1
|
Jabbarpour S, Larki A, Pourreza N, Ghomi M. Fluorescence sensor based on Methionine-Modified silver nanoparticles located on Fe-BTC metal-organic framework (Meth-AgNPs@Fe-BTC) for trace detection of fenitrothion pesticide in aqueous samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125424. [PMID: 39603081 DOI: 10.1016/j.saa.2024.125424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/01/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
This research introduces a new "turn-on mode" fluorescence sensor for the detection of fenitrothion (FNT) pesticide in various samples. The sensor is constructed using a porous metal-organic framework (Fe-BTC) as a template to locate silver nanoparticles (AgNPs) and methionine amino acid (Meth). Methionine acts as a bridge, facilitating the interaction between FNT and AgNPs, which subsequently results in the release of AgNPs from the composite structure. The physicochemical properties of the synthesized Meth-AgNPs@Fe-BTC composite were analyzed by Fourier-transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDAX), Transmission electron microscopy (TEM), and elemental mapping (MAP) analysis. The sensing system is based on tracking the fluorescence of the synthetic composite in such a way that the intensity of the fluorescence of the composite increases in the presence of different concentrations of fenitrothion (FNT). The effective parameters on the sensor signal, including composite dosage, pH, sonication and reaction time were investigated and optimized. The calibration graph, under optimal conditions, exhibited linearity in the concentration range of 2-95 nM for FNT, with a limit of detection of 1.9 nM. The suggested sensor was successfully validated by analyzing FNT in several real water samples and fruit juices. This research presents a significant technical achievement in the development of a fluorescence sensor for the detection of FNT, offering a sensitive and reliable method for environmental monitoring and public health preservation.
Collapse
Affiliation(s)
- Somayyeh Jabbarpour
- Department of Marine Chemistry, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Arash Larki
- Department of Marine Chemistry, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran.
| | - Nahid Pourreza
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Matineh Ghomi
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Department of Chemistry, Jundi-Shapur University of Technology, Dezful, Iran
| |
Collapse
|
2
|
Farwa U, Sandhu ZA, Kiran A, Raza MA, Ashraf S, Gulzarab H, Fiaz M, Malik A, Al-Sehemi AG. Revolutionizing environmental cleanup: the evolution of MOFs as catalysts for pollution remediation. RSC Adv 2024; 14:37164-37195. [PMID: 39569125 PMCID: PMC11578092 DOI: 10.1039/d4ra05642f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/19/2024] [Indexed: 11/22/2024] Open
Abstract
The global problem of ecological safety and public health necessitates, the development of new sustainable ideas for pollution remediation. In recent development, metal-organic frameworks (MOF) are the emerging technology with remarkable potential, which have been employed in environmental remediation. MOFs are networks that are created by the coordination of metals or polyanions with ligands and contain organic components that can be customized. The interesting features of MOFs are a large surface area, tuneable porosity, functional diversity, and high predictability of pollutant adsorption, catalysis, and degradation. It is a solid material that occupies a unique position in the war against environmental pollutants. One of the main benefits of MOFs is that they exhibit selective adsorption of a wide range of pollutants, including heavy metals, organics, greenhouse gases, water and soil. Only particles with the right combination of pore size and chemical composition will achieve this selectivity, derived from the high level of specificity. Besides, they possess high catalytic ability for the removal of pollutants by means of different methods such as photocatalysis, Fenton-like reactions, and oxidative degradation. By generating mobile active sites within the framework of MOFs, we can not only ensure high affinity for pollutants but also effective transformation of toxic chemicals into less harmful or even inert end products. However, the long-term stability of MOFs is becoming more important as eco-friendly parts are replaced with those that can be used repeatedly, and systems based on MOFs that can remove pollutants in more than one way are fabricated. MOFs can reduce waste production, energy consumption as compared to the other removal process. With its endless capacities, MOF technology brings a solution to the environmental cleansing problem, working as a flexible problem solver from one field to another. The investigation of MOF synthesis and principles will allow researchers to fully understand the potential of MOFs in environmental problem solving, making the world a better place for all of us.
Collapse
Affiliation(s)
- Umme Farwa
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Zeshan Ali Sandhu
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Azwa Kiran
- Department of Chemistry, Faculty of Science, University of Engineering and Technology Lahore Lahore Pakistan
| | - Muhammad Asam Raza
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Sufyan Ashraf
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Hamza Gulzarab
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Muhammad Fiaz
- Department of Chemistry, University of Texas at Austin USA
| | - Adnan Malik
- Department of Physics and Chemistry, Faculty of Applied Science and Technology, University Tun Hussein Onn Malaysia Pagoh Campus Malaysia
| | | |
Collapse
|
3
|
Nawaz S, Salman SM, Ali A, Ali B, Shah SN, Rahman LU. Kinetics and thermodynamics investigations of efficient and eco-friendly removal of alizarin red S from water via acid-activated Dalbergia sissoo leaf powder and its magnetic iron oxide nanocomposite. Front Chem 2024; 12:1457265. [PMID: 39385963 PMCID: PMC11462623 DOI: 10.3389/fchem.2024.1457265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
The present work aimed to highlight an efficient, readily accessible, and cost-effective adsorbent derived from Dalbergia sissoo (DS) leaf powder for removing the environmentally hazardous dye "alizarin red S" (ARS) from hydrous medium. A variant of the adsorbent is activated via sulfuric acid and composited with magnetic iron oxide nanoparticles (DSMNC). Both adsorbents are thoroughly characterized using techniques such as Fourier transform infrared spectroscopy, point of zero charge, energy-dispersive X-ray spectroscopy, and scanning electron microscopy, which show that they have a porous structure rich in active sites. Different adsorption conditions are optimized with the maximum removal efficiency of 76.63% for DS and 97.89% for DSMNC. The study was highlighted via the application of various adsorption isotherms, including Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich, to adsorption data. Pseudo-first-order, pseudo-second-order, and intra-particle diffusion models were utilized to investigate the kinetics and mechanism of adsorption. The Freundlich model and pseudo-second-order kinetics exhibited the best fit, suggesting a combination of physical interactions, as confirmed by the D-R and Temkin models. The dominant adsorbate-adsorbent interactive interactions responsible for ARS removal were hydrogen bonding, dispersion forces, and noncovalent aromatic ring adsorbent pi-interactions. Thermodynamic parameters extracted from adsorption data indicated that the removal of the mutagenic dye "ARS" was exothermic and spontaneous on both DS and DSMNC, with DSMNC exhibiting higher removal efficiency.
