1
|
Wu C, Bao S, Sun H, Chen X, Yang L, Li R, Peng Y. Noncoding RNAs regulating ferroptosis in cardiovascular diseases: novel roles and therapeutic strategies. Mol Cell Biochem 2024; 479:2827-2841. [PMID: 38064139 PMCID: PMC11473578 DOI: 10.1007/s11010-023-04895-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/06/2023] [Indexed: 10/15/2024]
Abstract
The morbidity and mortality rates of cardiovascular diseases (CVDs) are increasing; thus, they impose substantial health and economic burdens worldwide, and effective interventions are needed for immediate resolution of this issue. Recent studies have suggested that noncoding RNAs (ncRNAs) play critical roles in the occurrence and development of CVDs and are potential therapeutic targets and novel biomarkers for these diseases. Newly discovered modes of cell death, including necroptosis, pyroptosis, apoptosis, autophagy-dependent cell death and ferroptosis, also play key roles in CVD progression. However, ferroptosis, which differs from the other aforementioned forms of regulated cell death in terms of cell morphology, biochemistry and inhereditability, is a unique iron-dependent mode of nonapoptotic cell death induced by abnormal iron metabolism and excessive accumulation of iron-dependent lipid peroxides and reactive oxygen species (ROS). Increasing evidence has confirmed that ncRNA-mediated ferroptosis is involved in regulating tissue homeostasis and CVD-related pathophysiological conditions, such as cardiac ischemia/reperfusion (I/R) injury, myocardial infarction (MI), atrial fibrillation (AF), cardiomyopathy and heart failure (HF). In this review, we summarize the underlying mechanism of ferroptosis, discuss the pathophysiological effects of ncRNA-mediated ferroptosis in CVDs and provide ideas for effective therapeutic strategies.
Collapse
Affiliation(s)
- Changyong Wu
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Suli Bao
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Huang Sun
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaocui Chen
- Department of Gastroenterology, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Lu Yang
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruijie Li
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Yunzhu Peng
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
Perry AS, Amancherla K, Huang X, Lance ML, Farber-Eger E, Gajjar P, Amrute J, Stolze L, Zhao S, Sheng Q, Joynes CM, Peng Z, Tanaka T, Drakos SG, Lavine KJ, Selzman C, Visker JR, Shankar TS, Ferrucci L, Das S, Wilcox J, Patel RB, Kalhan R, Shah SJ, Walker KA, Wells Q, Tucker N, Nayor M, Shah RV, Khan SS. Clinical-transcriptional prioritization of the circulating proteome in human heart failure. Cell Rep Med 2024; 5:101704. [PMID: 39226894 PMCID: PMC11524958 DOI: 10.1016/j.xcrm.2024.101704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/15/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024]
Abstract
Given expanding studies in epidemiology and disease-oriented human studies offering hundreds of associations between the human "ome" and disease, prioritizing molecules relevant to disease mechanisms among this growing breadth is important. Here, we link the circulating proteome to human heart failure (HF) propensity (via echocardiographic phenotyping and clinical outcomes) across the lifespan, demonstrating key pathways of fibrosis, inflammation, metabolism, and hypertrophy. We observe a broad array of genes encoding proteins linked to HF phenotypes and outcomes in clinical populations dynamically expressed at a transcriptional level in human myocardium during HF and cardiac recovery (several in a cell-specific fashion). Many identified targets do not have wide precedent in large-scale genomic discovery or human studies, highlighting the complementary roles for proteomic and tissue transcriptomic discovery to focus epidemiological targets to those relevant in human myocardium for further interrogation.
