certainly needed to deepen the role of miRNAs in inflammatory processes in lesioned skin and to evaluate their reliability in distinguishing between antemortem and post-mortem lesions.
Collapse
Affiliation(s)
- Alice Chiara Manetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Section of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.C.M.); (A.M.); (A.B.); (E.M.); (E.T.)
| | - Aniello Maiese
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Section of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.C.M.); (A.M.); (A.B.); (E.M.); (E.T.)
| | - Arianna Baronti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Section of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.C.M.); (A.M.); (A.B.); (E.M.); (E.T.)
| | - Eleonora Mezzetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Section of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.C.M.); (A.M.); (A.B.); (E.M.); (E.T.)
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00186 Rome, Italy;
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00186 Rome, Italy;
| | - Emanuela Turillazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Section of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.C.M.); (A.M.); (A.B.); (E.M.); (E.T.)
| |
Collapse
|
39
|
Lu Q, Zhang D, Liu H, Xu H. miR-942-5p prevents sepsis-induced acute lung injury via targeting TRIM37. Int J Exp Pathol 2021; 102:192-199. [PMID: 34716956 DOI: 10.1111/iep.12413] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/14/2021] [Accepted: 09/18/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) have been demonstrated to play pivotal roles in the pathogenesis of sepsis-induced acute lung injury (ALI). In this work, we aimed to clarify the potential role and the underlying mechanism of miR-942-5p in a lipopolysaccharide (LPS)-induced A549 cell injury model. The cell injury was evaluated by CCK-8 assay, flow cytometry and enzyme-linked immunosorbent assay (ELISA). The expression levels of miR-942-5p and tripartite motif-containing protein 37 (TRIM37) were measured by real-time PCR and Western blot, and their association was then validated by bioinformatics, luciferase reporter assay and RNA pull-down assay. We found that the expression of miR-942-5p was decreased in LPS-treated A549 cells. Furthermore, LPS treatment suppressed A549 cell viability, promoted apoptosis and increased the levels of inflammatory cytokines. Conversely, overexpression of miR-942-5p increased cell viability, reduced apoptosis and alleviated inflammatory cytokine secretion in the presence of LPS. Moreover, miR-942-5p directly targeted TRIM37 by binding to the 3'-UTR of TRIM37 mRNA. Upregulation of TRIM37 effectively reversed the anti-apoptotic and anti-inflammatory effects of miR-942-5p in LPS-induced A549 cells. Our findings suggested that miR-942-5p protected against LPS-induced cell injury through inhibiting apoptosis and inflammation in A549 cells by negatively regulating TRIM37.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Emergency, Yiyang Central Hospital, Yiyang, China
| | - Dinggao Zhang
- Department of Emergency, Yiyang Central Hospital, Yiyang, China
| | - Hui Liu
- Department of Emergency, Yiyang Central Hospital, Yiyang, China
| | - Hao Xu
- Department of Emergency, Yiyang Central Hospital, Yiyang, China
| |
Collapse
|
40
|
Diet-Derived Advanced Glycation End Products (dAGEs) Induce Proinflammatory Cytokine Expression in Cardiac and Renal Tissues of Experimental Mice: Protective Effect of Curcumin. Cardiovasc Toxicol 2021; 22:35-51. [PMID: 34655413 DOI: 10.1007/s12012-021-09697-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
The beneficial effect of curcumin (CU) on dietary AGEs (dAGEs) involves blocking the overexpression of proinflammatory cytokine genes in the heart and kidney tissues of experimental mice. The animals were divided into six groups (n = 6/group) and were fed a heat-exposed diet (dAGEs) with or without CU for 6 months. Their blood pressure (BP) was monitored by a computerized tail-cuff BP-monitoring system. The mRNA and protein expression levels of proinflammatory genes were analyzed by RT-PCR and western blot, respectively. A marked increase in BP (108 ± 12 mmHg vs 149 ± 15 mmHg) accompanied by a marked increase in the heart and kidney weight ratio was noted in the dAGE-fed mice. Furthermore, the plasma levels of proinflammatory molecules (C5a, ICAM-1, IL-6, MCP-1, IL-1β and TNF-α) were found to be elevated (3-fold) in dAGE-fed mice. mRNA expression analysis revealed a significant increase in the expression levels of inflammatory markers (Cox-2, iNOS, and NF-κB) (3-fold) in cardiac and renal tissues of dAGE-fed mice. Moreover, increased expression of RAGE and downregulation of AGER-1 (p < 0.001) were noticed in the heart and kidney tissues of dAGE-fed mice. Interestingly, the dAGE-induced proinflammatory genes and inflammatory responses were neutralized upon cotreatment with CU. The present study demonstrates that dietary supplementation with CU has the ability to neutralize dAGE-induced adverse effects and alleviate proinflammatory gene expression in the heart and kidney tissues of experimental mice.