Collapse
Affiliation(s)
- Saleem Nawaz
- Department of Chemistry, Islamia College Peshawar, Peshawar, Pakistan
| | | | - Asad Ali
- Energy Engineering, Division of Energy Science, Lulea University of Technology, Lulea, Sweden
| | - Basit Ali
- Department of Chemistry, Islamia College Peshawar, Peshawar, Pakistan
| | - Syed Nusrat Shah
- Department of Chemistry, Islamia College Peshawar, Peshawar, Pakistan
| | - Latif Ur Rahman
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
4
|
Tocco D, Joshi M, Mastrangelo R, Fratini E, Salis A, Hartmann M. A green approach to encapsulate proteins and enzymes within crystalline lanthanide-based Tb and Gd MOFs. Dalton Trans 2024; 53:14171-14181. [PMID: 39044548 DOI: 10.1039/d4dt01667j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
In this work, bovine serum albumin (BSA) and Aspergillus sp. laccase (LC) were encapsulated in situ within two lanthanide-based MOFs (TbBTC and GdBTC) through a green one-pot synthesis (almost neutral aqueous solution, T = 25 °C, and atmospheric pressure) in about 1 h. Pristine MOFs and protein-encapsulated MOFs were characterized through wide angle X-ray scattering, scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared and Raman spectroscopies. The location of immobilized BSA molecules, used as a model protein, was investigated through small angle X-ray scattering. BSA occurs both on the inner and on the outer surface of the MOFs. LC@TbBTC, and LC@GdBTC samples were also characterized in terms of specific activity, kinetic parameters, and storage stability both in water and acetate buffer. The specific activity of LC@TbBTC was almost twice that of LC@GdBTC (10.8 μmol min-1 mg-1vs. 6.6 μmol min-1 mg-1). Both biocatalysts showed similar storage stabilities retaining ∼60% of their initial activity after 7 days and ∼20% after 21 days. LC@TbBTC dispersed in acetate buffer exhibited a higher storage stability than LC@GdBTC. Additionally, terbium-based MOFs showed interesting luminescent properties. Together, these findings suggest that TbBTC and GdBTC are promising supports for the in situ immobilization of proteins and enzymes.
Collapse
Affiliation(s)
- Davide Tocco
- Department of Chemical and Geological Sciences & CSGI, University of Cagliari, SS 554 bivio Sestu, 09042 Monserrato, CA, Italy.
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
- Department of Chemistry "Ugo Schiff" & CSGI, University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy
| | - Madhura Joshi
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Rosangela Mastrangelo
- Department of Chemistry "Ugo Schiff" & CSGI, University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy
| | - Emiliano Fratini
- Department of Chemistry "Ugo Schiff" & CSGI, University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy
| | - Andrea Salis
- Department of Chemical and Geological Sciences & CSGI, University of Cagliari, SS 554 bivio Sestu, 09042 Monserrato, CA, Italy.
| | - Martin Hartmann
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
5
|
Sundararaman S, Adhilimam, Chacko J, D P, M K, Kumar JA, A S, P T, M R, Bokov DO. Noteworthy synthesis strategies and applications of metal-organic frameworks for the removal of emerging water pollutants from aqueous environment. CHEMOSPHERE 2024; 362:142729. [PMID: 38971438 DOI: 10.1016/j.chemosphere.2024.142729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/16/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
17 global Sustainable Development Goals (SDGs) were established through the adoption of the 2030 Agenda for Sustainable Development by all United Nations members. Clean water and sanitation (SDG 6) and industry, innovation, and infrastructure (SDG 9) are the SDGs focus of this work. Of late, various new companies delivering metal-organic frameworks (MOFs) have blossomed and moved the field of adsorption utilizing MOFs to another stage. Inside this unique circumstance, this article aims to catch recent advancements in the field of MOFs and the utilizations of MOFs relate to the expulsion of arising contaminations that present huge difficulties to water quality because of their steadiness and possible damage to environments and human wellbeing. Customary water treatment techniques regularly neglect to eliminate these poisons, requiring the advancement of novel methodologies. This study overviews engineering techniques for controlling MOF characteristics for better flexibility, stability, and surface area. A current report on MOFs gathered new perspectives that are amicably discussed in emergent technologies and extreme applications towards environmental sectors. Various applications in many fields that exploit MOFs are being fostered, including gas storage, fluid separation, adsorbents, catalysis, medication delivery, and sensor utilizations. The surface area of a wide range of MOFs ranges from 103 to 104 m2/g, which exceeds the standard permeability of several material designs. MOFs with extremely durable porosity are more significant in their assortment and variety than other classes of porous materials. The work outlines the difficulties encountered in the synthesis steps and suggests ways to make use of MOFs' value in a variety of contexts. This caters to creating multivariate systems enclosed with numerous functionalities, leading to the synthesis of MOFs that offer a synergistic blend of in-built properties and exclusive applications. Additionally, the MOF-related future development opportunities and challenges are discussed.
Collapse
Affiliation(s)
- Sathish Sundararaman
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Adhilimam
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Jobin Chacko
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Prabu D
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Karthikeyan M
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - J Aravind Kumar
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India.
| | - Saravanan A
- Department of Sustainable Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Saveetha University, India
| | - Thamarai P
- Department of Sustainable Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Saveetha University, India
| | - Rajasimman M
- Department of Chemical Engineering, Annamalai University, Chidambaram, Tamilnadu, India
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy Named After A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow, 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation
| |
Collapse
|
6
|
Kurtulbaş E, Ciğeroğlu Z, Şahin S, El Messaoudi N, Mehmeti V. Monte Carlo, molecular dynamic, and experimental studies of the removal of malachite green using g-C 3N 4/ZnO/Chitosan nanocomposite in the presence of a deep eutectic solvent. Int J Biol Macromol 2024; 274:133378. [PMID: 38914401 DOI: 10.1016/j.ijbiomac.2024.133378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/23/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Deep-eutectic solvents (DES) have emerged as promising candidates for preparing nanocomposites. In this study, a DES-based graphitic carbon nitride (g-C3N4)/ZnO/Chitosan (Ch) nanocomposite was synthesized to remove malachite green (MG) dye from water. The DES was prepared by mixing and heating citric acid as a hydrogen bond acceptor and lactic acid as a hydrogen bond donor. This is the first report of the removal of MG using DES-based nanocomposites. Experiments on kinetics and isothermal adsorption were conducted to systematically explore the adsorption performances of nanocomposite toward dye. At 25 °C, the highest adsorption performance was obtained with alkaline media (>90 % removal). The greatest adsorption capacity (qm) was 59.52 mg g-1 at conditions (30 mg L-1 MG solution, pH 9, 3 mg nanocomposite per 10 mL of MG solution, 25 °C, 150 rpm, and 150 min) based on the calculation from the best-fitting isotherm model (Langmuir). The adsorption process was most appropriately kinetically described by the PSO model. The Monte Carlo (MC) and molecular dynamic (MC) results are correlated with experimental findings to validate the theoretical predictions and enhance the overall understanding of the adsorption process. Electronic structure calculations reveal the nature of interactions, including hydrogen bonding and electrostatic forces, between the nanocomposite and MG molecules.