Collapse
Affiliation(s)
- Andrew S Perry
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kaushik Amancherla
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Xiaoning Huang
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Eric Farber-Eger
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Priya Gajjar
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Junedh Amrute
- Cardiology Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsey Stolze
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cassandra M Joynes
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Zhongsheng Peng
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Stavros G Drakos
- Division of Cardiovascular Medicine, University of Utah and Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), Salt Lake City, UT, USA
| | - Kory J Lavine
- Cardiology Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Craig Selzman
- Department of Cardiac Surgery, University of Utah School of Medicine, Division of Cardiothoracic Surgery, University of Utah and Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), Salt Lake City, UT, USA
| | - Joseph R Visker
- Division of Cardiovascular Medicine, University of Utah and Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), Salt Lake City, UT, USA
| | - Thirupura S Shankar
- Division of Cardiovascular Medicine, University of Utah and Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), Salt Lake City, UT, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Saumya Das
- Cardiovascular Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jane Wilcox
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ravi B Patel
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ravi Kalhan
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sanjiv J Shah
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Quinn Wells
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Matthew Nayor
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Ravi V Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Sadiya S Khan
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
3
|
Yang Z, Cao Y, Kong L, Xi J, Liu S, Zhang J, Cheng W. Small molecules as modulators of the proteostasis machinery: Implication in cardiovascular diseases. Eur J Med Chem 2024; 264:116030. [PMID: 38071793 DOI: 10.1016/j.ejmech.2023.116030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/25/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023]
Abstract
With the escalating prevalence of cardiovascular diseases, the substantial socioeconomic burden on healthcare systems is intensifying. Accumulating empirical evidence underscores the pivotal role of the proteostasis network in regulating cardiac homeostasis and function. Disruptions in proteostasis may contribute to the loss of protein function or the acquisition of toxic functions, which are intricately linked to the development of cardiovascular ailments such as atrial fibrillation, heart failure, atherosclerosis, and cardiac aging. It is widely acknowledged that the proteostasis network encompasses molecular chaperones, autophagy, and the ubiquitin proteasome system (UPS). Consequently, the proteostasis network emerges as an appealing target for therapeutic interventions in cardiovascular diseases. Numerous small molecules, acting as modulators of the proteostasis machinery, have exhibited therapeutic efficacy in managing cardiovascular diseases. This review centers on elucidating the role of the proteostasis network in various cardiovascular diseases and explores the potential of small molecules as therapeutic agents.
Collapse
Affiliation(s)
- Zhiheng Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yu Cao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, China
| | - Limin Kong
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, China
| | - Shourong Liu
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, China.
| | - Jiankang Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| | - Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
4
|
Huiskes FG, Creemers EE, Brundel BJJM. Dissecting the Molecular Mechanisms Driving Electropathology in Atrial Fibrillation: Deployment of RNA Sequencing and Transcriptomic Analyses. Cells 2023; 12:2242. [PMID: 37759465 PMCID: PMC10526291 DOI: 10.3390/cells12182242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Despite many efforts to treat atrial fibrillation (AF), the most common progressive and age-related cardiac tachyarrhythmia in the Western world, the efficacy is still suboptimal. A plausible reason for this is that current treatments are not directed at underlying molecular root causes that drive electrical conduction disorders and AF (i.e., electropathology). Insights into AF-induced transcriptomic alterations may aid in a deeper understanding of electropathology. Specifically, RNA sequencing (RNA-seq) facilitates transcriptomic analyses and discovery of differences in gene expression profiles between patient groups. In the last decade, various RNA-seq studies have been conducted in atrial tissue samples of patients with AF versus controls in sinus rhythm. Identified differentially expressed molecular pathways so far include pathways related to mechanotransduction, ECM remodeling, ion channel signaling, and structural tissue organization through developmental and inflammatory signaling pathways. In this review, we provide an overview of the available human AF RNA-seq studies and highlight the molecular pathways identified. Additionally, a comparison is made between human RNA-seq findings with findings from experimental AF model systems and we discuss contrasting findings. Finally, we elaborate on new exciting RNA-seq approaches, including single-nucleotide variants, spatial transcriptomics and profiling of different populations of total RNA, small RNA and long non-coding RNA.
Collapse
Affiliation(s)
- Fabries G. Huiskes
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, VUmc, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ, Amsterdam, The Netherlands;
- Department of Experimental Cardiology, Amsterdam UMC, Location AMC, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1105 AZ Amsterdam, The Netherlands;
| | - Esther E. Creemers
- Department of Experimental Cardiology, Amsterdam UMC, Location AMC, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1105 AZ Amsterdam, The Netherlands;
| | - Bianca J. J. M. Brundel
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, VUmc, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ, Amsterdam, The Netherlands;
| |
Collapse
|
5
|
Zou Y, Shi H, Liu N, Wang H, Song X, Liu B. Mechanistic insights into heat shock protein 27, a potential therapeutic target for cardiovascular diseases. Front Cardiovasc Med 2023; 10:1195464. [PMID: 37252119 PMCID: PMC10219228 DOI: 10.3389/fcvm.2023.1195464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Heat shock protein 27 (HSP27) is a small chaperone protein that is overexpressed in a variety of cellular stress states. It is involved in regulating proteostasis and protecting cells from multiple sources of stress injury by stabilizing protein conformation and promoting the refolding of misfolded proteins. Previous studies have confirmed that HSP27 is involved in the development of cardiovascular diseases and plays an important regulatory role in this process. Herein, we comprehensively and systematically summarize the involvement of HSP27 and its phosphorylated form in pathophysiological processes, including oxidative stress, inflammatory responses, and apoptosis, and further explore the potential mechanisms and possible roles of HSP27 in the diagnosis and treatment of cardiovascular diseases. Targeting HSP27 is a promising future strategy for the treatment of cardiovascular diseases.
