1
|
Roque-Borda CA, Primo LMDG, Medina-Alarcón KP, Campos IC, Nascimento CDF, Saraiva MMS, Berchieri Junior A, Fusco-Almeida AM, Mendes-Giannini MJS, Perdigão J, Pavan FR, Albericio F. Antimicrobial Peptides: A Promising Alternative to Conventional Antimicrobials for Combating Polymicrobial Biofilms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410893. [PMID: 39530703 DOI: 10.1002/advs.202410893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Polymicrobial biofilms adhere to surfaces and enhance pathogen resistance to conventional treatments, significantly contributing to chronic infections in the respiratory tract, oral cavity, chronic wounds, and on medical devices. This review examines antimicrobial peptides (AMPs) as a promising alternative to traditional antibiotics for treating biofilm-associated infections. AMPs, which can be produced as part of the innate immune response or synthesized therapeutically, have broad-spectrum antimicrobial activity, often disrupting microbial cell membranes and causing cell death. Many specifically target negatively charged bacterial membranes, unlike host cell membranes. Research shows AMPs effectively inhibit and disrupt polymicrobial biofilms and can enhance conventional antibiotics' efficacy. Preclinical and clinical research is advancing, with animal studies and clinical trials showing promise against multidrug-resistant bacteria and fungi. Numerous patents indicate increasing interest in AMPs. However, challenges such as peptide stability, potential cytotoxicity, and high production costs must be addressed. Ongoing research focuses on optimizing AMP structures, enhancing stability, and developing cost-effective production methods. In summary, AMPs offer a novel approach to combating biofilm-associated infections, with their unique mechanisms and synergistic potential with existing antibiotics positioning them as promising candidates for future treatments.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- Department of Biological Sciences, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Sao Paulo, 14800-903, Brazil
- iMed.ULisboa-Institute for Medicines Research, Faculty of Pharmacy, University of Lisbon, Lisbon, 1649004, Portugal
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, 04000, Peru
| | - Laura Maria Duran Gleriani Primo
- Department of Biological Sciences, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Sao Paulo, 14800-903, Brazil
| | - Kaila Petronila Medina-Alarcón
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Sao Paulo, 14800-903, Brazil
| | - Isabella C Campos
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, Sao Paulo, 14884-900, Brazil
| | - Camila de Fátima Nascimento
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, Sao Paulo, 14884-900, Brazil
| | - Mauro M S Saraiva
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, Sao Paulo, 14884-900, Brazil
| | - Angelo Berchieri Junior
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, Sao Paulo, 14884-900, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Sao Paulo, 14800-903, Brazil
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Sao Paulo, 14800-903, Brazil
| | - João Perdigão
- iMed.ULisboa-Institute for Medicines Research, Faculty of Pharmacy, University of Lisbon, Lisbon, 1649004, Portugal
| | - Fernando Rogério Pavan
- Department of Biological Sciences, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Sao Paulo, 14800-903, Brazil
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
2
|
Yadav N, Chauhan VS. Advancements in peptide-based antimicrobials: A possible option for emerging drug-resistant infections. Adv Colloid Interface Sci 2024; 333:103282. [PMID: 39276418 DOI: 10.1016/j.cis.2024.103282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
In recent years, multidrug-resistant pathogenic microorganisms (MDROs) have emerged as a severe threat to human health, exhibiting robust resistance to traditional antibiotics. This has created a formidable challenge in modern medicine as we grapple with limited options to combat these resilient bacteria. Despite extensive efforts by scientists to develop new antibiotics targeting these pathogens, the quest for novel antibacterial molecules has become increasingly arduous. Fortunately, nature offers a potential solution in the form of cationic antimicrobial peptides (AMPs) and their synthetic counterparts. AMPs, naturally occurring peptides, have displayed promising efficacy in fighting bacterial infections by disrupting bacterial cell membranes, hindering their survival and reproduction. These peptides, along with their synthetic mimics, present an exciting alternative in combating antibiotic resistance. They hold the potential to emerge as a formidable tool against MDROs, offering hope for improved strategies to protect communities. Extensive research has explored the diversity, history, and structure-properties relationship of AMPs, investigating their amphiphilic nature for membrane disruption and mechanisms of action. However, despite their therapeutic promise, AMPs face several documented limitations. Among these challenges, poor pharmacokinetic properties stand out, impeding the attainment of therapeutic levels in the body. Additionally, some AMPs exhibit toxicity and susceptibility to protease cleavage, leading to a short half-life and reduced efficacy in animal models. These limitations pose obstacles in developing effective treatments based on AMPs. Furthermore, the high manufacturing costs associated with AMPs could significantly hinder their widespread use. In this review, we aim to present experimental and theoretical insights into different AMPs, focusing specifically on antibacterial peptides (ABPs). Our goal is to offer a concise overview of peptide-based drug candidates, drawing from a wide array of literature and peer-reviewed studies. We also explore recent advancements in AMP development and discuss the challenges researchers face in moving these molecules towards clinical trials. Our main objective is to offer a comprehensive overview of current AMP and ABP research to guide the development of more precise and effective therapies for bacterial infections.
Collapse
Affiliation(s)
- Nitin Yadav
- Gandhi Institute of Technology and Management, Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India; Molecular Medicine, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; Biotide Solutions LLP, B-23, Geetanjali Enclave, Malviya Nagar, New Delhi 110017, India.
| | - Virander S Chauhan
- Gandhi Institute of Technology and Management, Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India; Molecular Medicine, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; Biotide Solutions LLP, B-23, Geetanjali Enclave, Malviya Nagar, New Delhi 110017, India.
| |
Collapse
|
3
|
Ji X, Fan D, Wang J, Zhang B, Hu Y, Lv H, Wu J, Sun Y, Liu J, Zhang Y, Wang S. Cronobacter sakazakii lysozyme inhibitor LprI mediated by HmsP and c-di-GMP is essential for biofilm formation and virulence. Appl Environ Microbiol 2024; 90:e0156424. [PMID: 39297664 PMCID: PMC11497839 DOI: 10.1128/aem.01564-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 10/25/2024] Open
Abstract
Cronobacter sakazakii poses a significant threat, particularly to neonates and infants. Despite its strong pathogenicity, understanding of C. sakazakii biofilms and their role in infections remains limited. This study investigates the roles of HmsP and c-di-GMP in biofilm formation and identifies key genetic and proteomic elements involved. Gene knockout experiments reveal that HmsP and c-di-GMP are linked to biofilm formation in C. sakazakii. Comparative proteomic profiling identifies the lysozyme inhibitor protein LprI, which is downregulated in hmsP knockouts and upregulated in c-di-GMP knockouts, as a potential biofilm formation factor. Further investigation of the lprI knockout strain shows significantly reduced biofilm formation and decreased virulence in a rat infection model. Additionally, LprI is demonstrated to bind extracellular DNA, suggesting a role in anchoring C. sakazakii within the biofilm matrix. These findings enhance our understanding of the molecular mechanisms underlying biofilm formation and virulence in C. sakazakii, offering potential targets for therapeutic intervention and food production settings.IMPORTANCECronobacter sakazakii is a bacterium that poses a severe threat to neonates and infants. This research elucidates the role of the lysozyme inhibitor LprI, modulated by HmsP and c-di-GMP, and uncovers a key factor in biofilm formation and virulence. The findings offer crucial insights into the molecular interactions that enable C. sakazakii to form resilient biofilms and persist in hostile environments, such as those found in food production facilities. These insights not only enhance our understanding of C. sakazakii pathogenesis but also identify potential targets for novel therapeutic interventions to prevent or mitigate infections. This work is particularly relevant to public health and the food industry, where controlling C. sakazakii contamination in powdered infant formula is vital for safeguarding vulnerable populations.
Collapse
Affiliation(s)
- Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Dancai Fan
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Jing Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Yi Sun
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Jingmin Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Ma X, Dong Z, Mao R, Tian X, Yang N, Ren W, Hao Y, Shen W, Teng D, Li X, Wang J. Therapeutic Potential of Insect Defensin DLP4 Against Staphylococcus hyicus-Infected Piglet Exudative Epidermitis. Pharmaceutics 2024; 16:1350. [PMID: 39598475 PMCID: PMC11597436 DOI: 10.3390/pharmaceutics16111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: The emergence of resistance to Staphylococcus hyicus (S. hyicus), the major cause of exudative epidermatitis (EE) in piglets, has led to the need for new antimicrobial agents. The study aimed to evaluate the potential efficacy of the insect defensin DLP4 against EE in piglets caused by clinically isolated S. hyicus ACCC 61734. Methods and Results: DLP4 showed strong antibacterial activity against S. hyicus ACCC 61734 (minimum inhibitory concentration, MIC: 0.92 μM, median effect concentration, EC50: 3.158 μM). DLP4 could effectively inhibit the formation of S. hyicus early biofilm with an inhibition rate of 95.10-98.34% and eradicate mature biofilm with a clearance rate of 82.09-86.41%, which was significantly superior to that of ceftriaxone sodium (CRO). Meanwhile, DLP4 could efficiently inhibit bacteria in early and mature biofilm, killing up to 95.3% of bacteria in early biofilm and 87.2-90.3% of bacteria in mature biofilm. The results showed that DLP4 could be effective in alleviating the clinical symptoms of EE by down-regulating the nuclear factor κB (NF-κB) signaling pathway, balancing cytokines, inhibiting bacterial proliferation, and reducing organ tissue damage. Conclusions: This study firstly demonstrated the potential efficacy of DLP4 against EE caused by S. hyicus ACCC 61734 infection in piglets, which may be used as an alternative to antibiotics in treating EE.
Collapse
Affiliation(s)
- Xuanxuan Ma
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.M.); (R.M.); (N.Y.); (Y.H.); (W.S.)
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zhimin Dong
- Tianjin Animal Science and Veterinary Research Institute, Tianjin 300381, China (X.T.); (W.R.); (X.L.)
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.M.); (R.M.); (N.Y.); (Y.H.); (W.S.)
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiangxue Tian
- Tianjin Animal Science and Veterinary Research Institute, Tianjin 300381, China (X.T.); (W.R.); (X.L.)
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.M.); (R.M.); (N.Y.); (Y.H.); (W.S.)
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Weike Ren
- Tianjin Animal Science and Veterinary Research Institute, Tianjin 300381, China (X.T.); (W.R.); (X.L.)
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.M.); (R.M.); (N.Y.); (Y.H.); (W.S.)
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Wenluan Shen
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.M.); (R.M.); (N.Y.); (Y.H.); (W.S.)
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.M.); (R.M.); (N.Y.); (Y.H.); (W.S.)
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiuli Li
- Tianjin Animal Science and Veterinary Research Institute, Tianjin 300381, China (X.T.); (W.R.); (X.L.)
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.M.); (R.M.); (N.Y.); (Y.H.); (W.S.)