Collapse
Affiliation(s)
- Ebru Kurtulbaş
- Istanbul University-Cerrahpasa, Faculty of Engineering, Chemical Engineering Department, 34320 Avcilar, Istanbul, Türkiye
| | - Zeynep Ciğeroğlu
- Uşak University, Faculty of Engineering and Sciences, Chemical Engineering Department, 64300 Uşak, Türkiye.
| | - Selin Şahin
- Istanbul University-Cerrahpasa, Faculty of Engineering, Chemical Engineering Department, 34320 Avcilar, Istanbul, Türkiye
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Valbonë Mehmeti
- University of Prishtina, Faculty of Agriculture and Veterinary, Prishtina, Kosovo
| |
Collapse
|
7
|
Sirach R, Dave PN. Artificial neural network modelling and experimental investigations of malachite green adsorption on novel carboxymethyl cellulose/ β-cyclodextrin/nickel cobaltite composite. Heliyon 2024; 10:e33820. [PMID: 39040424 PMCID: PMC11261892 DOI: 10.1016/j.heliyon.2024.e33820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/24/2024] Open
Abstract
This study presents a novel polymer nanocomposite based on carboxymethyl cellulose and β-cyclodextrin crosslinked with succinic acid (CMC-SA-β-CD) containing nickel cobaltite (NCO) nano-reinforcement. Various analytical techniques have been employed to investigate the structural, thermal, and morphological features of the resulting nanocomposite. The CMC-SA-β-CD/NCO nanocomposite has been utilized as an adsorbent for the removal of bisphenol-A (BPA, R% <40 %), malachite green (MG, R% > 75 %)), and Congo red (CR, no adsorption) from the synthetic wastewater. The study systematically explored the impact of various parameters on the adsorption process, and the interactions between MG and CMC-SA-β-CD/NCO were discussed. The adsorption data were fitted to different models to elucidate the kinetics and thermodynamics of the adsorption process. An artificial neural network (ANN) analysis was employed to train the experimental dataset for predicting adsorption outcomes. Despite a low BET surface area (0.798 m2 g-1), CMC-SA-β-CD/NCO was found to exhibit high MG adsorption capacity. CMC-SA-β-CD/NCO exhibited better MG adsorption performance at pH 5.5, 40 mg L-1 MG dye concentration, 170 min equilibrium time, 20 mg CMC-SA-β-CD/NCO dose with more than 90 % removal efficiency. Moreover, the thermodynamic studies suggest that the adsorption of MG was exothermic with ΔH° value -9.93 ± 0.76 kJ mol-1. The isotherm studies revealed that the Langmuir model was the best model to describe the adsorption of MG on CMC-SA-β-CD/NCO indicating monolayer surface coverage with Langmuir adsorption capacity of 182 ± 4 mg g-1. The energy of adsorption (11.4 ± 0.8 kJ mol-1) indicated chemisorption of MG on the composite surface. The kinetics studies revealed that the pseudo-first-order model best described the adsorption kinetics with q e = 86.7 ± 2.9 mg g-1. A good removal efficiency (>70 %) was retained after five regeneration reuse cycles. The ANN-trained data showed good linearity between predicted and actual data for the adsorption capacity (R-value>0.99), indicating the reliability of the prediction model. The developed nanocomposite, composed predominantly of biodegradable material, is facile to synthesize and exhibited excellent monolayer adsorption of MG providing a new sustainable adsorbent for selective MG removal.
Collapse
Affiliation(s)
- Ruksana Sirach
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| | - Pragnesh N. Dave
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| |
Collapse
|
8
|
Fatima SF, Sabouni R, Husseini G, Paul V, Gomaa H, Radha R. Microwave-Responsive Metal-Organic Frameworks (MOFs) for Enhanced In Vitro Controlled Release of Doxorubicin. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1081. [PMID: 38998686 PMCID: PMC11243425 DOI: 10.3390/nano14131081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/14/2024]
Abstract
Metal-organic frameworks (MOFs) are excellent candidates for a range of applications because of their numerous advantages, such as high surface area, porosity, and thermal and chemical stability. In this study, microwave (MW) irradiation is used as a novel stimulus in vitro controlled release of Doxorubicin (DOX) from two MOFs, namely Fe-BTC and MIL-53(Al), to enhance drug delivery in cancer therapy. DOX was encapsulated into Fe-BTC and MIL-53(Al) with drug-loading efficiencies of up to 67% for Fe-BTC and 40% for MIL-53(Al). Several characterization tests, including XRD, FTIR, TGA, BET, FE-SEM, and EDX, confirmed both MOF samples' drug-loading and -release mechanisms. Fe-BTC exhibited a substantial improvement in drug-release efficiency (54%) when exposed to microwave irradiation at pH 7.4 for 50 min, whereas 11% was achieved without the external modality. A similar result was observed at pH 5.3; however, in both cases, the release efficiencies were substantially higher with microwave exposure (40%) than without (6%). In contrast, MIL-53(Al) exhibited greater sensitivity to pH, displaying a higher release rate (66%) after 38 min at pH 5.3 compared to 55% after 50 min at pH 7.4 when subjected to microwave irradiation. These results highlight the potential of both MOFs as highly heat-responsive to thermal stimuli. The results of the MTT assay demonstrated the cell viability across different concentrations of the MOFs after two days of incubation. This suggests that MOFs hold promise as potential candidates for tumor targeting. Additionally, the fact that the cells maintained their viability at different durations of microwave exposure confirms that the latter is a safe modality for triggering drug release from MOFs.
Collapse
Affiliation(s)
- Syeda Fiza Fatima
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O.Box 26666, United Arab Emirates
| | - Rana Sabouni
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O.Box 26666, United Arab Emirates
| | - Ghaleb Husseini
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O.Box 26666, United Arab Emirates
| | - Vinod Paul
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O.Box 26666, United Arab Emirates
| | - Hassan Gomaa
- Department of Chemical and Biochemical Engineering, Western University, London, ON TEB 459, Canada
| | - Remya Radha
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O.Box 26666, United Arab Emirates
| |
Collapse
|
9
|
Trieu TND, Nguyen NTT, Nguyen TTT, Nguyen DTC, Tran TV. A comparative study on the malachite green dye adsorption of chemically synthesized and green MgFe 2O 4 nanoparticles using gerbera floral waste extract. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41638-41655. [PMID: 37743447 DOI: 10.1007/s11356-023-29779-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
The situation of discharging a large amount of dyes from the textile industries has caused many adverse effects on human health and the ecosystems. Emerging bio-nanomaterials represent a new trend in efficient dye removal in aqueous media. Herein, we mention that MgFe2O4 bioprepared using gerbera extract has been successfully used to adsorb malachite green (MG) in water. A comparison was made to determine the dye removal efficiency between biogenic MgFe2O4 (MFOB) and chemical MgFe2O4 (MFOC). The spherical MFOB material exhibited a large surface area of 85.0 m2 g-1 and high crystallinity. The obtained outcomes showed that the highest adsorption capacity of MG dye was 584.49 mg g-1 at a MFOB dose of 0.05 g L-1 and MG concentration of 10 mg L-1. Higher correlation coefficients in the Langmuir isotherm suggested monolayer adsorption of MG. The Box-Behnken design and response surface method were established to optimize MG removal percentage under the conditions, i.e., initial MG concentration (10-30 mg L-1), adsorbent dose (0.02-0.08 g L-1), and pH of dye solution (6-8). MFOB had good reusability with high removal efficiencies after three continuous cycles. Post reuse, this adsorbent still showed excellent stability through the verification of their structural properties in comparison with fresh MFOB, showing potential for practical applications.