Collapse
|
41
|
Chen P, An Q, Huang Y, Zhang M, Mao S. Prevention of endotoxin-induced cardiomyopathy using sodium tanshinone IIA sulfonate: Involvement of augmented autophagy and NLRP3 inflammasome suppression. Eur J Pharmacol 2021; 909:174438. [PMID: 34437885 DOI: 10.1016/j.ejphar.2021.174438] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022]
Abstract
Increasing evidence indicates that patients or experimental animals exposure to endotoxin (lipopolysaccharides, LPS) exert deleterious cardiac functions that greatly contribute to morbidity and mortality. The pathophysiologic processes, including NLRP3 inflammasome overactivation and cardiac inflammatory injury, are complicated. Sodium tanshinone IIA sulfonate (STS), a water-soluble derivative of tanshinone IIA, is a naturally occurring compound extracted from Salvia miltiorrhiza and has anti-inflammatory and cardioprotective properties. In this study we examined the effect of STS on endotoxin-induced cardiomyopathy and investigated the underlying mechanisms. An endotoxemic mouse model was established by injecting LPS (10 mg/kg). Different doses of STS were administered intraperitoneally (5, 10, or 50 mg/kg) at different time points (2/12 h, 4/12 h, and 8/12 h) after LPS challenge to assess its effect on survival of mice with endotoxemia. In parallel, cardiac function, myocardial inflammatory cytokines, cardiomyocyte pyroptosis and autophagy were evaluated to determine the extent of myocardial damage due to sepsis in the presence and absence of STS at the optimal dose (10 mg/kg) and time-point (2/12 h). The results demonstrated that STS increased the survival rates, improved the compromised cardiac function and reduced myocardial inflammatory injury associated with enhanced autophagy and mitigated NLRP3 inflammasome activation. Moreover, inhibiting of autophagy or blocking the AMPK pathway reversed STS-elicited prevention of cardiomyopathy and activated the NLRP3 inflammasome in endotoxemic mice. Collectively, our study demonstrates that STS attenuates endotoxemia-induced mortality and cardiomyopathy, which may be associated with promotion of autophagy and inhibition of NLRP3 inflammasome overactivation.
Collapse
Affiliation(s)
- Peipei Chen
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Qiyuan An
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China; Southern Medical University, Guangzhou, 510515, China
| | - Yuxin Huang
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Minzhou Zhang
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Shuai Mao
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China; Guangdong Provincial Branch of National Clinical Research Centre for Chinese Medicine Cardiology, Guangzhou, 510120, China.
| |
Collapse
|
42
|
Cheng XJ, Li L, Xin BQ. MiR-124 Regulates the Inflammation and Apoptosis in Myocardial Infarction Rats by Targeting STAT3. Cardiovasc Toxicol 2021; 21:710-720. [PMID: 34037971 DOI: 10.1007/s12012-021-09661-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/17/2021] [Indexed: 11/27/2022]
Abstract
This study aimed to discover the effect of miR-124/STAT3 axis on the inflammation and cell apoptosis in myocardial infarction (MI) rats. Sprague-Dawley (SD) male rats were selected for establishing MI models and divided into Sham, MI, MI + anti-miR-124 and MI + Ad-miR-124 groups. Cardiac function was detected via echocardiography. Hematoxylin & eosin (HE) and triphenyltetrazolium chloride (TTC) staining were used to observe the pathological changes and infarction area, while transferase (TdT)-mediated D-UTP-biotin nick end labeling (TUNEL) assay was to observe myocardial apoptosis. Enzyme-linked immunosorbent assay (ELISA) was used to determine the serum levels of inflammatory cytokines. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blotting were performed to determine the mRNA and protein levels, respectively. Dual luciferase reporter gene assay revealed that STAT3 was a target gene of miR-124. The expression levels of miR-124 were increased and the pSTAT3/STAT3 ratio was reduced in the MI rats. The rats in the MI group showed enhanced LVEDD and LVESD, reduced LVEF and LVFS, as well as larger myocardial infarction area compared with the Sham group, Besides, IL-1β, IL-6, TNF-α and MCP-1 levels were elevated and the expressions of Bax/Bcl-2 ratio and cleaved caspase-3 were downregulated in MI group. We further found that silencing miR-124 improved cardiac function, reduced infarction area and the levels of inflammatory cytokines, as well as prevented myocardial apoptosis in MI rats. Silencing miR-124 could inhibit the inflammation and apoptosis of myocardial cells, thereby relieving the MI injury via upregulation of STAT3.