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
5
|
Jeong GJ, Khan F, Tabassum N, Cho KJ, Kim YM. Strategies for controlling polymicrobial biofilms: A focus on antibiofilm agents. Int J Antimicrob Agents 2024; 64:107243. [PMID: 38908533 DOI: 10.1016/j.ijantimicag.2024.107243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/29/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Polymicrobial biofilms are among the leading causes of antimicrobial treatment failure. In these biofilms, bacterial and fungal pathogens interact synergistically at the interspecies, intraspecies, and interkingdom levels. Consequently, combating polymicrobial biofilms is substantially more difficult compared to single-species biofilms due to their distinct properties and the resulting potential variation in antimicrobial drug efficiency. In recent years, there has been an increased focus on developing alternative strategies for controlling polymicrobial biofilms formed by bacterial and fungal pathogens. Current approaches for controlling polymicrobial biofilms include monotherapy (using either natural or synthetic compounds), combination treatments, and nanomaterials. Here, a comprehensive review of different types of polymicrobial interactions between pathogenic bacterial species or bacteria and fungi is provided along with a discussion of their relevance. The mechanisms of action of individual compounds, combination treatments, and nanomaterials against polymicrobial biofilms are thoroughly explored. This review provides various future perspectives that can advance the strategies used to control polymicrobial biofilms and their likely modes of action. Since the majority of research on combating polymicrobial biofilms has been conducted in vitro, it would be an essential step in performing in vivo tests to determine the clinical effectiveness of different treatments against polymicrobial biofilms.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Institute of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Kyung-Jin Cho
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
6
|
Nag M, Bhattacharya D, Garai S, Dutta B, Ghosh S, Ray RR, Lahiri D. Immobilised antimicrobial peptides in downregulation of biofilm. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5559-5569. [PMID: 38536433 DOI: 10.1007/s00210-024-03056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/18/2024] [Indexed: 08/18/2024]
Abstract
Colonisation of sessile bacterial species on biotic and abiotic surfaces is responsible for the development of various infections in humans. At present, biofilm-associated chronic infections have been a prime concern among the healthcare practitioners since they are impermeable to drugs, resulting in the development of antibiotic resistance or multi-drug resistance. For a few decades, a lot of research activity has been performed in the development of alternative therapeutics to combat biofilm-associated chronic infections. The presence of extracellular polymeric substance (EPS) prevents the permeation of most of the drugs rendering drug failures. The use of small molecules has been necessary to penetrate easily through the EPS and act on the targeted cells. In present days, the use of antimicrobial peptides (AMPs) has gained immense importance as alternative therapeutics since they exhibit a novel class of antibiotics exhibiting a wide spectrum of activity and possess a low rate of development of resistance. In the last few decades, a large number of AMPs have been identified from varied groups of organisms as effector molecules for innate immune system acting as an important line of defence. In this review, we will discuss the use of AMPs as effective agents to combat various biofilm-associated chronic infections.
Collapse
Affiliation(s)
- Moupriya Nag
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, New Town, University of Engineering & Management, Kolkata, West Bengal, India
| | - Debasmita Bhattacharya
- Department of Basic Science and Humanities, Institute of Engineering and Management, Kolkata, Salt Lake, University of Engineering & Management, Kolkata, West Bengal, India
| | - Sayantani Garai
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, New Town, University of Engineering & Management, Kolkata, West Bengal, India
| | - Bandita Dutta
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India
| | - Sreejita Ghosh
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India
| | - Dibyajit Lahiri
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, New Town, University of Engineering & Management, Kolkata, West Bengal, India.
| |
Collapse
|
7
|
Artesani L, Ciociola T, Vismarra A, Bacci C, Conti S, Giovati L. Activity of Synthetic Peptide KP and Its Derivatives against Biofilm-Producing Escherichia coli Strains Resistant to Cephalosporins. Antibiotics (Basel) 2024; 13:683. [PMID: 39199983 PMCID: PMC11350827 DOI: 10.3390/antibiotics13080683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Bacterial resistance to β-lactam antibiotics, particularly new generation cephalosporins, is a major public health concern. In Escherichia coli, resistance to these antibiotics is mainly mediated by extended-spectrum β-lactamases (ESBL), which complicates a range of health-threatening infections. These infections may also be biofilm-related, making them more difficult to treat because of the higher tolerance to conventional antibiotics and the host immune response. In this study, we tested as potential new drug candidates against biofilm-forming ESBL-producing E. coli four antimicrobial peptides previously shown to have antifungal properties. The peptides proved to be active in vitro at micromolar concentrations against both sensitive and ESBL-producing E. coli strains, effectively killing planktonic cells and inhibiting biofilm formation. Quantitative fluorescence intensity analysis of three-dimensional reconstructed confocal laser scanning microscopy (CLSM) images of mature biofilm treated with the most active peptide showed significant eradication and a reduction in viable bacteria, while scanning electron microscopy (SEM) revealed gross morphological alterations in treated bacteria. The screening of the investigated peptides for antibacterial and antibiofilm activity led to the selection of a leading candidate to be further studied for developing new antimicrobial drugs as an alternative treatment against microbial infections, primarily associated with biofilms.
Collapse
Affiliation(s)
- Lorenza Artesani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.A.); (T.C.); (S.C.)
| | - Tecla Ciociola
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.A.); (T.C.); (S.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Alice Vismarra
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (A.V.); (C.B.)
| | - Cristina Bacci
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (A.V.); (C.B.)
| | - Stefania Conti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.A.); (T.C.); (S.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Laura Giovati
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.A.); (T.C.); (S.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| |
Collapse
|
8
|
Marissen J, Reichert L, Härtel C, Fortmann MI, Faust K, Msanga D, Harder J, Zemlin M, Gomez de Agüero M, Masjosthusmann K, Humberg A. Antimicrobial Peptides (AMPs) and the Microbiome in Preterm Infants: Consequences and Opportunities for Future Therapeutics. Int J Mol Sci 2024; 25:6684. [PMID: 38928389 PMCID: PMC11203687 DOI: 10.3390/ijms25126684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Antimicrobial peptides (AMPs) are crucial components of the innate immune system in various organisms, including humans. Beyond their direct antimicrobial effects, AMPs play essential roles in various physiological processes. They induce angiogenesis, promote wound healing, modulate immune responses, and serve as chemoattractants for immune cells. AMPs regulate the microbiome and combat microbial infections on the skin, lungs, and gastrointestinal tract. Produced in response to microbial signals, AMPs help maintain a balanced microbial community and provide a first line of defense against infection. In preterm infants, alterations in microbiome composition have been linked to various health outcomes, including sepsis, necrotizing enterocolitis, atopic dermatitis, and respiratory infections. Dysbiosis, or an imbalance in the microbiome, can alter AMP profiles and potentially lead to inflammation-mediated diseases such as chronic lung disease and obesity. In the following review, we summarize what is known about the vital role of AMPs as multifunctional peptides in protecting newborn infants against infections and modulating the microbiome and immune response. Understanding their roles in preterm infants and high-risk populations offers the potential for innovative approaches to disease prevention and treatment.
Collapse
Affiliation(s)
- Janina Marissen
- Department of Pediatrics, University Hospital Würzburg, 97080 Würzburg, Germany; (J.M.); (L.R.)
- Würzburg Institute of Systems Immunology, Max-Planck Research Group, University of Würzburg, 97078 Würzburg, Germany;
| | - Lilith Reichert
- Department of Pediatrics, University Hospital Würzburg, 97080 Würzburg, Germany; (J.M.); (L.R.)
| | - Christoph Härtel
- Department of Pediatrics, University Hospital Würzburg, 97080 Würzburg, Germany; (J.M.); (L.R.)
- German Center for Infection Research, Site Hamburg-Lübeck-Borstel-Riems, 23538 Lübeck, Germany
| | - Mats Ingmar Fortmann
- Department of Pediatrics, University Hospital Schleswig-Holstein, 23538 Lübeck, Germany; (M.I.F.); (K.F.)
| | - Kirstin Faust
- Department of Pediatrics, University Hospital Schleswig-Holstein, 23538 Lübeck, Germany; (M.I.F.); (K.F.)
| | - Delfina Msanga
- Department of Pediatrics, Bugando Hospital, Catholic University of Health and Allied Sciences, Mwanza 33109, Tanzania;
| | - Jürgen Harder
- Department of Dermatology, Venerology and Allergology, Quincke Research Center, Kiel University, 24105 Kiel, Germany;
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Saarland University Medical Center, 66421 Homburg, Germany;
| | - Mercedes Gomez de Agüero
- Würzburg Institute of Systems Immunology, Max-Planck Research Group, University of Würzburg, 97078 Würzburg, Germany;
| | - Katja Masjosthusmann
- Department of General Pediatrics, University Children’s Hospital Münster, 48149 Münster, Germany; (K.M.); (A.H.)
| | - Alexander Humberg
- Department of General Pediatrics, University Children’s Hospital Münster, 48149 Münster, Germany; (K.M.); (A.H.)
| |
Collapse
|
9
|
Salvado MG, André LSP, Pereira RFA, Pinheiro FR, Barbosa BDC, Scaffo JC, Pereira AJ, Arakaki DG, Xing H, de Oliveira KMP, de Andrade Dos Santos JV, Sachs D, Aguiar-Alves F, Conda-Sheridan M, Penna B. Evaluating the antimicrobial and anti-biofilm activity of three synthetic antimicrobial Citropin analogs and their ability to fight against Staphylococcus aureus and Staphylococcus pseudintermedius. J Appl Microbiol 2024; 135:lxae127. [PMID: 38772746 DOI: 10.1093/jambio/lxae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/04/2024] [Accepted: 05/20/2024] [Indexed: 05/23/2024]
Abstract
AIMS We developed three new analogs of the antimicrobial peptide (AMP) Citropin 1.1: DAN-1-13, AJP-1-1, and HHX-2-28, and tested their potential antimicrobial and antibiofilm activities against Staphylococcus aureus and S. pseudintermedius. Potential cytotoxic or hemolytic effects were determined using cultured human keratinocytes and erythrocytes to determine their safety. METHODS AND RESULTS To assess the antimicrobial activity of each compound, minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) were determined against methicillin-resistant and methicillin-susceptible strains of S. aureus and S. pseudintermedius. Activity against newly formed and mature biofilms was determined in two clinical isolates using spectrophotometry and scanning electron microscopy (SEM). All three compounds exhibited antimicrobial and bactericidal activity against all studied S. aureus and S. pseudintermedius strains, with MICs ranging from 4-32 μg ml-1 and MBCs ranging from 8-128 μg ml-1. Subinhibitory concentrations of all compounds also showed ant-biofilm activity in the two tested isolates. All compounds exhibited limited cytotoxic and hemolytic activity. CONCLUSIONS Novel analogs of Citropin 1.1 exhibit antimicrobial and bactericidal activities against S. aureus and S. pseudintermedius isolates and inhibit the biofilm formation of these bacteria.
Collapse
Affiliation(s)
- Matheus Gomes Salvado
- Graduate Program in Veterinary Medicine, Fluminense Federal University, Niteroi, 24230-321, Brazil
- Gram Positive Cocci Laboratory, Fluminense Federal University, Niteroi, 24020-141, Brazil
| | - Lialyz Soares Pereira André
- Molecular Epidemiology and Biotechnology Laboratory/Rodolpho Albino University Laboratory - Fluminense Federal University, Niteroi, 24241-000, Brazil
- Graduate Program in Pathology, Fluminense Federal University, Niteroi 24020-141, Brazil
| | - Renata Freire Alves Pereira
- Molecular Epidemiology and Biotechnology Laboratory/Rodolpho Albino University Laboratory - Fluminense Federal University, Niteroi, 24241-000, Brazil
- Graduate Program in Microbiology and Parasitology - Fluminense Federal University, Niteroi, 24020-141, Brazil
| | - Felipe Ramos Pinheiro
- Molecular Epidemiology and Biotechnology Laboratory/Rodolpho Albino University Laboratory - Fluminense Federal University, Niteroi, 24241-000, Brazil
- Graduate Program in Pathology, Fluminense Federal University, Niteroi 24020-141, Brazil
| | - Beatriz das Chagas Barbosa
- Molecular Epidemiology and Biotechnology Laboratory/Rodolpho Albino University Laboratory - Fluminense Federal University, Niteroi, 24241-000, Brazil
| | - Julia Chaves Scaffo
- Molecular Epidemiology and Biotechnology Laboratory/Rodolpho Albino University Laboratory - Fluminense Federal University, Niteroi, 24241-000, Brazil
| | - Aramis José Pereira
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Daniela Granja Arakaki
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health, Mato Grosso do Sul Federal University, Pioneiros, 79070-900, Brazil
| | - Huihua Xing
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | | | | | - Daniela Sachs
- Microbiological Testing Laboratory Associated with Materials and Drugs of the Center for Studies, Research, and Innovation in Biofunctional Materials and Biotechnology, Federal University of Itajubá, Itajuba, 37500-903, Brazil
| | - Fabio Aguiar-Alves
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL 33403, USA
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Bruno Penna
- Graduate Program in Veterinary Medicine, Fluminense Federal University, Niteroi, 24230-321, Brazil
- Gram Positive Cocci Laboratory, Fluminense Federal University, Niteroi, 24020-141, Brazil
- Graduate Program in Microbiology and Parasitology - Fluminense Federal University, Niteroi, 24020-141, Brazil
| |
Collapse
|
10
|
Fontanot A, Ellinger I, Unger WWJ, Hays JP. A Comprehensive Review of Recent Research into the Effects of Antimicrobial Peptides on Biofilms-January 2020 to September 2023. Antibiotics (Basel) 2024; 13:343. [PMID: 38667019 PMCID: PMC11047476 DOI: 10.3390/antibiotics13040343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Microbial biofilm formation creates a persistent and resistant environment in which microorganisms can survive, contributing to antibiotic resistance and chronic inflammatory diseases. Increasingly, biofilms are caused by multi-drug resistant microorganisms, which, coupled with a diminishing supply of effective antibiotics, is driving the search for new antibiotic therapies. In this respect, antimicrobial peptides (AMPs) are short, hydrophobic, and amphipathic peptides that show activity against multidrug-resistant bacteria and biofilm formation. They also possess broad-spectrum activity and diverse mechanisms of action. In this comprehensive review, 150 publications (from January 2020 to September 2023) were collected and categorized using the search terms 'polypeptide antibiotic agent', 'antimicrobial peptide', and 'biofilm'. During this period, a wide range of natural and synthetic AMPs were studied, of which LL-37, polymyxin B, GH12, and Nisin were the most frequently cited. Furthermore, although many microbes were studied, Staphylococcus aureus and Pseudomonas aeruginosa were the most popular. Publications also considered AMP combinations and the potential role of AMP delivery systems in increasing the efficacy of AMPs, including nanoparticle delivery. Relatively few publications focused on AMP resistance. This comprehensive review informs and guides researchers about the latest developments in AMP research, presenting promising evidence of the role of AMPs as effective antimicrobial agents.