Collapse
Affiliation(s)
- Thuy Ngoc Doan Trieu
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Vietnam
| | - Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
| | - Thuy Thi Thanh Nguyen
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam.
| |
Collapse
|
10
|
Moloto W, Mbule P, Nxumalo E, Ntsendwana B. Enhanced optical and electrochemical properties of FeBTC MOF modified TiO 2 photoanode for DSSCs application. Sci Rep 2024; 14:11292. [PMID: 38760398 PMCID: PMC11101415 DOI: 10.1038/s41598-024-61701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/14/2022] [Indexed: 05/19/2024] Open
Abstract
In this work, iron based 1, 3, 5-tricarboxylic acid (FeBTC) was prepared via microwave-assisted method and incorporated into TiO2 via ultrasonic assisted method. The TiO2-FeBTC nanocomposites were characterized by XRD, FTIR, Raman, BET, FESEM, HRTEM, TGA, UV‒vis DRS and PL to understand their crystallographic, surface morphology, and optical characteristics. The Raman spectra showed a blue shift of Eg, A1g, and B1g peaks upon incorporation of FeBTC MOF onto TiO2. HRTEM and XRD analysis confirmed a mixture of TiO2 nanospheres and hexagonal FeBTC MOF morphologies with high crystallinity. The incorporation of FeBTC onto TiO2 improved the surface area as confirmed by BET results, which resulted in improved absorption in the visible region as a results of reduced bandgap energy from 3.2 to 2.84 eV. The PL results showed a reduced intensity for TiO2-FeBTC (6%) sample, indicating improved separation of electron hole pairs and reduced recombination rate. After fabrication of the TiO2-FeBTC MOF photoanode, the charge transfer kinetics were enhanced at TiO2-FeBTC MOF (6%) with Rp value of 966 Ω, as given by EIS studies. This led to high performance due to low charge resistance. Hence, high power conversion efficiency (PCE) value of 0.538% for TiO2-FeBTC (6%) was achieved, in comparison with other loadings. This was attributed to a relatively high surface area which allowed more charge shuttling and thus better electrical response. Conversely, upon increasing the FeBTC MOF loading to 8%, significant reduction in efficiency (0.478%) was obtained, which was attributed to sluggish charge transfer and fast electron-hole pair recombination rate. The TiO2-FeBTC (6%) may be a good candidate for use in DSSCs as a photoanode materials for improved efficiency.
Collapse
Affiliation(s)
- William Moloto
- Institute for Nanotechnology and Water Sustainability, CSET, University of South Africa, Johannesburg, 1710, South Africa
| | - Pontsho Mbule
- Department of Physics, CSET, University of South Africa, Johannesburg, 1710, South Africa
| | - Edward Nxumalo
- Institute for Nanotechnology and Water Sustainability, CSET, University of South Africa, Johannesburg, 1710, South Africa.
| | - Bulelwa Ntsendwana
- Energy, Water, Environmental and Food Sustainable Technologies (EWEF-susTech), Johannesburg, 1709, South Africa.
| |
Collapse
|
11
|
Zhi K, Xu J, Li S, Luo L, Liu D, Li Z, Guo L, Hou J. Progress in the Elimination of Organic Contaminants in Wastewater by Activation Persulfate over Iron-Based Metal-Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:473. [PMID: 38470802 DOI: 10.3390/nano14050473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
The release of organic contaminants has grown to be a major environmental concern and a threat to the ecology of water bodies. Persulfate-based Advanced Oxidation Technology (PAOT) is effective at eliminating hazardous pollutants and has an extensive spectrum of applications. Iron-based metal-organic frameworks (Fe-MOFs) and their derivatives have exhibited great advantages in activating persulfate for wastewater treatment. In this article, we provide a comprehensive review of recent research progress on the significant potential of Fe-MOFs for removing antibiotics, organic dyes, phenols, and other contaminants from aqueous environments. Firstly, multiple approaches for preparing Fe-MOFs, including the MIL and ZIF series were introduced. Subsequently, removal performance of pollutants such as antibiotics of sulfonamides and tetracyclines (TC), organic dyes of rhodamine B (RhB) and acid orange 7 (AO7), phenols of phenol and bisphenol A (BPA) by various Fe-MOFs was compared. Finally, different degradation mechanisms, encompassing free radical degradation pathways and non-free radical degradation pathways were elucidated. This review explores the synthesis methods of Fe-MOFs and their application in removing organic pollutants from water bodies, providing insights for further refining the preparation of Fe-MOFs.
Collapse
Affiliation(s)
- Keke Zhi
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
- State Key Laboratory, Heavy Oil Processing-Karamay Branch, Karamay 834000, China
| | - Jiajun Xu
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Shi Li
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Lingjie Luo
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Dong Liu
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Zhe Li
- State Key Laboratory, Heavy Oil Processing-Karamay Branch, Karamay 834000, China
- Department of Petroleum, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Lianghui Guo
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Junwei Hou
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
- State Key Laboratory, Heavy Oil Processing-Karamay Branch, Karamay 834000, China
| |
Collapse
|
12
|
Hassani F, Larki A, Ghomi M, Pourreza N. Gold nanoparticles embedded Fe-BTC (AuNPs@Fe-BTC) metal-organic framework as a fluorescence sensor for the selective detection of As(III) in contaminated waters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123104. [PMID: 37453383 DOI: 10.1016/j.saa.2023.123104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/17/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
In this article, a new off-mode fluorescent platform based on the metal-organic framework (MOF) is introduced as a highly selective and rapid chemical sensor for the detection of As(III) in water and wastewater samples. A typical Fe-BTC (BTC = 1,3,5-benzenetricarboxylate or trimesic acid) MOF was used as a porous template for loading gold nanoparticles (AuNPs@Fe-BTC MOF). The physicochemical properties of AuNPs@Fe-BTC MOF were characterized by Fourier-transform infrared spectroscopy (FT-IR), Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EAX), element mapping (MAP) and X-ray diffraction (XRD) analysis. This sensing method for As(III) ions is based on the fact that the fluorescence intensity of AuNPs@Fe-BTC MOF sensor decreases in proportion to the increase in As(III) concentration. The main effective factors on the performance of the sensor signal such as MOF dosage, sonication time, pH and reaction time were optimized. Under optimized conditions, the calibration graph was linear in the concentration range of 0.5-380 ng mL-1 of As(III) and the limit of detection was 0.2 ng mL-1. The proposed method was successfully validated by addition/recovery experiments by the determination of As(III) in four river water and two wastewater effluent samples.