Collapse
Affiliation(s)
- Xiao-Jing Cheng
- Department of Cardiovascular Medicine, Rizhao People's Hospital, No. 126, Taian Road, Donggang District, Rizhao, 276800, Shandong, China
| | - Lei Li
- Department of Cardiovascular Medicine, Rizhao People's Hospital, No. 126, Taian Road, Donggang District, Rizhao, 276800, Shandong, China
| | - Ben-Qiang Xin
- Department of Cardiovascular Medicine, Rizhao People's Hospital, No. 126, Taian Road, Donggang District, Rizhao, 276800, Shandong, China.
| |
Collapse
|
43
|
Zhang C, Li J, Li H, Wang G, Wang Q, Zhang X, Li B, Xu H. lncRNA MIR155HG Accelerates the Progression of Sepsis via Upregulating MEF2A by Sponging miR-194-5p. DNA Cell Biol 2021; 40:811-820. [PMID: 34030477 DOI: 10.1089/dna.2021.0038] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNA MIR155HG exerts important effects in the progression of multiple diseases. This study investigated the functions of MIR155HG in sepsis development. Blood samples were collected from 28 patients with sepsis and 28 without sepsis. The murine cardiac muscle cell line (HL-1) and macrophage cell line (RAW 264.7) treated with lipopolysaccharide (LPS) were used as the in vitro sepsis models. The levels of MIR155HG, miR-194-5p, and MEF2A were determined using real-time-quantitative polymerase chain reaction. Cell counting kit-8 and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assays were used to assess cell viability and apoptosis, respectively. The association between miR-194-5p and MIR155HG or MEF2A was confirmed using a dual-luciferase reporter assay. The levels of inflammatory cytokines were detected using enzyme-linked immunosorbent assay (ELISA). In this study, we demonstrated that MIR155HG expression was significantly increased in sepsis blood samples, RAW 264.7, and HL-1 cells treated with LPS. Silencing of MIR155HG promoted cell viability and obstructed cell apoptosis and inflammation of RAW 264.7 and HL-1 cells treated with LPS. MiR-194-5p depletion abrogated cell viability promotion and suppressive effect on cell apoptosis and inflammation caused by MIR155HG knockdown. In addition, MIR155HG upregulated MEF2A through interaction with miR-194-5p. Finally, rescue assays indicated that MEF2A overexpression abolished the inhibitory effect on sepsis progression induced by MIR155HG deletion. In conclusion, MIR155HG promotes sepsis progression in an in vitro sepsis model by modulating the miR-194-5p/MEF2A axis. This discovery provides a promising biomarker for sepsis therapy.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Intensive Care Medicine, Huai'an Hongze District People's Hospital, Huai'an, P.R. China
| | - Jing Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Hongjing Li
- Department of Pneumoconiosis, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Guiling Wang
- Department of Rehabilitation, Huai'an Hongze District Hospital of Traditional Chinese Medicine, Huai'an, P.R. China
| | - Qingqing Wang
- Department of Intensive Care Medicine, Huai'an Hongze District People's Hospital, Huai'an, P.R. China
| | - Xin Zhang
- Department of Intensive Care Medicine, Huai'an Hongze District People's Hospital, Huai'an, P.R. China
| | - Baiteng Li
- Department of Intensive Care Medicine, Huai'an Hongze District People's Hospital, Huai'an, P.R. China
| | - Haixu Xu
- Department of Intensive Care Medicine, Huai'an Hongze District People's Hospital, Huai'an, P.R. China
| |
Collapse
|