Collapse
Affiliation(s)
- Alessio Fontanot
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (A.F.); (W.W.J.U.)
- Department of Pediatrics, Laboratory of Pediatrics, Erasmus University Medical Center Rotterdam, Sophia Children’s Hospital, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Isabella Ellinger
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Wendy W. J. Unger
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (A.F.); (W.W.J.U.)
- Department of Pediatrics, Laboratory of Pediatrics, Erasmus University Medical Center Rotterdam, Sophia Children’s Hospital, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - John P. Hays
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (A.F.); (W.W.J.U.)
| |
Collapse
|
11
|
Zhang P, Tang S, Fu Q, Luo Y, Li J, Chen Z, Li H, Ni G, Wang T, Chen G, Liu X. Proteomic analysis of anti-MRSA activity of caerin 1.1/1.9 in a murine skin infection model and their in vitro anti-biofilm effects against Acinetobacter baumannii. Microbiol Spectr 2023; 11:e0452022. [PMID: 37819110 PMCID: PMC10714828 DOI: 10.1128/spectrum.04520-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Caerin 1.1 and caerin 1.9, natural antimicrobial peptides derived from tree frogs, have demonstrated the ability to inhibit the growth of antibiotic-resistant bacteria, comparable to certain widely used antibiotics. Additionally, these peptides exhibit the capacity to prevent or treat biofilms formed by bacteria in conjunction with bodily components. The mechanisms underlying their antibacterial effects were investigated through a mouse model of bacterial skin infection, utilizing proteomic analysis as a technological approach.
Collapse
Affiliation(s)
- Pingping Zhang
- Cancer Research Institute, Foshan First People’s Hospital, Foshan, Guangdong, China
| | - Shuxian Tang
- Cancer Research Institute, Foshan First People’s Hospital, Foshan, Guangdong, China
| | - Quanlan Fu
- Medical School of Guizhou University, Guiyang, Guizhou, China
| | - Yuandong Luo
- Medical School of Guizhou University, Guiyang, Guizhou, China
| | - Junjie Li
- Guiyang Hospital of Stomatology, Guiyang, Guizhou, China
| | - Zhu Chen
- Guiyang Hospital of Stomatology, Guiyang, Guizhou, China
| | - Hejie Li
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, Queensland, Australia
| | - Guoying Ni
- Cancer Research Institute, Foshan First People’s Hospital, Foshan, Guangdong, China
- Guiyang Hospital of Stomatology, Guiyang, Guizhou, China
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, Queensland, Australia
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, Queensland, Australia
| | - Guoqiang Chen
- Cancer Research Institute, Foshan First People’s Hospital, Foshan, Guangdong, China
| | - Xiaosong Liu
- Cancer Research Institute, Foshan First People’s Hospital, Foshan, Guangdong, China
- Guiyang Hospital of Stomatology, Guiyang, Guizhou, China
| |
Collapse
|
12
|
Srinivasan A, Sajeevan A, Rajaramon S, David H, Solomon AP. Solving polymicrobial puzzles: evolutionary dynamics and future directions. Front Cell Infect Microbiol 2023; 13:1295063. [PMID: 38145044 PMCID: PMC10748482 DOI: 10.3389/fcimb.2023.1295063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/03/2023] [Indexed: 12/26/2023] Open
Abstract
Polymicrobial infections include various microorganisms, often necessitating different treatment methods than a monomicrobial infection. Scientists have been puzzled by the complex interactions within these communities for generations. The presence of specific microorganisms warrants a chronic infection and impacts crucial factors such as virulence and antibiotic susceptibility. Game theory is valuable for scenarios involving multiple decision-makers, but its relevance to polymicrobial infections is limited. Eco-evolutionary dynamics introduce causation for multiple proteomic interactions like metabolic syntropy and niche segregation. The review culminates both these giants to form evolutionary dynamics (ED). There is a significant amount of literature on inter-bacterial interactions that remain unsynchronised. Such raw data can only be moulded by analysing the ED involved. The review culminates the inter-bacterial interactions in multiple clinically relevant polymicrobial infections like chronic wounds, CAUTI, otitis media and dental carries. The data is further moulded with ED to analyse the niche colonisation of two notoriously competitive bacteria: S.aureus and P.aeruginosa. The review attempts to develop a future trajectory for polymicrobial research by following recent innovative strategies incorporating ED to curb polymicrobial infections.
Collapse
Affiliation(s)
| | | | | | | | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
13
|
Biomaterial therapeutic strategies for treatment of bacterial lung infections. Biofilm 2023; 5:100111. [PMID: 36909663 PMCID: PMC9999167 DOI: 10.1016/j.bioflm.2023.100111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Bacterial infections of the lung frequently occur as a secondary infection to many respiratory viral infections and conditions, including influenza, COVID-19, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF). Currently, clinical standard treats bacterial infections of the lung with antibiotic drugs. However, the use of broad-spectrum antibiotics can disrupt host microbiomes, lead to patient discomfort, and current clinical settings face the constantly increasing threat of drug-resistant bacteria. Biofilms further obstruct effective treatment due to their protective matrix layer, which shields bacteria from both the host immune system and antimicrobial drugs and subsequently promotes drug resistance. Alternative antimicrobial agents, including bacteriophages and antimicrobial peptides, have been utilized to treat drug-resistant bacteria. However, these antimicrobial agents have significant limitations pertaining to their ability to arrive at infection sites without compromised function and ability to persist over an extended period to fully treat infections. Enhanced delivery strategies present great promise in addressing these issues by using micro/nanoparticle carriers that shield antimicrobial agents in transit and result in sustained release, enhancing subsequent therapeutic effect and can even be modulated to be multi-functional to further improve recovery following bacterial infection.
Collapse
|
14
|
Rao PD, Sandeep AH, Madhubala MM, Mahalaxmi S. Comparative evaluation of effect of nisin-incorporated ethylenediamine tetraacetic acid and MTAD on endodontic biofilm eradication, smear layer removal, and depth of sealer penetration. Clin Oral Investig 2023; 27:7247-7259. [PMID: 37999802 DOI: 10.1007/s00784-023-05285-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/26/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVES To comparatively evaluate the nisin-incorporated ethylenediamine tetraacetic acid (N-EDTA) and MTAD on cytotoxicity, endodontic biofilm eradication potential, smear layer removal ability, and sealer penetration depth. MATERIALS AND METHODS N-EDTA was prepared and characterized using high-performance liquid chromatography (HPLC). Minimum inhibitory, minimum bactericidal, and minimum biofilm inhibitory concentration (MBC, MIC, and MBIC) were determined on Enterococcus faecalis (E. faecalis) strain. The cytocompatibility of N-EDTA and MTAD was evaluated using 3,(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-based colorimetric assay. Dentin specimens (n = 88 for antibacterial analysis, n = 170 for sealer penetration depth) were prepared and subjected to the classical irrigating strategy and obturation, respectively. The scanning electron microscopic evaluation (SEM) was done for the evaluation of biofilm disruption and smear layer removal. Confocal laser scanning microscopy (CLSM) evaluation was done for determining percentage of bacterial viability and sealer penetration depth. Statistical analysis of one-way ANOVA and Tukey's HSD post hoc tests for bacterial viability and Kruskal-Wallis test and Mann-Whitney test for smear layer removal and depth of penetration were done with the significance level set at p < 0.05. RESULTS MTAD and N-EDTA showed cytocompatibility without any statistical differences from each other. For N-EDTA, the MIC and MBC values were 12.5 μg/ml (1:8), and MBIC values were 36 μg/ml. Biofilm disruption and killed bacterial percentage of N-EDTA was statistically higher than MTAD, whereas both the materials showed similar efficacy in the removal of the smear layer and sealer penetration depth. CONCLUSION N-EDTA had negligible cytotoxicity with similar smear layer removal ability, sealer penetration, and better antibiofilm potential than MTAD. CLINICAL RELEVANCE N-EDTA can serve as a viable alternative endodontic irrigant.
Collapse
Affiliation(s)
- Parayatum Dhruv Rao
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, SRM Institute of Science and Technology, Chennai, 600089, India
| | - Adimalapu Hima Sandeep
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College, SIMATS, Saveetha University, Chennai, 600077, India
| | - Manavalan Madhana Madhubala
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, SRM Institute of Science and Technology, Chennai, 600089, India.
| | - Sekar Mahalaxmi
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, SRM Institute of Science and Technology, Chennai, 600089, India
| |
Collapse
|
15
|
Nowicka J, Janczura A, Pajączkowska M, Chodaczek G, Szymczyk-Ziółkowska P, Walczuk U, Gościniak G. Effect of Camel Peptide on the Biofilm of Staphylococcus epidermidis and Staphylococcus haemolyticus Formed on Orthopedic Implants. Antibiotics (Basel) 2023; 12:1671. [PMID: 38136705 PMCID: PMC10740474 DOI: 10.3390/antibiotics12121671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
The increasing bacterial drug resistance and the associated challenges in the treatment of infections warrant the search for alternative therapeutic methods. Hope is placed in antimicrobial peptides, which have a broad spectrum of action and are effective against strains which are resistant to conventional antibiotics. Antimicrobial peptides are also tested for their efficacy in the treatment of infections associated with the formation of biofilm. The aim of the present study was to examine the effect of Camel peptide on S. epidermidis and S. haemolyticus adhesion to and formation of biofilm on steel cortical bone screws and also on the process of reducing mature biofilm in orthopedic implants. The tests were performed on steel implants for osteosynthesis. The MIC value and MBEC values of the peptide were determined using the microdilution method in microtiter plates. The effect of the peptide on adhesion and biofilm formation, as well as on the activity on the preformed biofilm, was evaluated using quantitative methods and confocal microscopy. The presented research results indicate that the peptide exhibits very good antimicrobial properties against the analyzed strains. Concentrations above MIC reduced biofilm in the range of 90-99%.