Collapse
Affiliation(s)
- Fatemeh Hassani
- Department of Marine Chemistry, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Arash Larki
- Department of Marine Chemistry, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran.
| | - Matineh Ghomi
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Nahid Pourreza
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
13
|
Mohammadnejad M, Nekoo NM, Alizadeh S, Sadeghi S, Geranmayeh S. Enhanced removal of organic dyes from aqueous solutions by new magnetic HKUST-1: facile strategy for synthesis. Sci Rep 2023; 13:17981. [PMID: 37863958 PMCID: PMC10589292 DOI: 10.1038/s41598-023-45075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
A novel, magnetic HKUST-1 MOF based on MgFe2O4-NH2 was designed and synthesized in two steps and applied effective removal of malachite green (MG), crystal violet (CV), and methylene blue (MB) from water samples. Characterization of the newly synthesized MgFe2O4-NH2-HKUST-1 was performed by various techniques such as Fourier transform infrared spectroscopy, X-ray diffraction, Field emission scanning electron microscopy, Brunauer-Emmett-Teller, Thermal gravimetric analysis, and Vibration sampling magnetometry. Malachite green, crystal violet and methylene blue are toxic and mutagenic dyes that can be released into the water in different ways and cause many problems for human health and the environment. The removal of malachite green, crystal violet, and methylene blue from aqueous solutions was investigated using the magnetic HKUST-1 in this research. The effect of various parameters such as pH, amount of sorbent, dye concentration, temperature, and contact time on dye removal has been studied. The results showed that more than 75% of dyes were removed within 5 min. Adsorption isotherms, Kinetic, and thermodynamic studies were investigated. The results of this study show that adsorption capacity of the magnetic adsorbent is equal to 108.69 mg g-1 for MG, 70.42 mg g-1 for CV, and 156.25 mg g-1 for MB. This study shows the good strategy for the synthesis of the functionalized magnetic form of HKUST-1 and its capability for increasing the efficiency of the removal process of malachite green, crystal violet, and methylene blue from an aqueous solution.
Collapse
Affiliation(s)
- Masoumeh Mohammadnejad
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran.
| | - Niosha Mokhtari Nekoo
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | - Sedighe Alizadeh
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | - Soosan Sadeghi
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | - Shokoofeh Geranmayeh
- Department of Physical Chemistry and Nanochemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| |
Collapse
|
14
|
Ma A, Qian H, Liu H, Ren S. Degradation of malachite green by g-C 3N 4-modified magnetic attapulgite composites under visible-light conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96360-96375. [PMID: 37572254 DOI: 10.1007/s11356-023-29201-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Water resources are seriously threatened by dye wastewater, and the removal of the dye molecules from the wastewater has garnered considerable interest. People have favored photocatalytic technology in recent years for the treatment of dye wastewater. In this work, attapulgite (ATP) was used as a carrier, Fe3O4 and g-C3N4 were grafted onto ATP, and the surface was then modified with polyethyleneimine (PEI) to produce photocatalyst ATP-Fe3O4-g-C3N4-PEI, which was used in Malachite green (MG) dye wastewater. The structure and surface properties of the composites were analyzed and characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray spectrum (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Uv-vis spectrum analysis, zeta potential measurement, and vibrating-sample magnetometry (VSM) analysis. The removal performance of ATP-Fe3O4-gC3N4-PEI for MG was studied, and the removal mechanism was explored and revealed. It has been shown that the heterojunction formed by Fe3O4 and g-C3N4 can inhibit the compounding of photogenerated electrons and holes, effectively improving the performance of the ATP-Fe3O4-g-C3N4-PEI. Electron paramagnetic resonance (EPR) analysis confirmed that ATP-Fe3O4-g-C3N4-PEI could generate hydroxyl radicals (·OH) and superoxide radicals (·O2-) to degrade the MG. It was believed that ATP-Fe3O4-g-C3N4-PEI could generate hydroxyl radicals (·OH) through the photocatalysis and the Fenton reaction of the composite materials. Under the action of H+, ·O2-, and ·OH, the removal rate of MG by ATP-Fe3O4-g-C3N4-PEI exceeded 98 % at an optimal condition. The intermediate products and degradation pathways of MG degradation were also inferred by LC-MS analysis. These results showed that the prepared photocatalyst has excellent degradation performance for MG and could be used in dye wastewater treatment.
Collapse
Affiliation(s)
- Aishun Ma
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
- Jiangxi Key Laboratory of Mining Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Hanlin Qian
- Jiangxi Key Laboratory of Mining Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Hongxia Liu
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Sili Ren
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China.
- Jiangxi Key Laboratory of Mining Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China.
| |
Collapse
|
15
|
Verma R, Chauhan MS, Pandey S, Dandia A. Reduced graphene Oxide/NiO based nano-composites for the efficient removal of alizarin dye, indigo dye and reduction of nitro aromatic compounds. Heliyon 2023; 9:e17162. [PMID: 37484436 PMCID: PMC10361311 DOI: 10.1016/j.heliyon.2023.e17162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
Removal of alizarin red S (ARS) and Indigo dye from aqueous media and reduction of nitro aromatic compounds are successfully done under mild condition by using reduced Graphene Oxide-Nickel Oxide (rGO-NiO) nanocomposite as catalyst. RGO-NiO is well characterized by different analytical techniques. Morphology, structural, and composition studies done by HRTEM, FESEM, EDX, TGA, FTIR, XPS, Raman spectroscopy, and XRD. RGO-NiO nanocomposite has high stability for the removal of ARS, Indigo dye, reduction reaction nitro aromatic compounds.
Collapse
Affiliation(s)
- Renu Verma
- ASAS, Amity University Rajasthan, Jaipur, 303002, India
| | | | | | - Anshu Dandia
- Department of Chemistry, University of Rajasthan, Jaipur, 302004, India
| |
Collapse
|
16
|
Parimelazhagan V, Natarajan K, Shanbhag S, Madivada S, Kumar HS. Effective Adsorptive Removal of Coomassie Violet Dye from Aqueous Solutions Using Green Synthesized Zinc Hydroxide Nanoparticles Prepared from Calotropis gigantea Leaf Extract. CHEMENGINEERING 2023. [DOI: 10.3390/chemengineering7020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The removal of color from dye wastewater is crucial, since dyes are extremely toxic and can cause cancer in a variety of life forms. Studies must be done to use cost-effective adsorbents for the removal of color from dye effluents to protect the environment. To our knowledge, virtually no research has been done to describe the possibility of using Calotropis gigantea leaf extract zinc hydroxide nanoparticles (CG-Zn(OH)2NPs) as an adsorbent for the decolorization of Coomassie violet (CV) from the aqueous emulsion, either in batch mode or continuously. In the present batch investigation, CV dye is removed from the synthetic aqueous phase using CG-Zn(OH)2NPs as an adsorbent. The synthesized nanoparticles were characterized using various instrumental techniques such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS) and Brunauer–Emmett–Teller (BET) surface area and pore volume, a particle size analyser, and zero-point charge. The decolorization efficacy of CV dye from an aqueous phase by the adsorbent was examined in batch mode by varying process parameters. The consequences of various experimental variables were optimized using response surface methodology (RSM) to achieve the maximum decolorization efficiency (90.74%) and equilibrium dye uptake, qe (35.12 mg g−1). The optimum pH, dye concentration, CG-Zn(OH)2NPs adsorbent dosage, and particle size were found to be 1.8, 225 mg L−1, 5 g L−1, and 78 μm, respectively for CV dye adsorption capacity at equilibrium. The adsorbent zero-point charge was found to be at pH 8.5. The Langmuir isotherm model provided a good representation of the equilibrium data in aqueous solutions, with a maximum monolayer adsorption capability (qmax) of 40.25 mg g−1 at 299 K. The dye adsorption rate follows a pseudo-second-order kinetic model at various dye concentrations, which indicated that the reaction is more chemisorption than physisorption. The negative values of ΔG and positive values of ΔH at different temperatures indicate that the adsorption process is spontaneous and endothermic, respectively. Reusability tests revealed that the prepared nanoparticles may be used for up to three runs, indicating that the novel CG-Zn(OH)2NPs seems to be a very promising adsorbent for the removal of Coomassie violet dye from wastewater.