Collapse
|
6
|
Rafaqat S, Rafaqat S, Rafaqat S. The Role of Major Biomarkers of Stress in Atrial Fibrillation: A Literature Review. J Innov Card Rhythm Manag 2023; 14:5355-5364. [PMID: 36874560 PMCID: PMC9983621 DOI: 10.19102/icrm.2023.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/19/2022] [Indexed: 03/07/2023] Open
Abstract
Numerous studies have reported that physical or emotional stress can provoke atrial fibrillation (AF) or vice versa, which suggests a potential link between exposure to external stressors and AF. This review article sought to describe in detail the relationship between major stress biomarkers and the pathogenesis of AF and presents up-to-date knowledge on the role of physiological and psychological stress in AF patients. For this purpose, this review article contends that plasma cortisol is linked to a greater risk of AF. A previous study has investigated the association between increased copeptin levels and paroxysmal AF (PAF) in rheumatic mitral stenosis and reported that copeptin concentration was not independently associated with AF duration. Reduced levels of chromogranin were measured in patients with AF. Furthermore, the dynamic activity of antioxidant enzymes, including catalase as well as superoxide dismutase, was examined in PAF patients during a period of <48 h. Malondialdehyde activity, serum high-sensitivity C-reactive protein, and high mobility group box 1 protein concentrations were significantly greater in patients with persistent AF or PAF compared to controls. Pooled data from 13 studies confirmed a significant reduction in the risk of AF related to the administration of vasopressin. Other studies have revealed the mechanism of action of heat shock proteins (HSPs) in preventing AF and also discussed the therapeutic potential of HSP-inducing compounds in clinical AF. More research is required to detect other biomarkers of stress, which have not been reported in the pathogenesis of AF. Further studies are required to identify their mechanism of action and drugs to manage these biomarkers of stress in AF patients, which might help to reduce the prevalence of AF globally.
Collapse
Affiliation(s)
- Saira Rafaqat
- Department of Zoology, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Sana Rafaqat
- Department of Biotechnology, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Simon Rafaqat
- Department of Business, Forman Christian College (A Chartered University), Lahore, Punjab, Pakistan
| |
Collapse
|
7
|
Zhao M, Zhou J, Tang Y, Liu M, Dai Y, Xie H, Wang Z, Chen L, Wu Y. Genome-wide analysis of RNA-binding proteins co-expression with alternative splicing events in mitral valve prolapse. Front Immunol 2023; 14:1078266. [PMID: 37180137 PMCID: PMC10171460 DOI: 10.3389/fimmu.2023.1078266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Objectives We investigated the role and molecular mechanisms of RNA-binding proteins (RBPs) and their regulated alternative splicing events (RASEs) in the pathogenesis of mitral valve prolapse (MVP). Methods For RNA extraction, we obtained peripheral blood mononuclear cells (PBMCs) from five patients with MVP, with or without chordae tendineae rupture, and five healthy individuals. High-throughput sequencing was used for RNA sequencing (RNA-seq). Differentially expressed genes (DEGs) analysis, alternative splicing (AS) analysis, functional enrichment analysis, co-expression of RBPs, and alternative splicing events (ASEs) analysis were conducted. Results The MVP patients exhibited 306 up-regulated genes and 198 down-regulated genes. All down- and up-regulated genes were enriched in both Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Furthermore, MVP was closely associated with the top 10 enriched terms and pathways. In MVP patients, 2,288 RASEs were found to be significantly different, and four suitable RASEs (CARD11 A3ss, RBM5 ES, NCF1 A5SS, and DAXX A3ss) were tested. We identified 13 RNA-binding proteins (RBPs) from the DEGs and screened out four RBPs (ZFP36, HSPA1A, TRIM21, and P2RX7). We selected four RASEs based on the co-expression analyses of RBPs and RASEs, including exon skipping (ES) of DEDD2, alternative 3' splice site (A3SS) of ETV6, mutually exclusive 3'UTRs (3pMXE) of TNFAIP8L2, and A3SS of HLA-B. Furthermore, the selected four RBPs and four RASEs were validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and showed high consistency with RNA sequencing (RNA-seq). Conclusion Dysregulated RBPs and their associated RASEs may play regulatory roles in MVP development and may therefore be used as therapeutic targets in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liang Chen
- *Correspondence: Liang Chen, ; Yanhu Wu,
| | - Yanhu Wu
- *Correspondence: Liang Chen, ; Yanhu Wu,