Collapse
Affiliation(s)
- Joanna Nowicka
- Department of Microbiology, Faculty of Medicine, Medical University, 50-368 Wrocław, Poland; (M.P.); (U.W.); (G.G.)
| | - Adriana Janczura
- Department of Microbiology, Faculty of Medicine, Medical University, 50-368 Wrocław, Poland; (M.P.); (U.W.); (G.G.)
| | - Magdalena Pajączkowska
- Department of Microbiology, Faculty of Medicine, Medical University, 50-368 Wrocław, Poland; (M.P.); (U.W.); (G.G.)
| | - Grzegorz Chodaczek
- Bioimaging Laboratory, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wrocław, Poland;
| | - Patrycja Szymczyk-Ziółkowska
- Centre for Advanced Manufacturing Technologies (CAMT/FPC), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza 5, 50-371 Wroclaw, Poland;
| | - Urszula Walczuk
- Department of Microbiology, Faculty of Medicine, Medical University, 50-368 Wrocław, Poland; (M.P.); (U.W.); (G.G.)
| | - Grażyna Gościniak
- Department of Microbiology, Faculty of Medicine, Medical University, 50-368 Wrocław, Poland; (M.P.); (U.W.); (G.G.)
| |
Collapse
|
16
|
Khan F, Jeong GJ, Javaid A, Thuy Nguyen Pham D, Tabassum N, Kim YM. Surface adherence and vacuolar internalization of bacterial pathogens to the Candida spp. cells: Mechanism of persistence and propagation. J Adv Res 2023; 53:115-136. [PMID: 36572338 PMCID: PMC10658324 DOI: 10.1016/j.jare.2022.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The co-existence of Candida albicans with the bacteria in the host tissues and organs displays interactions at competitive, antagonistic, and synergistic levels. Several pathogenic bacteria take advantage of such types of interaction for their survival and proliferation. The chemical interaction involves the signaling molecules produced by the bacteria or Candida spp., whereas the physical attachment occurs by involving the surface proteins of the bacteria and Candida. In addition, bacterial pathogens have emerged to internalize inside the C. albicans vacuole, which is one of the inherent properties of the endosymbiotic relationship between the bacteria and the eukaryotic host. AIM OF REVIEW The interaction occurring by the involvement of surface protein from diverse bacterial species with Candida species has been discussed in detail in this paper. An in silico molecular docking study was performed between the surface proteins of different bacterial species and Als3P of C. albicans to explain the molecular mechanism involved in the Als3P-dependent interaction. Furthermore, in order to understand the specificity of C. albicans interaction with Als3P, the evolutionary relatedness of several bacterial surface proteins has been investigated. Furthermore, the environmental factors that influence bacterial pathogen internalization into the Candida vacuole have been addressed. Moreover, the review presented future perspectives for disrupting the cross-kingdom interaction and eradicating the endosymbiotic bacterial pathogens. KEY SCIENTIFIC CONCEPTS OF REVIEW With the involvement of cross-kingdom interactions and endosymbiotic relationships, the bacterial pathogens escape from the environmental stresses and the antimicrobial activity of the host immune system. Thus, the study of interactions between Candida and bacterial pathogens is of high clinical significance.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Aqib Javaid
- Department of Biotechnology and Bioinformatics, University of Hyderabad, India
| | - Dung Thuy Nguyen Pham
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
17
|
Bakare OO, Gokul A, Niekerk LA, Aina O, Abiona A, Barker AM, Basson G, Nkomo M, Otomo L, Keyster M, Klein A. Recent Progress in the Characterization, Synthesis, Delivery Procedures, Treatment Strategies, and Precision of Antimicrobial Peptides. Int J Mol Sci 2023; 24:11864. [PMID: 37511621 PMCID: PMC10380191 DOI: 10.3390/ijms241411864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Infectious diseases are constantly evolving to bypass antibiotics or create resistance against them. There is a piercing alarm for the need to improve the design of new effective antimicrobial agents such as antimicrobial peptides which are less prone to resistance and possess high sensitivity. This would guard public health in combating and overcoming stubborn pathogens and mitigate incurable diseases; however, the emergence of antimicrobial peptides' shortcomings ranging from untimely degradation by enzymes to difficulty in the design against specific targets is a major bottleneck in achieving these objectives. This review is aimed at highlighting the recent progress in antimicrobial peptide development in the area of nanotechnology-based delivery, selectivity indices, synthesis and characterization, their doping and coating, and the shortfall of these approaches. This review will raise awareness of antimicrobial peptides as prospective therapeutic agents in the medical and pharmaceutical industries, such as the sensitive treatment of diseases and their utilization. The knowledge from this development would guide the future design of these novel peptides and allow the development of highly specific, sensitive, and accurate antimicrobial peptides to initiate treatment regimens in patients to enable them to have accommodating lifestyles.
Collapse
Affiliation(s)
- Olalekan Olanrewaju Bakare
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu 2002, Nigeria
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba 9866, South Africa
| | - Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Omolola Aina
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Ademola Abiona
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu 2002, Nigeria
| | - Adele Mariska Barker
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Gerhard Basson
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Mbukeni Nkomo
- Department of Botany, H13 Botany Building, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa
| | - Laetitia Otomo
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba 9866, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
18
|
Eshima S, Matsumoto Y, Kurakado S, Sugita T. Silkworm model of biofilm formation: In vivo evaluation of antimicrobial tolerance of a cross-kingdom dual-species (Escherichia coli and Candida albicans) biofilm on catheter material. PLoS One 2023; 18:e0288452. [PMID: 37450444 PMCID: PMC10348565 DOI: 10.1371/journal.pone.0288452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Biofilms are formed by microorganisms and their products on the surface of materials such as medical devices. Biofilm formation protects microorganisms from antimicrobial agents. Bacteria and fungi often form dual-species biofilms on the surfaces of medical devices in clinical settings. An experimental system to evaluate in vivo biofilm formation by the pathogenic fungus Candida albicans was established using silkworms inserted with polyurethane fiber (PF), a catheter material. In the present study, we established an in vivo experimental system using silkworms to evaluate the antimicrobial tolerance of Escherichia coli in single- and dual-species biofilms formed on the surface of the PF. The injection of E. coli into the PF-inserted silkworms led to the formation of a biofilm by E. coli on the surface of the PF. E. coli in the biofilm exhibited tolerance to meropenem (MEPM). Furthermore, when E. coli and C. albicans were co-inoculated into the PF-inserted silkworms, a dual-species biofilm formed on the surface of the PF. E. coli in the dual-species biofilm with C. albicans was more tolerant to MEPM than E. coli in the single-species biofilm. These findings suggest the usefulness of an in vivo experimental system using PF-inserted silkworms to investigate the mechanisms of MEPM tolerance in E. coli in single- and dual-species biofilms.
Collapse
Affiliation(s)
- Shintaro Eshima
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Sanae Kurakado
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| |
Collapse
|
19
|
Mironova AV, Karimova AV, Bogachev MI, Kayumov AR, Trizna EY. Alterations in Antibiotic Susceptibility of Staphylococcus aureus and Klebsiella pneumoniae in Dual Species Biofilms. Int J Mol Sci 2023; 24:ijms24108475. [PMID: 37239822 DOI: 10.3390/ijms24108475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
In the last decades, it has been shown that biofilm-associated infections in most cases are caused by rather two or even more pathogens than by single microorganisms. Due to intermicrobial interactions in mixed communities, bacteria change their gene expression profile, in turn leading to alterations in the biofilm structure and properties, as well as susceptibility to antimicrobials. Here, we report the alterations of antimicrobials efficiency in mixed biofilms of Staphylococcus aureus-Klebsiella pneumoniae in comparison with mono-species biofilms of each counterpart and discuss possible mechanisms of these alterations. In cell clumps detached from dual-species biofilms, S. aureus became insensitive to vancomycin, ampicillin, and ceftazidime compared to solely S. aureus cell clumps. In turn, the increased efficiency of amikacin and ciprofloxacin against both bacteria could be observed, compared to mono-species biofilms of each counterpart. Scanning electron microscopy and confocal microscopy indicate the porous structure of the dual-species biofilm, and differential fluorescent staining revealed an increased number of polysaccharides in the matrix, in turn leading to more loose structure and thus apparently providing increased permeability of the dual-species biofilm to antimicrobials. The qRT-PCR showed that ica operon in S. aureus became repressed in mixed communities, and polysaccharides are produced mainly by K. pneumoniae. While the molecular trigger of these changes remains undiscovered, detailed knowledge of the alterations in antibiotic susceptibility to given drugs opens doors for treatment correction options for S. aureus-K. pneumoniae biofilm-associated infections.
Collapse
Affiliation(s)
- Anna V Mironova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Agniya V Karimova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Mikhail I Bogachev
- Biomedical Engineering Research Centre, St. Petersburg Electrotechnical University, 197022 St. Petersburg, Russia
| | - Airat R Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Elena Y Trizna
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
20
|
Synergistic Antimicrobial Activity of Silver Nanoparticles with an Emergent Class of Azoimidazoles. Pharmaceutics 2023; 15:pharmaceutics15030926. [PMID: 36986787 PMCID: PMC10053004 DOI: 10.3390/pharmaceutics15030926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
The combination of two or more agents capable of acting in synergy has been reported as a valuable tool to fight against pathogens. Silver nanoparticles (AgNPs) present a strong antimicrobial action, although their cytotoxicity for healthy cells at active concentrations is a major concern. Azoimidazole moieties exhibit interesting bioactivities, including antimicrobial activity. In this work, a class of recently described azoimidazoles with strong antifungal activity was conjugated with citrate or polyvinylpyrrolidone-stabilized AgNPs. Proton nuclear magnetic resonance was used to confirm the purity of the compounds before further tests and atomic absorption spectroscopy to verify the concentration of silver in the prepared dispersions. Other analytical techniques elucidate the morphology and stability of AgNPs and corresponding conjugates, namely ultraviolet–visible spectrophotometry, scanning transmission electron microscopy and dynamic light scattering analysis. The synergistic antimicrobial activity of the conjugates was assessed through a checkerboard assay against yeasts (Candida albicans and Candida krusei) and bacteria (Staphylococcus aureus and Escherichia coli). The conjugates showed improved antimicrobial activity against all microorganisms, in particular towards bacteria, with concentrations below their individual minimal inhibitory concentration (MIC). Furthermore, some combinations were found to be non-cytotoxic towards human HaCaT cells.
Collapse
|
21
|
Pirhaghi M, Najarzadeh Z, Moosavi-Movahedi F, Shafizadeh M, Mamashli F, Atarod D, Ghasemi A, Morshedi D, Meratan AA, Otzen DE, Saboury AA. The anti-platelet drug ticlopidine inhibits FapC fibrillation and biofilm production: Highlighting its antibiotic activity. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140883. [PMID: 36455808 DOI: 10.1016/j.bbapap.2022.140883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Multidrug resistance of bacteria and persistent infections related to biofilms, as well as the low availability of new antibacterial drugs, make it urgent to develop new antibiotics. Here, we evaluate the antibacterial and anti-biofilm properties of ticlopidine (TP), an anti-platelet aggregation drug, TP showed antibacterial activity against both gram-positive (MRSA) and gram-negative (E. coli, and P. aeruginosa) bacteria over a long treatment period. TP significantly reduced the survival of gram-negative bacteria in human blood though impact on gram-positives was more limited. TP may cause death in MRSA by inhibiting staphyloxanthin pigment synthesis, leading to oxidative stress, while scanning electron microscopy imaging indicate a loss of membrane integrity, damage, and consequent death due to lysis in gram-negative bacteria. TP showed good anti-biofilm activity against P. aeruginosa and MRSA, and a stronger biofilm degradation activity on P. aeruginosa compared to MRSA. Measuring fluorescence of the amyloid-reporter Thioflavin T (ThT) in biofilm implicated inhibition of amyloid formation as part of TP activity. This was confirmed by assays on the purified protein in P. aeruginosa, FapC, whose fibrillation kinetics was inhibited by TP. TP prolonged the lag phase of aggregation and reduced the subsequent growth rate and prolonging the lag phase to very long times provides ample opportunity to exert TP's antibacterial effect. We conclude that TP shows activity as an antibiotic against both gram-positive and gram-negative bacteria thanks to a broad range of activities, targeting bacterial metabolic processes, cellular structures and the biofilm matrix.