Collapse
Affiliation(s)
- Vairavel Parimelazhagan
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Kannan Natarajan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Srinath Shanbhag
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Sumanth Madivada
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Harish S. Kumar
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| |
Collapse
|
17
|
Eizi R, Bastami TR, Mahmoudi V, Ayati A, Babaei H. Facile ultrasound-assisted synthesis of CuFe-Layered double hydroxides/g-C3N4 nanocomposite for alizarin red S sono-sorption. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
18
|
Tocco D, Chelazzi D, Mastrangelo R, Casini A, Salis A, Fratini E, Baglioni P. Conformational changes and location of BSA upon immobilization on zeolitic imidazolate frameworks. J Colloid Interface Sci 2023; 641:685-694. [PMID: 36965340 DOI: 10.1016/j.jcis.2023.03.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
The location and the conformational changes of proteins/enzymes immobilized within Metal Organic Frameworks (MOFs) are still poorly investigated and understood. Bovine serum albumin (BSA), used as a model protein, was immobilized within two different zeolitic imidazolate frameworks (ZIF-zni and ZIF-8). Pristine ZIFs and BSA@ZIFs were characterized by X-ray diffraction, small-angle X-ray scattering, scanning electron microscopy, confocal laser scanning microscopy, thermogravimetric analysis, micro-FTIR and confocal Raman spectroscopy to characterize MOFs structure and the protein location in the materials. Moreover, the secondary structure and conformation changes of BSA after immobilization on both ZIFs were studied with FTIR. BSA is located both in the inner and on the outer surface of MOFs, forming domains that span from the micro- to the nanoscale. BSA crystallinity (β-sheets + α-helices) increases up to 25 % and 40 % due to immobilization within ZIF-zni and ZIF-8, respectively, with a consequent reduction of β-turns.
Collapse
Affiliation(s)
- Davide Tocco
- Department of Chemical and Geological Sciences, University of Cagliari & CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy; Department of Chemistry "Ugo Schiff", University of Florence & CSGI, via della Lastruccia 3, Sesto Fiorentino (FI) I-50019, Italy
| | - David Chelazzi
- Department of Chemistry "Ugo Schiff", University of Florence & CSGI, via della Lastruccia 3, Sesto Fiorentino (FI) I-50019, Italy
| | - Rosangela Mastrangelo
- Department of Chemistry "Ugo Schiff", University of Florence & CSGI, via della Lastruccia 3, Sesto Fiorentino (FI) I-50019, Italy
| | - Andrea Casini
- Department of Chemistry "Ugo Schiff", University of Florence & CSGI, via della Lastruccia 3, Sesto Fiorentino (FI) I-50019, Italy
| | - Andrea Salis
- Department of Chemical and Geological Sciences, University of Cagliari & CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy.
| | - Emiliano Fratini
- Department of Chemistry "Ugo Schiff", University of Florence & CSGI, via della Lastruccia 3, Sesto Fiorentino (FI) I-50019, Italy.
| | - Piero Baglioni
- Department of Chemistry "Ugo Schiff", University of Florence & CSGI, via della Lastruccia 3, Sesto Fiorentino (FI) I-50019, Italy
| |
Collapse
|
19
|
Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
20
|
Onder A, Kıvanç MR, Ilgin P, Ozay H, Ozay O. Synthesis of p(HEMA-co-AETAC) nanocomposite hydrogel with vinyl-function montmorillonite nanoparticles and effective removal of methyl orange from aqueous solution. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2023. [DOI: 10.1080/10601325.2023.2169155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Alper Onder
- Laboratory of Inorganic Materials, Department of Chemistry, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Mehmet Rıza Kıvanç
- Vocational School of Health Services, Van Yüzüncü Yıl University, Van, Türkiye
| | - Pinar Ilgin
- Department of Chemistry and Chemical Processing Technologies, Lapseki Vocational School, Çanakkale Onsekiz Mart University, Çanakkale/Lapseki, Türkiye
| | - Hava Ozay
- Laboratory of Inorganic Materials, Department of Chemistry, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Ozgur Ozay
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
21
|
GadelHak Y, Salama E, Abd-El Tawab S, Mouhmed EA, Alkhalifah DHM, Hozzein WN, Mohaseb M, Mahmoud RK, Amin RM. Waste Valorization of a Recycled ZnCoFe Mixed Metal Oxide/Ceftriaxone Waste Layered Nanoadsorbent for Further Dye Removal. ACS OMEGA 2022; 7:44103-44115. [PMID: 36506177 PMCID: PMC9730514 DOI: 10.1021/acsomega.2c05528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/08/2022] [Indexed: 05/14/2023]
Abstract
Waste valorization of spent wastewater nanoadsorbents is a promising technique to support the circular economy strategies. The terrible rise of heavy metal pollution in the environment is considered a serious threat to the terrestrial and aquatic environment. This led to the necessity of developing cost-effective, operation-convenient, and recyclable adsorbents. ZnCoFe mixed metal oxide (MMO) was synthesized using co-precipitation. The sample was characterized using X-ray powder diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. Factors affecting the adsorption process such as pH, the dose of adsorbent, and time were investigated. ZnCoFe MMO showed the maximum adsorption capacity of 118.45 mg/g for ceftriaxone sodium. The spent MMO was recycled as an adsorbent for malachite green (MG) removal. Interestingly, the spent adsorbent showed 94% removal percent for MG as compared to the fresh MMO (90%). The kinetic investigation of the adsorption process was performed and discussed. In addition, ZnCoFe MMO was tested as an antimicrobial agent. The proposed approach opens up a new avenue for recycling wastes after adsorption into value-added materials for utilization in adsorbent production with excellent performance as antimicrobial agents.