| |
Collapse
|
8
|
Liu D, Han X, Zhang Z, Tse G, Shao Q, Liu T. Role of Heat Shock Proteins in Atrial Fibrillation: From Molecular Mechanisms to Diagnostic and Therapeutic Opportunities. Cells 2022; 12:cells12010151. [PMID: 36611952 PMCID: PMC9818491 DOI: 10.3390/cells12010151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Heat shock proteins (HSPs) are endogenous protective proteins and biomarkers of cell stress response, of which examples are HSP70, HSP60, HSP90, and small HSPs (HSPB). HSPs protect cells and organs, especially the cardiovascular system, against harmful and cytotoxic conditions. More recent attention has focused on the roles of HSPs in the irreversible remodeling of atrial fibrillation (AF), which is the most common arrhythmia in clinical practice and a significant contributor to mortality. In this review, we investigated the relationship between HSPs and atrial remodeling mechanisms in AF. PubMed was searched for studies using the terms "Heat Shock Proteins" and "Atrial Fibrillation" and their relevant abbreviations up to 10 July 2022. The results showed that HSPs have cytoprotective roles in atrial cardiomyocytes during AF by promoting reverse electrical and structural remodeling. Heat shock response (HSR) exhaustion, followed by low levels of HSPs, causes proteostasis derailment in cardiomyocytes, which is the basis of AF. Furthermore, potential implications of HSPs in the management of AF are discussed in detail. HSPs represent reliable biomarkers for predicting and staging AF. HSP inducers may serve as novel therapeutic modalities in postoperative AF. HSP induction, either by geranylgeranylacetone (GGA) or by other compounds presently in development, may therefore be an interesting new approach for upstream therapy for AF, a strategy that aims to prevent AF whilst minimizing the ventricular proarrhythmic risks of traditional anti-arrhythmic agents.
Collapse
Affiliation(s)
- Daiqi Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xuyao Han
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Zhiwei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Cardiac Electrophysiology Unit, Cardiovascular Analytics Group, Hong Kong, China
- Kent and Medway Medical School, Canterbury CT2 7NZ, UK
| | - Qingmiao Shao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Correspondence: (Q.S.); or (T.L.)
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Correspondence: (Q.S.); or (T.L.)
| |
Collapse
|
9
|
HSPB1 Regulates Autophagy and Apoptosis in Vascular Smooth Muscle Cells in Arteriosclerosis Obliterans. Cardiovasc Ther 2022; 2022:3889419. [PMID: 36474716 PMCID: PMC9678445 DOI: 10.1155/2022/3889419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/19/2022] [Indexed: 11/15/2022] Open
Abstract
Objective Small heat shock protein-1 (HSPB1) is a small heat shock protein that participates in many cellular processes and alleviates stress-induced cell injury. Autophagy protects cells from many types of stress and plays a key role in preventing stress in arteriosclerosis obliterans (ASO). However, the roles of HSPB1 in autophagy and apoptosis in the context of ASO pathogenesis remain unclear. Methods In vivo and in vitro studies were used to determine whether HSPB1 is associated with ASO progression. The expression of HSPB1 was measured in normal and sclerotic blood vessels. The role of HSPB1 and its potential downstream signaling pathway were determined in VSMCs by overexpressing and silencing HSPB1. Results A total of 91 ASO patients admitted to and treated at our hospital from Sep. 2020 to Sep. 2021 were selected, and plasma HSPB1 expression was assessed. We divided the patients with ASO into the grade I (n = 39), II (n = 29), III (n = 10), and IV (n = 13) groups according to Fontaine's classification. Plasma HSPB1 levels were markedly decreased in patients with grade III (n = 10) and IV (n = 13) ASO compared with patients with grade I ASO. Furthermore, HSPB1 expression was significantly decreased, and p62 and cleaved caspase-3 were increased in the sclerotic vasculature compared to the normal vasculature (p < 0.05). Overexpression of HSPB1 promoted apoptosis of VSMCs following ox-LDL treatment. Knockdown of HSPB1 led to a marked increase in the expression of LC3II and Beclin-1 in ox-LDL-stimulated VSMCs, whereas knockdown of HSPB1 attenuated these changes (p < 0.05). Importantly, overexpression of HSPB1 promoted the dephosphorylation of JNK in ox-LDL-stimulated VSMCs. Conversely, downregulation of HSPB1 induced the opposite change. Conclusion Loss of HSPB1 promotes VSMC autophagy and inhibits VSMC apoptosis, which are associated with ASO. HSPB1 and its downstream signaling pathways could be potential therapeutic targets for ASO treatment.