Collapse
Affiliation(s)
- Mitra Pirhaghi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Zahra Najarzadeh
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | | | - Mahshid Shafizadeh
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Fatemeh Mamashli
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Deyhim Atarod
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Dina Morshedi
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
22
|
Diban F, Di Lodovico S, Di Fermo P, D’Ercole S, D’Arcangelo S, Di Giulio M, Cellini L. Biofilms in Chronic Wound Infections: Innovative Antimicrobial Approaches Using the In Vitro Lubbock Chronic Wound Biofilm Model. Int J Mol Sci 2023; 24:1004. [PMID: 36674518 PMCID: PMC9862456 DOI: 10.3390/ijms24021004] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Chronic wounds have harmful effects on both patients and healthcare systems. Wound chronicity is attributed to an impaired healing process due to several host and local factors that affect healing pathways. The resulting ulcers contain a wide variety of microorganisms that are mostly resistant to antimicrobials and possess the ability to form mono/poly-microbial biofilms. The search for new, effective and safe compounds to handle chronic wounds has come a long way throughout the history of medicine, which has included several studies and trials of conventional treatments. Treatments focus on fighting the microbial colonization that develops in the wound by multidrug resistant pathogens. The development of molecular medicine, especially in antibacterial agents, needs an in vitro model similar to the in vivo chronic wound environment to evaluate the efficacy of antimicrobial agents. The Lubbock chronic wound biofilm (LCWB) model is an in vitro model developed to mimic the pathogen colonization and the biofilm formation of a real chronic wound, and it is suitable to screen the antibacterial activity of innovative compounds. In this review, we focused on the characteristics of chronic wound biofilms and the contribution of the LCWB model both to the study of wound poly-microbial biofilms and as a model for novel treatment strategies.
Collapse
Affiliation(s)
- Firas Diban
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Silvia Di Lodovico
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Di Fermo
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Simonetta D’Ercole
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Sara D’Arcangelo
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Mara Di Giulio
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Luigina Cellini
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
23
|
Jean-Pierre V, Boudet A, Sorlin P, Menetrey Q, Chiron R, Lavigne JP, Marchandin H. Biofilm Formation by Staphylococcus aureus in the Specific Context of Cystic Fibrosis. Int J Mol Sci 2022; 24:ijms24010597. [PMID: 36614040 PMCID: PMC9820612 DOI: 10.3390/ijms24010597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen whose characteristics support its success in various clinical settings including Cystic Fibrosis (CF). In CF, S. aureus is indeed the most commonly identified opportunistic pathogen in children and the overall population. S. aureus colonization/infection, either by methicillin-susceptible or methicillin-resistant strains, will become chronic in about one third of CF patients. The persistence of S. aureus in CF patients' lungs, despite various eradication strategies, is favored by several traits in both host and pathogen. Among the latter, living in biofilm is a highly protective way to survive despite deleterious environmental conditions, and is a common characteristic shared by the main pathogens identified in CF. This is why CF has earned the status of a biofilm-associated disease for several years now. Biofilm formation by S. aureus, and the molecular mechanisms governing and regulating it, have been extensively studied but have received less attention in the specific context of CF lungs. Here, we review the current knowledge on S. aureus biofilm in this very context, i.e., the importance, study methods, molecular data published on mono- and multi-species biofilm and anti-biofilm strategies. This focus on studies including clinical isolates from CF patients shows that they are still under-represented in the literature compared with studies based on reference strains, and underlines the need for such studies. Indeed, CF clinical strains display specific characteristics that may not be extrapolated from results obtained on laboratory strains.
Collapse
Affiliation(s)
- Vincent Jean-Pierre
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 34093 Montpellier, France
| | - Agathe Boudet
- VBIC—Virulence Bactérienne et Infections Chroniques, Université de Montpellier, INSERM U1047, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30900 Nîmes, France
| | - Pauline Sorlin
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, 34093 Montpellier, France
| | - Quentin Menetrey
- INFINITE—Institute for Translational Research in Inflammation, Université de Lille, INSERM U1286, CHU Lille, 59000 Lille, France
| | - Raphaël Chiron
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Centre de Ressources et de Compétences de la Mucoviscidose, CHU Montpellier, 34295 Montpellier, France
| | - Jean-Philippe Lavigne
- VBIC—Virulence Bactérienne et Infections Chroniques, Université de Montpellier, INSERM U1047, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30900 Nîmes, France
| | - Hélène Marchandin
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 34093 Montpellier, France
- Correspondence:
| |
Collapse
|
24
|
Anju VT, Busi S, Imchen M, Kumavath R, Mohan MS, Salim SA, Subhaswaraj P, Dyavaiah M. Polymicrobial Infections and Biofilms: Clinical Significance and Eradication Strategies. Antibiotics (Basel) 2022; 11:antibiotics11121731. [PMID: 36551388 PMCID: PMC9774821 DOI: 10.3390/antibiotics11121731] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Biofilms are population of cells growing in a coordinated manner and exhibiting resistance towards hostile environments. The infections associated with biofilms are difficult to control owing to the chronicity of infections and the emergence of antibiotic resistance. Most microbial infections are contributed by polymicrobial or mixed species interactions, such as those observed in chronic wound infections, otitis media, dental caries, and cystic fibrosis. This review focuses on the polymicrobial interactions among bacterial-bacterial, bacterial-fungal, and fungal-fungal aggregations based on in vitro and in vivo models and different therapeutic interventions available for polymicrobial biofilms. Deciphering the mechanisms of polymicrobial interactions and microbial diversity in chronic infections is very helpful in anti-microbial research. Together, we have discussed the role of metagenomic approaches in studying polymicrobial biofilms. The outstanding progress made in polymicrobial research, especially the model systems and application of metagenomics for detecting, preventing, and controlling infections, are reviewed.
Collapse
Affiliation(s)
- V T Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
- Correspondence:
| | - Madangchanok Imchen
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala 671316, India
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Mahima S. Mohan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Simi Asma Salim
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Pattnaik Subhaswaraj
- Department of Biotechnology and Bioinformatics, Sambalpur University, Burla, Sambalpur 768019, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
25
|
Akbari R, Hakemi Vala M, Sabatier JM, Pooshang Bagheri K. Fast killing kinetics, significant therapeutic index, and high stability of melittin-derived antimicrobial peptide. Amino Acids 2022; 54:1275-1285. [PMID: 35779173 DOI: 10.1007/s00726-022-03180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 06/07/2022] [Indexed: 12/01/2022]
Abstract
The emergence of multidrug-resistant (MDR) bacteria is a major challenge for antimicrobial chemotherapy. Concerning this issue, antimicrobial peptides (AMPs) have been presented as novel promising antibiotics. Our previous de novo designed melittin-derived peptides (MDP1 and MDP2) indicated their potential as peptide drug leads. Accordingly, this study was aimed to evaluate the kinetics of activity, toxicity, and stability of MDP1 and MDP2 as well as determination of their structures. The killing kinetics of MDP1 and MDP2 demonstrate that all bacterial strains were rapidly killed. MDP1 and MDP2 were ca. 100- and 26.6-fold less hemolytic than melittin and found to be respectively 72.9- and 41.6-fold less cytotoxic than melittin on the HEK293 cell line. MDP1 and MDP2 showed 252- and 132-fold improvement in their therapeutic index in comparison to melittin. MDP1 and MDP2 sustained their activities in the presence of human plasma and were found to be ca. four to eightfold more stable than melittin. Spectropolarimetry analysis of MDP1 and MDP2 indicates that the peptides adopt an alpha-helical structure predominantly. According to the fast killing kinetics, significant therapeutic index, and high stability of MDP1, it could be considered as a drug lead in a mouse model of septicemia infections.
Collapse
Affiliation(s)
- Reza Akbari
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran
| | - Mojdeh Hakemi Vala
- Department of Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Jean-Marc Sabatier
- Institute of NeuroPhysiopathology (INP), Faculté de Pharmacie, Université D'Aix-Marseille, UMR 7051, 27 Bd Jean Moulin, CEDEX 05, 13385, Marseille, France
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
26
|
Vahdati SN, Behboudi H, Navasatli SA, Tavakoli S, Safavi M. New insights into the inhibitory roles and mechanisms of D-amino acids in bacterial biofilms in medicine, industry, and agriculture. Microbiol Res 2022; 263:127107. [PMID: 35843196 DOI: 10.1016/j.micres.2022.127107] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
Biofilms are complex aggregates of microbes that are tightly protected by an extracellular matrix (ECM) and may attach to a surface or adhere together. A higher persistence of bacteria on biofilms makes them resistant not only to harsh conditions but also to various antibiotics which led to the emergence of problems in different applications. Recently, it has been discovered that many bacteria produce and release various D-amino acids (D-AAs) to inhibit biofilm formation, which made a great deal of interest in research into the control of bacterial biofilms in diverse fields, such as human health, industrial settings, and medical devices. D-AAs have various mechanisms to inhibit bacterial biofilms such as: (i) interfering with protein synthesis (ii) Inhibition of extracellular polymeric materials (EPS) productions (protein, eDNA, and polysaccharide) (iii) Inhibition of quorum sensing (autoinducers), and (iv) interfere with peptidoglycan synthesis, these various modes of action, enables these small molecules to inhibit both Gram-negative and Gram-positive bacterial biofilms. Since most biofilms are multi-species, D-AAs in combination with other antimicrobial agents are good choices to combat a variety of bacterial biofilms without displaying toxicity on human cells. This review article addressed the role of D-AAs in controlling several bacterial biofilms and described the possible or definite mechanisms involved in this process.
Collapse
Affiliation(s)
- Saeed Niazi Vahdati
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Hossein Behboudi
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran.
| | - Sepideh Aliniaye Navasatli
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Sara Tavakoli
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| |
Collapse
|
27
|
Antimicrobial Combined Action of Graphene Oxide and Light Emitting Diodes for Chronic Wound Management. Int J Mol Sci 2022; 23:ijms23136942. [PMID: 35805944 PMCID: PMC9266944 DOI: 10.3390/ijms23136942] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022] Open
Abstract
Innovative non-antibiotic compounds such as graphene oxide (GO) and light-emitting diodes (LEDs) may represent a valid strategy for managing chronic wound infections related to resistant pathogens. This study aimed to evaluate 630 nm LED and 880 nm LED ability to enhance the GO antimicrobial activity against Staphylococcus aureus- and Pseudomonas aeruginosa-resistant strains in a dual-species biofilm in the Lubbock chronic wound biofilm (LCWB) model. The effect of a 630 nm LED, alone or plus 5-aminolevulinic acid (ALAD)-mediated photodynamic therapy (PDT) (ALAD-PDT), or an 880 nm LED on the GO (50 mg/l) action was evaluated by determining the CFU/mg reductions, live/dead analysis, scanning electron microscope observation, and reactive oxygen species assay. Among the LCWBs, the best effect was obtained with GO irradiated with ALAD-PDT, with percentages of CFU/mg reduction up to 78.96% ± 0.21 and 95.17% ± 2.56 for S. aureus and P. aeruginosa, respectively. The microscope images showed a reduction in the cell number and viability when treated with GO + ALAD-PDT. In addition, increased ROS production was detected. No differences were recorded when GO was irradiated with an 880 nm LED versus GO alone. The obtained results suggest that treatment with GO irradiated with ALAD-PDT represents a valid, sustainable strategy to counteract the polymicrobial colonization of chronic wounds.
Collapse
|
28
|
Efficacy and safety of ALA-PDT in treatment of diabetic foot ulcer with infection. Photodiagnosis Photodyn Ther 2022; 38:102822. [PMID: 35331957 DOI: 10.1016/j.pdpdt.2022.102822] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/28/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetic foot ulcers (DFUs) with infection is a major clinical issue, as the infection not only potentially devastate the wound healing, but also is the factor that most often leads to amputation. Nevertheless, traditional antibiotic treatment is often insufficient to clear the infection, which could lead to side effects. Photodynamic therapy (PDT) has broad-spectral antibacterial activity. Meanwhile, it is difficult to induce antibiotic resistance. Here, we aim to evaluate the safety and efficacy of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) in the treatment of DFUs with infection. METHODS In our study, 5 diabetic patients with infectious DFUs were diagnosed by pathological examination and the depth of wound was examined by X-Ray. All patients' wounds were firstly irradiated with 20% ALA-PDT (635 nm, 100 J/cm2, 80 mW/cm2) using the red LED to control the infection. Treatment will be combined with debridement if there is granulation necrosis or secretion on the wound surface. PDT sessions were performed weekly in all patients until healing was achieved. All patients were followed up for 0.6-1.2 years after treatment. RESULTS In 5 patients, the DFUs with infection was completely controlled by ALA-PDT. There was no recurrence of DFUs in the follow-up of 0.9 years (range, 0.6-1.2 years) after the treatment. CONCLUSIONS ALA-PDT treatment for DFUs with infection show successful outcomes and might ultimately avoid amputation.