Collapse
Affiliation(s)
- Yasser GadelHak
- Department
of Materials Science and Nanotechnology, Faculty of Postgraduate Studies
for Advanced Sciences, Beni-Suef University, Beni-Suef62511, Egypt
| | - Esraa Salama
- Chemistry
Department, Faculty of Sciences. Beni-Suef
University. Beni-Suef62511, Egypt
| | - Samah Abd-El Tawab
- Food
Science and Technology Department, Faculty of Agriculture, Fayoum University, Fayoum63514, Egypt
| | - Eman Abouzied Mouhmed
- Food
Science and Technology Department, Faculty of Agriculture, Fayoum University, Fayoum63514, Egypt
| | - Dalal Hussien M. Alkhalifah
- Department
of Biology, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh11671, Saudi Arabia
| | - Wael N. Hozzein
- Botany
and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef62511, Egypt
| | - Mona Mohaseb
- Physics Department,
Faculty of Science, Beni-Suef University, Beni-Suef62511, Egypt
- Department
of Physics, Faculty of Applied Sciences, Umm-Al-Qura University, Mecca21421, Saudi Arabia
| | - Rehab K. Mahmoud
- Chemistry
Department, Faculty of Sciences. Beni-Suef
University. Beni-Suef62511, Egypt
| | - Rafat M. Amin
- Physics Department,
Faculty of Science, Beni-Suef University, Beni-Suef62511, Egypt
| |
Collapse
|
22
|
Zhu Y, Wu D, Chen J, Ma N, Dai W. Boosting highly capture of trace tetracycline with a novel water-resistant and magnetic (ZIF-8)-on-(Cu-BTC@Fe3O4) composite. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Adsorptive Removal of Alizarin Red S onto Sulfuric Acid-Modified Avocado Seeds: Kinetics, Equilibrium, and Thermodynamic Studies. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/3137870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The present work evaluates the synthesis of a novel, inexpensive, and environmentally friendly chemically-treated avocado seed powder (CTASP) as an adsorbent in removing alizarin red S (ARS) from synthetic solution. By using a set of analytical techniques, including FTIR, XRD, EDX, RS, and SEM, the adsorbent was characterized for its physical and chemical properties. Batch study experiments were conducted to determine the effectiveness of the CTASP as an adsorbent. The maximum adsorption capacity of 67.08 mgg-1 was attained at optimum conditions of 3 gL-1 adsorbent dosage, pH 3, contact time of 30 min, and at temperature 303 K. After 30 minutes, the equilibrium was reached, and the experimental data was explained for isotherm, kinetic, and thermodynamic processes. The results indicated that pseudo-second-order kinetics and the Freundlich isotherm were the best fits for the data. The findings of the analysis of the thermodynamic parameters for the process showed that the system was an exothermic and spontaneous. According to the desorption studies, 0.1 M NaOH can be utilized as a separating reagent to desorb 90.53% of ARS that was adsorbed. Regeneration experiments were conducted to make the process more practical and affordable, and it was discovered that the CTASP adsorbent could be successfully regenerated up to four times. In comparison with other adsorbents, the current low-cost adsorbent had the exceptional regenerative capability and delivered multilayer adsorption capacity. Additionally, it has been demonstrated that the CTASP is an effective material for the detoxification of ARS dye from wastewater.
Collapse
|
24
|
Wang Z, Ren D, Zhang X, Zhang S, Chen W. Adsorption-degradation of malachite green using alkali-modified biochar immobilized laccase under multi-methods. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Mohammadi AA, Moghanlo S, Kazemi MS, Nazari S, Ghadiri SK, Saleh HN, Sillanpää M. Comparative removal of hazardous cationic dyes by MOF-5 and modified graphene oxide. Sci Rep 2022; 12:15314. [PMID: 36097048 PMCID: PMC9468029 DOI: 10.1038/s41598-022-19550-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/31/2022] [Indexed: 12/07/2022] Open
Abstract
Among cationic dyes, malachite green (MG) is commonly used for dying purposes and also as an inhibitor in aquaculture, food, health, and chemical industries due to its cytotoxic effects. Therefore, MG removal is essential to keep the ecosystem and human health safety. Adsorption is a viable and versatile option and exploring efficient adsorbents have high priority. Herein, MOF-5 and aminated corn Stover reduced graphene oxide (ACS-RGO) of typical adsorbents of metal-organic-frameworks (MOFs) and carbon-based classes were studied for MG removal. MOF-5 and ACS-RGO had a specific surface area and total pore volume of 507.4 and 389.0 m2/g, and 0.271 cm3/g and 0.273 cm3/g, respectively. ACS-RGO was superior for MG adsorption and the kinetic rate coefficient for ACS-RGO was ~ 7.2 times compared to MOF-5. For ACS-RGO, MG removal remained high (> 94%) in a wide range of pH. However, dye removal was pH-dependent for MOF-5 and increased from ~ 32% to ~ 67% by increasing pH from 4 to 12. Increasing dye concentration from 25 mg/L to 100 mg/L decreased adsorption by MOF-5 and ACS-RGO for ~ 30% and 7%, respectively. Dye removal was evident in a few tens of seconds after adding ACS-RGO at doses above 0.5 g/L. A significant loss of 46% in adsorption was observed by decreasing MOF-5 mass from 1 to 0.1 g/L. ACS-RGO removed MG in multilayer with an exceptional adsorption capacity of 1088.27 mg/g. In conclusion, ACS-RGO, and MOF-5 showed promising kinetic rates and adsorption capacities toward MG.
Collapse
Affiliation(s)
- Ali Akbar Mohammadi
- Department of Environmental Health Engineering, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Soheila Moghanlo
- Department of Environmental Health Engineering, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Malihe Samadi Kazemi
- Department of Chemistry, Faculty of Sciences, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| | - Shahram Nazari
- Department of Environmental Health Engineering, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Seid Kamal Ghadiri
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
- Environmental and Occupational Health Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Najafi Saleh
- Department of Environmental Health Engineering, Khalkhal University of Medical Sciences, Khalkhal, Iran.
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, Himachal Pradesh, 173212, India
| |
Collapse
|
26
|
Chen X, Yu G, Chen Y, Tang S, Su Y. Cow Dung-Based Biochar Materials Prepared via Mixed Base and Its Application in the Removal of Organic Pollutants. Int J Mol Sci 2022; 23:ijms231710094. [PMID: 36077497 PMCID: PMC9456264 DOI: 10.3390/ijms231710094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 12/24/2022] Open
Abstract
Cow dung (CD) is a waste product of livestock production. Improper disposal of a large amount of CD will cause environmental pollution. In this work, three biochar materials based on CD (BMCD) were prepared by using three types of base, including KOH, NaOH, and mixed base (MB, a mixture of equal mass NaOH and KOH) as activators to investigate the different physicochemical properties of BMCDs (BMCD-K, BMCD-Na, and BMCD-MB). The objective was to verify the effectiveness of MB activation in the preparation of biochar materials. The results show that MB has an effect on the structural characteristics of BMCDs. In particular, the surface area and total pore volume, the specific surface area, and the total pore volume of BMCD-MB (4081.1 m2 g−1 and 3.0118 cm3 g−1) are significantly larger than those of BMCD-K (1784.6 m2 g−1 and 1.1142 cm3 g−1) and BMCD-Na (1446.1 m2 g−1 and 1.0788 cm3 g−1). While synthetic dye rhodamine B (RhB) and antibiotic tetracycline hydrochloride (TH) were selected as organic pollutant models to explore the adsorption performances, the maximum adsorption capacities of BMCD-K, BMCD-NA and BMCD-MB were 951, 770, and 1241 mg g−1 for RhB, 975, 1051, and 1105 mg g−1 for TH, respectively, which were higher than those of most adsorbents. This study demonstrated that MB can be used as an effective activator for the preparation of biochar materials with enhanced performance.