Collapse
|
10
|
Dong Y, Xiao S, He J, Shi K, Chen S, Liu D, Huang B, Zhai Z, Li J. Angiotensin receptor-neprilysin inhibitor therapy and recurrence of atrial fibrillation after radiofrequency catheter ablation: A propensity-matched cohort study. Front Cardiovasc Med 2022; 9:932780. [PMID: 35990986 PMCID: PMC9386595 DOI: 10.3389/fcvm.2022.932780] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCompared with conventional medicines, angiotensin receptor-neprilysin inhibitor (ARNI) could further improve the prognosis for multiple cardiovascular diseases, such as heart failure, hypertension, and myocardial infarction. However, the relationship between ARNI therapy and the recurrence of atrial fibrillation (AF) after radiofrequency catheter ablation is currently unknown.MethodsThis study is a retrospective cohort study. Patients with consecutive persistent or paroxysmal AF undergoing first-time radiofrequency ablation were enrolled from February 2018 to October 2021. We compared the risk of AF recurrence in patients with catheter ablation who received ARNI with the risk of AF recurrence in those who received the angiotensin-converting enzyme inhibitor (ACEI). The propensity-score matched analysis was conducted to examine the effectiveness of ARNI. We used a Cox regression model to evaluate AF recurrence events.ResultsAmong 679 eligible patients, 155 patients with ARNI treatment and 155 patients with ACEI treatment were included in the analyses. At a median follow-up of 228 (196–322) days, ARNI as compared with ACEI was associated with a lower risk of AF recurrence [adjusted hazard ratio (HR), 0.39; 95% confidence interval (CI), 0.24–0.63; p < 0.001]. In addition, no interaction was found in the subgroup analysis.ConclusionAngiotensin receptor-neprilysin inhibitor treatment was associated with a decreased risk of AF recurrence after first-time radiofrequency catheter ablation.
Collapse
|
11
|
The Role of Mitochondrial Dysfunction in Atrial Fibrillation: Translation to Druggable Target and Biomarker Discovery. Int J Mol Sci 2021; 22:ijms22168463. [PMID: 34445167 PMCID: PMC8395135 DOI: 10.3390/ijms22168463] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 01/02/2023] Open
Abstract
Atrial fibrillation (AF) is the most prevalent and progressive cardiac arrhythmia worldwide and is associated with serious complications such as heart failure and ischemic stroke. Current treatment modalities attenuate AF symptoms and are only moderately effective in halting the arrhythmia. Therefore, there is an urgent need to dissect molecular mechanisms that drive AF. As AF is characterized by a rapid atrial activation rate, which requires a high energy metabolism, a role of mitochondrial dysfunction in AF pathophysiology is plausible. It is well known that mitochondria play a central role in cardiomyocyte function, as they produce energy to support the mechanical and electrical function of the heart. Details on the molecular mechanisms underlying mitochondrial dysfunction are increasingly being uncovered as a contributing factor in the loss of cardiomyocyte function and AF. Considering the high prevalence of AF, investigating the role of mitochondrial impairment in AF may guide the path towards new therapeutic and diagnostic targets. In this review, the latest evidence on the role of mitochondria dysfunction in AF is presented. We highlight the key modulators of mitochondrial dysfunction that drive AF and discuss whether they represent potential targets for therapeutic interventions and diagnostics in clinical AF.
Collapse
|