Collapse
|
29
|
Rescuing humanity by antimicrobial peptides against colistin-resistant bacteria. Appl Microbiol Biotechnol 2022; 106:3879-3893. [PMID: 35604438 PMCID: PMC9125544 DOI: 10.1007/s00253-022-11940-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/03/2022]
Abstract
Abstract
It has been about a century since the discovery of the first antibiotic, and during this period, several antibiotics were produced and marketed. The production of high-potency antibiotics against infections led to victories, but these victories were temporary. Overuse and misuse of antibiotics have continued to the point that humanity today is almost helpless in the fight against infection. Researchers have predicted that by the middle of the new century, there will be a dark period after the production of antibiotics that doctors will encounter antibiotic-resistant infections for which there is no cure. Accordingly, researchers are looking for new materials with antimicrobial properties that will strengthen their ammunition to fight antibiotic-resistant infections. One of the most important alternatives to antibiotics introduced in the last three decades is antimicrobial peptides (AMPs), which affect a wide range of microbes. Due to their different antimicrobial properties from antibiotics, AMPs can fight and kill MDR, XDR, and colistin-resistant bacteria through a variety of mechanisms. Therefore, in this study, we intend to use the latest studies to give a complete description of AMPs, the importance of colistin-resistant bacteria, and their resistance mechanisms, and represent impact of AMPs on colistin-resistant bacteria. Key points • AMPs as limited options to kill colistin-resistant bacteria. • Challenge of antibiotics resistance, colistin resistance, and mechanisms. • What is AMPs in the war with colistin-resistant bacteria?
Collapse
|
30
|
Emerging Concern with Imminent Therapeutic Strategies for Treating Resistance in Biofilm. Antibiotics (Basel) 2022; 11:antibiotics11040476. [PMID: 35453227 PMCID: PMC9032911 DOI: 10.3390/antibiotics11040476] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Biofilm production by bacteria is presumed to be a survival strategy in natural environments. The production of biofilms is known to be influenced by a number of factors. This paper has precisely elaborated on the different factors that directly influence the formation of biofilm. Biofilm has serious consequences for human health, and a variety of infections linked to biofilm have emerged, rapidly increasing the statistics of antimicrobial resistance, which is a global threat. Additionally, to combat resistance in biofilm, various approaches have been developed. Surface modifications, physical removal, and the use of nanoparticles are the recent advances that have enabled drug discovery for treating various biofilm-associated infections. Progress in nanoparticle production has led to the development of a variety of biofilm-fighting strategies. We focus on the present and future therapeutic options that target the critical structural and functional characteristics of microbial biofilms, as well as drug tolerance mechanisms, such as the extracellular matrix, in this review.
Collapse
|
31
|
Abstract
Antimicrobial peptides (AMPs) have recently become widely publicized because they have the potential to function in alternative therapies as “natural” antibiotics, with their main advantage being a broad spectrum of activity. The potential for antimicrobial peptides to treat diabetes mellitus (DM) has been reported. In diabetes mellitus type I (T1D), cathelicidin-related antimicrobial peptide (CRAMP), cathelicidin antimicrobial peptide (CAMP) and mouse-β- defensin 14 (mBD14) are positively affected. Decreased levels of LL-37 and human neutrophil peptide 1-3 (HNP1-3) have been reported in diabetes mellitus type II (T2D) relative to healthy patients. Moreover, AMPs from amphibians and social wasps have antidiabetic effects. In infections occurring in patients with tuberculosis-diabetes or diabetic foot, granulysin, HNP1, HNP2, HNP3, human beta-defensin 2 (HBD2), and cathelicidins are responsible for pathogen clearance. An interesting alternative is also the use of modified M13 bacteriophages containing encapsulated AMPs genes or phagemids.
Collapse
|
32
|
Zou H, Zhan C. Using Multi‐Level Correlation Information to Identify Amyloidogenic Peptides. ChemistrySelect 2022. [DOI: 10.1002/slct.202104578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hongliang Zou
- School of Communications and Electronics Jiangxi Science and Technology Normal University Nanchang 330003 China
| | - Chun Zhan
- School of Communications and Electronics Jiangxi Science and Technology Normal University Nanchang 330003 China
| |
Collapse
|
33
|
Sinha S, Bhattacharjya S. NMR Structure and Localization of the Host Defense Peptide ThanatinM21F in Zwitterionic Dodecylphosphocholine Micelle: Implications in Antimicrobial and Hemolytic Activity. J Membr Biol 2022; 255:151-160. [PMID: 35257227 DOI: 10.1007/s00232-022-00223-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/19/2022] [Indexed: 11/25/2022]
Abstract
Non-hemolytic antimicrobial peptides (AMPs) are vital lead molecules for the designing and development of peptide-based antibiotics. Thanatin a 21-amino acid long single disulfide bonded AMP is known to be highly non-hemolytic with a limited toxicity to human cells and model animals. Thanatin demonstrates a potent antibacterial activity against multidrug-resistant Gram-negative pathogens. A single mutated variant of thanatin replaced last residue Met21 to Phe or thanatin M21F has recently been found to be more active compared to the native peptide. In order to gain mechanistic insights toward bacterial cell lysis versus non-hemolysis, here, we report atomic resolution structure and mode insertion of thanatinM21F reconstituted into zwitterionic detergent micelle by use of solution NMR spectroscopy. The 3D structure of thanatinM21F in DPC micelle is defined by an anti-parallel β-sheet between residues I9-F21 with a central cationic loop, residues N12-R14. PRE NMR studies revealed hydrophobic core residues of thanatinM21F are deeply inserted in the DPC micelle, while residues at the extended N-terminal half of the peptide are appeared to be mostly surface localized. Marked structural differences of thanatin and thanatinM21F in negatively charged LPS and DPC micelle could be correlated with non-hemolytic and antibacterial activity.
Collapse
Affiliation(s)
- Sheetal Sinha
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
34
|
Andrukhov O, Blufstein A, Behm C. A Review of Antimicrobial Activity of Dental Mesenchymal Stromal Cells: Is There Any Potential? FRONTIERS IN ORAL HEALTH 2022; 2:832976. [PMID: 35098213 PMCID: PMC8795861 DOI: 10.3389/froh.2021.832976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial defense is an essential component of host-microbial homeostasis and contributes substantially to oral health maintenance. Dental mesenchymal stromal cells (MSCs) possess multilineage differentiation potential, immunomodulatory properties and play an important role in various processes like regeneration and disease progression. Recent studies show that dental MSCs might also be involved in antibacterial defense. This occurs by producing antimicrobial peptides or attracting professional phagocytic immune cells and modulating their activity. The production of antimicrobial peptides and immunomodulatory abilities of dental MSCs are enhanced by an inflammatory environment and influenced by vitamin D3. Antimicrobial peptides also have anti-inflammatory effects in dental MSCs and improve their differentiation potential. Augmentation of antibacterial efficiency of dental MSCs could broaden their clinical application in dentistry.
Collapse
Affiliation(s)
- Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Alice Blufstein
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christian Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Zhu Y, Hao W, Wang X, Ouyang J, Deng X, Yu H, Wang Y. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Med Res Rev 2022; 42:1377-1422. [PMID: 34984699 DOI: 10.1002/med.21879] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), are important effector immune defense molecules in multicellular organisms. AMPs exert their antimicrobial activities through several mechanisms; thus far, induction of drug resistance through AMPs has been regarded as unlikely. Therefore, they have great potential as new generation antimicrobial agents. To date, more than 30 AMP-related drugs are in the clinical trial phase. In recent years, studies show that some AMPs and conventional antibiotics have synergistic effects. The combined use of AMPs and antibiotics can kill drug-resistant pathogens, prevent drug resistance, and significantly improve the therapeutic effects of antibiotics. In this review, we discuss the progress in synergistic studies on AMPs and conventional antibiotics. An overview of the current understanding of the functional scope of AMPs, ongoing clinical trials, and challenges in the development processes are also presented.
Collapse
Affiliation(s)
- Yiyun Zhu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Weijing Hao
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xia Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jianhong Ouyang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyi Deng
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Haining Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
36
|
Multiple Antimicrobial Effects of Hybrid Peptides Synthesized Based on the Sequence of Ribosomal S1 Protein from Staphylococcus aureus. Int J Mol Sci 2022; 23:ijms23010524. [PMID: 35008951 PMCID: PMC8745237 DOI: 10.3390/ijms23010524] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 01/01/2022] [Indexed: 02/06/2023] Open
Abstract
The need to develop new antimicrobial peptides is due to the high resistance of pathogenic bacteria to traditional antibiotics now and in the future. The creation of synthetic peptide constructs is a common and successful approach to the development of new antimicrobial peptides. In this work, we use a simple, flexible, and scalable technique to create hybrid antimicrobial peptides containing amyloidogenic regions of the ribosomal S1 protein from Staphylococcus aureus. While the cell-penetrating peptide allows the peptide to enter the bacterial cell, the amyloidogenic site provides an antimicrobial effect by coaggregating with functional bacterial proteins. We have demonstrated the antimicrobial effects of the R23F, R23DI, and R23EI hybrid peptides against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Pseudomonas aeruginosa, Escherichia coli, and Bacillus cereus. R23F, R23DI, and R23EI can be used as antimicrobial peptides against Gram-positive and Gram-negative bacteria resistant to traditional antibiotics.
Collapse
|
37
|
Manrique-Moreno M, Santa-González G, Gallego V. Bioactive cationic peptides as potential agents for breast cancer treatment. Biosci Rep 2021; 41:BSR20211218C. [PMID: 34874400 PMCID: PMC8655503 DOI: 10.1042/bsr20211218c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Breast cancer continues to affect millions of women worldwide, and the number of new cases dramatically increases every year. The physiological causes behind the disease are still not fully understood. One in every 100 cases can occur in men, and although the frequency is lower than among women, men tend to have a worse prognosis of the disease. Various therapeutic alternatives to combat the disease are available. These depend on the type and progress of the disease, and include chemotherapy, radiotherapy, surgery, and cancer immunotherapy. However, there are several well-reported side effects of these treatments that have a significant impact on life quality, and patients either relapse or are refractory to treatment. This makes it necessary to develop new therapeutic strategies. One promising initiative are bioactive peptides, which have emerged in recent years as a family of compounds with an enormous number of clinical applications due to their broad spectrum of activity. They are widely distributed in several organisms as part of their immune system. The antitumoral activity of these peptides lies in a nonspecific mechanism of action associated with their interaction with cancer cell membranes, inducing, through several routes, bilayer destabilization and cell death. This review provides an overview of the literature on the evaluation of cationic peptides as potential agents against breast cancer under different study phases. First, physicochemical characteristics such as the primary structure and charge are presented. Secondly, information about dosage, the experimental model used, and the mechanism of action proposed for the peptides are discussed.
Collapse
Affiliation(s)
- Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin, Antioquia
| | - Gloria A. Santa-González
- Biomedical Innovation and Research Group, Faculty of Applied and Exact Sciences, Instituto Tecnólogico Metropolitano, A.A. 54959, Medellin, Colombia
| | - Vanessa Gallego
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin, Antioquia
| |
Collapse
|
38
|
De Seta F, Larsen B. Antimicrobial Activity of a Vaginal Gel Formulation: Considerations Related to Vaginal Infection and Dysbiosis. Pathogens 2021; 10:pathogens10121576. [PMID: 34959532 PMCID: PMC8706553 DOI: 10.3390/pathogens10121576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Many non-prescription preparations intended to treat or alleviate symptoms of vaginal infection are available in American and European markets, but many have scant preclinical or clinical research underpinning. Respecta®Balance Gel (RBG) is marketed as an adjunct to probiotic treatment and its relevant antimicrobial properties were studied. Key findings with the manufacturer-supplied gel showed reduced turbidity in broth-dilution tests by 50% against Candida albicans and Candida glabrata at RBG concentrations 0.2-0.4% of neat product, respectively. A 50% reduction in turbidity of Escherichia coli, Streptococcus agalactiae, Enterococcus faecalis ranged from 1.6-2.2% and Gardnerella vaginalis was shown by flow cytometry counts to undergo a 50% reduction at 0.3% RBG. Propidium iodide staining indicated a rapid reduction of cell integrity of G. vaginalis almost immediately while after 4 h 45% of E. coli cells were stained. The lactic acid in BHI inhibited bacteria and yeast at concentrations ranging from 0.2-1.8% but inhibition was not solely due to pH since a 1:4 dilution of RBG resulted in a pH near neutral (6.75). Other findings showed biofilm accumulation assessed after 10-days exposure of Candida spp. to RBG and was reduced by an average of one-third (community strains) to one-half (drug-resistant strains). One excipient of the RBG, disodium EDTA, inhibited the growth of bacteria and yeast at concentrations below those present in RBG and may accentuate the activity of the host defense factor, lactoferrin. We conclude that RBG is a potent inhibitor of vaginal microorganisms relevant to vaginitis or intrapartum infections and contains excipients that may contribute to its antimicrobial activity.
Collapse
Affiliation(s)
- Francesco De Seta
- Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy;
- Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, 34137 Trieste, Italy
| | - Bryan Larsen
- College of Osteopathic Medicine, Marian University, 3200 Cold Spring Road, Indianapolis, IN 46222, USA
- Correspondence:
| |
Collapse
|
39
|
Massa HM, Spann KM, Cripps AW. Innate Immunity in the Middle Ear Mucosa. Front Cell Infect Microbiol 2021; 11:764772. [PMID: 34778109 PMCID: PMC8586084 DOI: 10.3389/fcimb.2021.764772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 01/14/2023] Open
Abstract
Otitis media (OM) encompasses a spectrum of clinical presentations ranging from the readily identifiable Acute OM (AOM), which is characterised by otalgia and fever, to chronic otitis media with effusion (COME) where impaired hearing due to middle ear effusion may be the only clinical symptom. Chronic suppurative OM (CSOM) presents as a more severe form of OM, involving perforation of the tympanic membrane. The pathogenesis of OM in these varied clinical presentations is unclear but activation of the innate inflammatory responses to viral and/or bacterial infection of the upper respiratory tract performs an integral role. This localised inflammatory response can persist even after pathogens are cleared from the middle ear, eustachian tubes and, in the case of respiratory viruses, even the nasal compartment. Children prone to OM may experience an over exuberant inflammatory response that underlies the development of chronic forms of OM and their sequelae, including hearing impairment. Treatments for chronic effusive forms of OM are limited, with current therapeutic guidelines recommending a "watch and wait" strategy rather than active treatment with antibiotics, corticosteroids or other anti-inflammatory drugs. Overall, there is a clear need for more targeted and effective treatments that either prevent or reduce the hyper-inflammatory response associated with chronic forms of OM. Improved treatment options rely upon an in-depth understanding of OM pathogenesis, particularly the role of the host innate immune response during acute OM. In this paper, we review the current literature regarding the innate immune response within the middle ear to bacterial and viral otopathogens alone, and as co-infections. This is an important consideration, as the role of respiratory viruses as primary pathogens in OM is not yet fully understood. Furthermore, increased reporting from PCR-based diagnostics, indicates that viral/bacterial co-infections in the middle ear are more common than bacterial infections alone. Increasingly, the mechanisms by which viral/bacterial co-infections may drive or maintain complex innate immune responses and inflammation during OM as a chronic response require investigation. Improved understanding of the pathogenesis of chronic OM, including host innate immune response within the middle ear is vital for development of improved diagnostic and treatment options for our children.
Collapse
Affiliation(s)
- Helen M Massa
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Kirsten M Spann
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Allan W Cripps
- Menzies Health Institute Queensland, School of Medicine, Griffith University, Gold Coast, QLD, Australia.,School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
40
|
Sharma A, Gaur A, Kumar V, Sharma N, Patil SA, Verma RK, Singh AK. Antimicrobial activity of synthetic antimicrobial peptides loaded in poly-Ɛ-caprolactone nanoparticles against mycobacteria and their functional synergy with rifampicin. Int J Pharm 2021; 608:121097. [PMID: 34534632 DOI: 10.1016/j.ijpharm.2021.121097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) treatment has become a challenge because of the natural presence of multilayered cell wall rich in lipids which restrict antibiotic permeability within the bacteria. The development of mutations conferring resistance has aggravated the situation. Consequently, maximum pharmaceutical efforts are required to improve the treatment, and antimicrobial peptides (AMPs) with antimycobacterial activity can be exploited as a new treatment strategy against TB. The synergistic interaction between conventional antibiotics and AMPs has broadened its application landscape. To overcome peptide instability and bioavailability issues, encapsulation of these bioactive in biocompatible polymers was adopted. In this study, the effect of synthetic AMPs HHC-8 [KIWWWWRKR] and MM-10 [MLLKKLLKKM] encapsulated in poly (ε-caprolactone) nanoparticles (PCL-NPs) was evaluated against mycobacteria using REMA (Resazurin Microtiter Assay Plate) technique. PCL encapsulation allowed us to load the required amount of peptides, i.e. HHC-8 and MM-10, with an efficiency of ∼ 18.9 ± 5.24 and ∼ 21.1 ± 6.19 % respectively, and sphere size was around 376.5 ± 14.9 nm and 289.87 ± 17.98 nm for PCL-HHC-8-NPs and PCL-MM-10-NPs, respectively. Minimal degradation and sustained release of peptides from nanoparticles improved antimicrobial activity, decreasing the MIC50 from 75 µg/ml to 18.75 µg/ml against M. smegmatis and from 75 µg/ml to 9 µg/ml against M. tuberculosis, respectively. The combinatorial MIC assays of encapsulated AMP with rifampicin antibiotics against M. smegmatis showed synergism between AMP-PCL-NPs and antibiotics with fractional inhibitory concentrations (FICs) around ∼ 0.09. The combinations of AMP NPs also demonstrated synergy against the mycobacteria. Our findings suggest that enhanced efficacy is due to protection offered by AMPs encapsulation resulting in augmentation of membrane permeation by AMPs and enhanced accumulation of antibiotics within mycobacteria resulting in synergy. The study findings might assist in the preclinical development of AMP for the fight against TB.
Collapse
Affiliation(s)
- Ankur Sharma
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab 160062, India
| | - Aparna Gaur
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India
| | - Vimal Kumar
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, J&K, India
| | - Shripad A Patil
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab 160062, India
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
| |
Collapse
|
41
|
de la Salud Bea R, North LJ, Horiuchi S, Frawley ER, Shen Q. Antimicrobial Activity and Toxicity of Analogs of Wasp Venom EMP Peptides. Potential Influence of Oxidized Methionine. Antibiotics (Basel) 2021; 10:antibiotics10101208. [PMID: 34680789 PMCID: PMC8532962 DOI: 10.3390/antibiotics10101208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/15/2022] Open
Abstract
The antibiotic and toxic properties for four synthetic analogs of eumenine mastoparan peptides (EMP) have been tested. These properties were compared to two natural peptides found in the venom of solitary wasps Anterhynchium flavomarginatum micado (natural peptide EMP-AF) and Eumenes rubrofemoratus (natural peptide EMP-ER), respectively. Only EMP-AF-OR showed concentration-dependent growth inhibition against all bacterial species tested. Gram positive species had MIC values of 10 μg/mL for B. subtilis and 25 μg/mL for S. aureus. Gram negative species had MIC values of 25 μg/mL for E. coli and 200 μg/mL for P. aeruginosa. Of the other tested peptides, EMP-ER-D2K2 also showed activity and inhibited growth of Bacillus subtilis in a concentration-dependent manner at 200 μg/mL. Peptide EMP-ER-OR reduced the final density of Escherichia coli and B. subtilis cultures but did not impact their growth kinetics. Peptides EMP-AF-OR, EMP-ER-OR, and EMP-ER-D2K2 showed limited antifungal activity against Candida albicans or Histoplasma capsulatum. The hemolytic activity of the analogs were moderated though reports of the natural peptides, especially EMP-AF-OR, already showed low toxicity against erythrocytes. These results are discussed in the context of the potential influence of oxidized methionine on EMP activity.
Collapse
Affiliation(s)
- Roberto de la Salud Bea
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA
- Correspondence: ; Tel.: +1-901-843-3649
| | - Lily J. North
- Department of Chemistry, The University of Arizona, Tucson, AZ 85721, USA;
| | - Sakura Horiuchi
- School of Medicine and Health Sciences, George Washington University, 2300 I St., NW, Washington, DC 20052, USA;
| | - Elaine R. Frawley
- Department of Biology, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (E.R.F.); (Q.S.)
| | - Qian Shen
- Department of Biology, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (E.R.F.); (Q.S.)
| |
Collapse
|
42
|
Galdiero E, Ricciardelli A, D'Angelo C, de Alteriis E, Maione A, Albarano L, Casillo A, Corsaro MM, Tutino ML, Parrilli E. Pentadecanoic acid against Candida albicans-Klebsiella pneumoniae biofilm: towards the development of an anti-biofilm coating to prevent polymicrobial infections. Res Microbiol 2021; 172:103880. [PMID: 34563667 DOI: 10.1016/j.resmic.2021.103880] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
The ability to form biofilms is a common feature of microorganisms, which can colonize a variety of surfaces, such as host tissues and medical devices, resulting in infections highly resistant to conventional drugs. This aspect is particularly critical in polymicrobial biofilms involving both fungi and bacteria, therefore, to eradicate such severe infections, new and effective anti-biofilm strategies are needed. The efficacy of pentadecanal and pentadecanoic acid as anti-biofilm agents has been recently reported against different bacterial strains. Their chemical similarity with diffusible signal factors (DSFs), plus the already known ability of fatty acids to act as anti-biofilm agents, suggested to explore their use against Candida albicans and Klebsiella pneumoniae mixed biofilm. In this work, we demonstrated the ability of both molecules to prevent the formation and destabilize the structure of the dual-species biofilm. Moreover, the pentadecanoic acid anti-biofilm coating, previously developed through the adsorption of the fatty acid on polydimethylsiloxane (PDMS), was proved to prevent the polymicrobial biofilm formation in dynamic conditions by confocal laser scanning microscopy analysis. Finally, the evaluation of the expression levels of some biofilm-related genes of C. albicans and K. pneumoniae treated with pentadecanoic acid provided some insights into the molecular mechanisms underpinning its anti-biofilm effect.
Collapse
Affiliation(s)
- E Galdiero
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Santangelo, Via Cinthia 21, 80126, Naples, Italy
| | - A Ricciardelli
- Department of Chemical Sciences, University of Naples Federico II, 80125, Naples, Italy
| | - C D'Angelo
- Department of Chemical Sciences, University of Naples Federico II, 80125, Naples, Italy
| | - E de Alteriis
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Santangelo, Via Cinthia 21, 80126, Naples, Italy
| | - A Maione
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Santangelo, Via Cinthia 21, 80126, Naples, Italy
| | - L Albarano
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Santangelo, Via Cinthia 21, 80126, Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, 80125, Naples, Italy; Department of Marine Biothecnology, Stazione Zoologica Anton Dohrn Villa Comunale, 80121, Naples, Italy
| | - A Casillo
- Department of Chemical Sciences, University of Naples Federico II, 80125, Naples, Italy
| | - M M Corsaro
- Department of Chemical Sciences, University of Naples Federico II, 80125, Naples, Italy
| | - M L Tutino
- Department of Chemical Sciences, University of Naples Federico II, 80125, Naples, Italy
| | - E Parrilli
- Department of Chemical Sciences, University of Naples Federico II, 80125, Naples, Italy.
| |
Collapse
|
43
|
Chen S, Zhang P, Xiao L, Liu Y, Wu K, Ni G, Li H, Wang T, Wu X, Chen G, Liu X. Caerin 1.1 and 1.9 Peptides from Australian Tree Frog Inhibit Antibiotic-Resistant Bacteria Growth in a Murine Skin Infection Model. Microbiol Spectr 2021; 9:e0005121. [PMID: 34259550 PMCID: PMC8552723 DOI: 10.1128/spectrum.00051-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023] Open
Abstract
The host defense peptide caerin 1.9 was originally isolated from skin secretions of an Australian tree frog and inhibits the growth of a wide range of bacteria in vitro. In this study, we demonstrated that caerin 1.9 shows high bioactivity against several bacteria strains, such as Staphylococcus aureus, Acinetobacter baumannii, methicillin-resistant Staphylococcus aureus (MRSA), and Streptococcus haemolyticus in vitro. Importantly, unlike the antibiotic Tazocin, caerin 1.9 does not induce bacterial resistance after 30 rounds of in vitro culture. Moreover, caerin 1.1, another peptide of the caerin family, has an additive antibacterial effect when used together with caerin 1.9. Furthermore, caerin 1.1 and 1.9 prepared in the form of a temperature-sensitive gel inhibit MRSA growth in a skin bacterial infection model of two murine strains. These results indicate that caerin 1.1 and 1.9 peptides could be considered an alternative for conventional antibiotics. IMPORTANCE Antibiotic-resistant bacteria cause severe problems in the clinic. We show in our paper that two short peptides isolated from an Australian frog and prepared in the form of a gel are able to inhibit the growth of antibiotic-resistant bacteria in mice, and, unlike antibiotics, these peptides do not lead to the development of peptide-resistant bacteria strains.
Collapse
Affiliation(s)
- Shu Chen
- Cancer Research Institute, Foshan First People’s Hospital, Foshan, Guangdong, China
| | - Pingping Zhang
- Cancer Research Institute, Foshan First People’s Hospital, Foshan, Guangdong, China
| | - Liyin Xiao
- Cancer Research Institute, Foshan First People’s Hospital, Foshan, Guangdong, China
| | - Ying Liu
- Cancer Research Institute, Foshan First People’s Hospital, Foshan, Guangdong, China
| | - Kuihai Wu
- Clinical Microbiological Laboratory, Foshan First People’s Hospital, Foshan, Guangdong, China
| | - Guoying Ni
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore, QLD, Australia
- Department of Rheumatology, Foshan Frist People’s Hospital, Foshan, Guangdong, China
| | - Hejie Li
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Tianfang Wang
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Xiaolian Wu
- Cancer Research Institute, Foshan First People’s Hospital, Foshan, Guangdong, China
| | - Guoqiang Chen
- Department of Rheumatology, Foshan Frist People’s Hospital, Foshan, Guangdong, China
| | - Xiaosong Liu
- Cancer Research Institute, Foshan First People’s Hospital, Foshan, Guangdong, China
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
44
|
Tang Q, Yang C, Li W, Zhang Y, Wang X, Wang W, Ma Z, Zhang D, Jin Y, Lin D. Evaluation of Short-Chain Antimicrobial Peptides With Combined Antimicrobial and Anti-inflammatory Bioactivities for the Treatment of Zoonotic Skin Pathogens From Canines. Front Microbiol 2021; 12:684650. [PMID: 34456884 PMCID: PMC8386128 DOI: 10.3389/fmicb.2021.684650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
The incidence of zoonotic Staphylococcus pseudintermedius and Microsporum canis infections is rapidly growing worldwide in the context of an increasing frequency of close contact between animals and humans, presenting challenges in both human and veterinary medicine. Moreover, the development of microbial resistance and emergence of recalcitrant biofilms, accompanied by the insufficiency of new antimicrobial agents, have become major obstacles in treating superficial skin infections caused by various microbes including S. pseudintermedius and M. canis. Over recent years, the prospects of antimicrobial peptides as emerging antimicrobials to combat microbial infections have been demonstrated. In our study, two novel short-chain peptides, namely, allomyrinasin and andricin B, produced by Allomyrina dichotoma and Andrias davidianus, were revealed to exhibit potent antimicrobial efficacy against clinical isolates of S. pseudintermedius and M. canis with remarkable and rapid fungicidal and bactericidal effects, while allomyrinasin exhibited inhibition of biofilm formation and eradication of mature biofilm. These peptides displayed synergistic activity when combined with amoxicillin and terbinafine against S. pseudintermedius and M. canis. Cytoplasmic leakage via cytomembrane permeabilization serves as a mechanism of action. Extremely low hemolytic activity and serum stability in vitro, as well as superior anti-infective efficacy in reducing bacterial counts and relieving the inflammatory response in vivo, were detected. The potent antibacterial, antifungal, and anti-inflammatory activities of allomyrinasin and andricin B might indicate promising anti-infective alternatives for the treatment of S. pseudintermedius and M. canis infections in the context of human and veterinary medicine.
Collapse
Affiliation(s)
- Qiyu Tang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chunyi Yang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Weitian Li
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuhang Zhang
- Key Lab of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinying Wang
- Modern Animal Research Center, Nanjing University, Nanjing, China
| | - Weixin Wang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhiling Ma
- Research and Development Department, Artron BioResearch Inc., Vancouver, BC, Canada
| | - Di Zhang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Jin
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Degui Lin
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
45
|
Bonvicini F, Belluti F, Bisi A, Gobbi S, Manet I, Gentilomi GA. Improved eradication efficacy of a combination of newly identified antimicrobial agents in C. albicans and S. aureus mixed-species biofilm. Res Microbiol 2021; 172:103873. [PMID: 34389439 DOI: 10.1016/j.resmic.2021.103873] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/29/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022]
Abstract
Candida albicans and Staphylococcus aureus are common human pathogens, frequently isolated independently or co-isolated from bloodstream infections, and able to form dense polymicrobial biofilms on various medical devices resulting in strong resistance to conventionally used antimicrobials. New and innovative approaches are therefore needed to ensure the successful management of biofilm related infections. In this study, a chalcone-based derivative and a polycyclic anthracene-maleimide adduct, previously ascertained by us as inhibitors of C. albicans and S. aureus growths, respectively, were reconsidered in a new perspective by evaluating the efficacy of a combined treatment against a polymicrobial biofilm. Both quantitative and qualitative analyses were carried out to delve into their inhibitory potential on the polymicrobial population. Our results indicate that these newly identified antimicrobials are effective in reducing the biomass of the mixed C. albicans-S. aureus biofilm and the viability of fungal-bacterial cells within the polymicrobial community; in addition, confocal laser scanning microscopy demonstrate that compounds 1 and 2 treatment thoroughly modifies the architecture of the dual-species biofilm.
Collapse
Affiliation(s)
- Francesca Bonvicini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy.
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| | - Silvia Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| | - Ilse Manet
- Institute for Organic and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti 101, 40129, Bologna, Italy.
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy.
| |
Collapse
|
46
|
Grishin SY, Dzhus UF, Glukhov AS, Selivanova OM, Surin AK, Galzitskaya OV. Identification of Amyloidogenic Regions in Pseudomonas aeruginosa Ribosomal S1 Protein. Int J Mol Sci 2021; 22:ijms22147291. [PMID: 34298910 PMCID: PMC8305250 DOI: 10.3390/ijms22147291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial S1 protein is a functionally important ribosomal protein. It is a part of the 30S ribosomal subunit and is also able to interact with mRNA and tmRNA. An important feature of the S1 protein family is a strong tendency towards aggregation. To study the amyloidogenic properties of S1, we isolated and purified the recombinant ribosomal S1 protein of Pseudomonas aeruginosa. Using the FoldAmyloid, Waltz, Pasta 2.0, and AGGRESCAN programs, amyloidogenic regions of the protein were predicted, which play a key role in its aggregation. The method of limited proteolysis in combination with high performance liquid chromatography and mass spectrometric analysis of the products, made it possible to identify regions of the S1 protein from P. aeruginosa that are protected from the action of proteinase K, trypsin, and chymotrypsin. Sequences of theoretically predicted and experimentally identified amyloidogenic regions were used to synthesize four peptides, three of which demonstrated the ability to form amyloid-like fibrils, as shown by electron microscopy and fluorescence spectroscopy. The identified amyloidogenic sites can further serve as a basis for the development of new antibacterial peptides against the pathogenic microorganism P. aeruginosa.
Collapse
Affiliation(s)
- Sergei Y. Grishin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (U.F.D.); (A.S.G.); (O.M.S.); (A.K.S.)
| | - Ulyana F. Dzhus
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (U.F.D.); (A.S.G.); (O.M.S.); (A.K.S.)
| | - Anatoly S. Glukhov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (U.F.D.); (A.S.G.); (O.M.S.); (A.K.S.)
| | - Olga M. Selivanova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (U.F.D.); (A.S.G.); (O.M.S.); (A.K.S.)
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (U.F.D.); (A.S.G.); (O.M.S.); (A.K.S.)
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (U.F.D.); (A.S.G.); (O.M.S.); (A.K.S.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence:
| |
Collapse
|
47
|
Körtvélyessy G, Tarjányi T, Baráth ZL, Minarovits J, Tóth Z. Bioactive coatings for dental implants: A review of alternative strategies to prevent peri-implantitis induced by anaerobic bacteria. Anaerobe 2021; 70:102404. [PMID: 34146701 DOI: 10.1016/j.anaerobe.2021.102404] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Members of oral bacterial communities form biofilms not only on tooth surfaces but also on the surface of dental implants that replace natural teeth. Prolonged interaction of host cells with biofilm-forming anaerobes frequently elicits peri-implantitis, a destructive inflammatory disease accompanied by alveolar bone loss leading to implant failure. Here we wish to overview how the deposition of bioactive peptides to dental implant surfaces could potentially inhibit bacterial colonization and the development of peri-implantisis. One preventive strategy is based on natural antimicrobial peptides (AMPs) immobilized on titanium surfaces. AMPs are capable to destroy both Gram positive and Gram negative bacteria directly. An alternative strategy aims at coating implant surfaces - especially the transmucosal part - with peptides facilitating the attachment of gingival epithelial cells and connective tissue cells. These cells produce AMPs and may form a soft tissue seal that prevents oral bacteria from accessing the apical part of the osseointegrated implant. Because a wide variety of titanium-bound peptides were studied in vitro, we wish to concentrate on bioactive peptides of human origin and some of their derivatives. Furthermore, special attention will be given to peptides effective under in vivo test conditions.
Collapse
Affiliation(s)
- Győző Körtvélyessy
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary
| | - Tamás Tarjányi
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary
| | - Zoltán L Baráth
- Department of Prosthodontics, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary
| | - Janos Minarovits
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary
| | - Zsolt Tóth
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary; Department of Experimental Physics, University of Szeged, Faculty of Science and Informatics, 6720, Szeged, Dóm Tér 9, Hungary.
| |
Collapse
|
48
|
Elashiry M, Morandini AC, Cornelius Timothius CJ, Ghaly M, Cutler CW. Selective Antimicrobial Therapies for Periodontitis: Win the "Battle and the War". Int J Mol Sci 2021; 22:ijms22126459. [PMID: 34208697 PMCID: PMC8235535 DOI: 10.3390/ijms22126459] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional antimicrobial therapies for periodontitis (PD) have long focused on non-selective and direct approaches. Professional cleaning of the subgingival biofilm by instrumentation of dental root surfaces, known as scaling and root planning (SRP), is the mainstay of periodontal therapy and is indisputably effective. Non-physical approaches used as adjuncts to SRP, such as chemical and biological agents, will be the focus of this review. In this regard, traditional agents such as oral antiseptics and antibiotics, delivered either locally or systemically, were briefly reviewed as a backdrop. While generally effective in winning the “battle” against PD in the short term, by reducing its signs and symptoms, patients receiving such therapies are more susceptible to recurrence of PD. Moreover, the long-term consequences of such therapies are still in question. In particular, concern about chronic use of systemic antibiotics and their influence on the oral and gut microbiota is warranted, considering antibiotic resistance plasmids, and potential transfer between oral and non-oral microbes. In the interest of winning the “battle and the war”, new more selective and targeted antimicrobials and biologics for PD are being studied. These are principally indirect, blocking pathways involved in bacterial colonization, nutrient acquisition, inflammation or cellular invasion without directly killing the pathogens. This review will focus on current and prospective antimicrobial therapies for PD, emphasizing therapies that act indirectly on the microbiota, with clearly defined cellular and molecular targets.
Collapse
|