Collapse
Affiliation(s)
- Xiaoxin Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Gengxin Yu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yuanhui Chen
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Shanshan Tang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yingjie Su
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- Correspondence:
| |
Collapse
|
27
|
Mohammadi AA, Niazi Z, Heidari K, Afarinandeh A, Samadi Kazemi M, Haghighat GA, Vasseghian Y, Rezania S, Barghi A. Nickel and iron-based metal-organic frameworks for removal of organic and inorganic model contaminants. ENVIRONMENTAL RESEARCH 2022; 212:113164. [PMID: 35398078 DOI: 10.1016/j.envres.2022.113164] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) are a promising class of porous nanomaterials in the field of environmental remediation. Ni-MOF and Fe-MOF were chosen for their advantages such as structural robustness and ease of synthesis route. The structure of prepared MOFs was characterized using FE-SEM, XRD, FTIR, and N2 adsorption-desorption. The efficiency of MOFs to remove organic model contaminants (anionic Alizarin Red S (ARS) and cationic malachite green (MG) and inorganic fluoride was studied. Fe-MOF and Ni-MOF adsorbed 67, 88, 6% and 32, 5, and 9% of fluoride, ARS, and MG, respectively. Further study on ARS adsorption by Fe-MOF showed that the removal efficiency was high in a wide range of pH from 3 to 9. Moreover, dye removal was directly increased by adsorbent mass (0.1-0.75 g/L) and decreased by ARS concentration (25-100 mg/L). The pseudo-first-order kinetic model and Langmuir isotherm model with a qmax of 176.68 mg/g described the experimental data well. The separation factor, KL, was in the range of 0-1, which means the adsorption process was favorable. In conclusion, Fe-MOF showed remarkable adsorption of organic and inorganic model contaminants.
Collapse
Affiliation(s)
- Ali Akbar Mohammadi
- Department of Environmental Health Engineering, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Zohreh Niazi
- Chemistry Department, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Kambiz Heidari
- Department of Chemical Engineering, Payame Noor University, Tehran, Iran
| | - Amir Afarinandeh
- Department of Chemical Engineering, Payame Noor University, Tehran, Iran
| | - Malihe Samadi Kazemi
- Department of Chemistry, Faculty of Sciences, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| | - Gholam Ali Haghighat
- Department of Environmental Health Engineering, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; The University of Johannesburg, Department of Chemical Engineering, P.O. Box 17011, Doornfontein 2088, South Africa
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| | - Anahita Barghi
- Department of Molecular Genetics, Dong-A University, Busan, 4915, South Korea
| |
Collapse
|
28
|
Mohammad-Sadik Ali N, Karam A, Mukhopadhyay I. A comprehensive approach in perceiving the chelation of Cu(II) and Zn(II) with Alizarin Red S using pH-oscillotitrimetric and volumetric-oscillographic methods. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
29
|
Idumah CI. Recently Emerging Trends in Magnetic Polymer Hydrogel Nanoarchitectures. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2033769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
30
|
Magnetite nanoparticles into Fe-BTC MOF as adsorbent material for the remediation of metal (Cu(II), Pb(II, As(III) and Hg(II)) ions-contaminated water. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Doxorubicin-Loaded Core–Shell UiO-66@SiO2 Metal–Organic Frameworks for Targeted Cellular Uptake and Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14071325. [PMID: 35890221 PMCID: PMC9324125 DOI: 10.3390/pharmaceutics14071325] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/30/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022] Open
Abstract
Beneficial features of biocompatible high-capacity UiO-66 nanoparticles, mesoporous SiO2, and folate-conjugated pluronic F127 were combined to prepare the core–shell UiO-66@SiO2/F127-FA drug delivery carrier for targeted cellular uptake in cancer treatment. UiO-66 and UiO-66-NH2 nanoparticles with a narrow size and shape distribution were used to form a series of core–shell MOF@SiO2 structures. The duration of silanization was varied to change the thickness of the SiO2 shell, revealing a nonlinear dependence that was attributed to silicon penetration into the porous MOF structure. Doxorubicin encapsulation showed a similar final loading of 5.6 wt % for both uncoated and silica-coated particles, demonstrating the potential of the nanocomposite’s application in small molecule delivery. Silica coating improved the colloidal stability of the composites in a number of model physiological media, enabled grafting of target molecules to the surface, and prevented an uncontrolled release of their cargo, with the drawback of decreased overall porosity. Further modification of the particles with the conjugate of pluronic and folic acid was performed to improve the biocompatibility, prolong the blood circulation time, and target the encapsulated drug to the folate-expressing cancer cells. The final DOX-loaded UiO-66@SiO2/F127-FA nanoparticles were subjected to properties characterization and in vitro evaluation, including studies of internalization into cells and antitumor activity. Two cell lines were used: MCF-7 breast cancer cells, which have overexpressed folate receptors on the cell membranes, and RAW 264.7 macrophages without folate overexpression. These findings will provide a potential delivery system for DOX and increase the practical value of MOFs.
Collapse
|
32
|
Recent Review of Titania-Clay-Based Composites Emerging as Advanced Adsorbents and Photocatalysts for Degradation of Dyes over the Last Decade. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/3823008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Textile industry being one of the most flourishing industries keeps growing and developing every year, and the consequences are not very pleasant. Even though its contribution towards economy of a country is indisputable, there are many pros and cons associated with it that should not be brushed aside, one of them being textile dye waste which is also growing at alarming rate. Many techniques have been designed to deal with this environmental crisis including adsorption and photodegradation of dye waste by various substances, both natural and synthetic. TiO2 and clay both have gained immense popularity in this area. Over the last decade, many successful attempts have been made to design TiO2-clay-based composites to combine and make the most of their individual capabilities to degrade textile dye waste. While clay is an effective adsorbent, inexpensive, innocuous, and a great ion exchanger, TiO2 provides supplementary active sites and free radicals and speeds up the degradation rate of dyes. This review summarizes various features of TiO2-clay-based composites including their surface characteristics, their role as dye adsorbents and photocatalysts, challenges in their implementation, and modifications to overcome these challenges made over the last decade.
Collapse
|
33
|
Collu DA, Carucci C, Piludu M, Parsons DF, Salis A. Aurivillius Oxides Nanosheets-Based Photocatalysts for Efficient Oxidation of Malachite Green Dye. Int J Mol Sci 2022; 23:5422. [PMID: 35628232 PMCID: PMC9140923 DOI: 10.3390/ijms23105422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
Aurivillius oxides ferroelectric layered materials are formed by bismuth oxide and pseu-do-perovskite layers. They have a good ionic conductivity, which is beneficial for various photo-catalyzed reactions. Here, we synthesized ultra-thin nanosheets of two different Aurivillius oxides, Bi2WO6 (BWO) and Bi2MoO6 (BMO), by using a hard-template process. All materials were characterized through XRD, TEM, FTIR, TGA/DSC, DLS/ELS, DRS, UV-Vis. Band gap material (Eg) and potential of the valence band (EVB) were calculated for BWO and BMO. In contrast to previous reports on the use of multi composite materials, a new procedure for photocatalytic efficient BMO nanosheets was developed. The procedure, with an additional step only, avoids the use of composite materials, improves crystal structure, and strongly reduces impurities. BWO and BMO were used as photocatalysts for the degradation of the water pollutant dye malachite green (MG). MG removal kinetics was fitted with Langmuir-Hinshelwood model obtaining a kinetic constant k = 7.81 × 10-2 min-1 for BWO and k = 9.27 × 10-2 min-1 for BMO. Photocatalytic dye degradation was highly effective, reaching 89% and 91% MG removal for BWO and BMO, respectively. A control experiment, carried out in the absence of light, allowed to quantify the contribution of adsorption to MG removal process. Adsorption contributed to MG removal by a 51% for BWO and only by a 19% for BMO, suggesting a different degradation mechanism for the two photocatalysts. The advanced MG degradation process due to BMO is likely caused by the high crystallinity of the material synthetized with the new procedure. Reuse tests demonstrated that both photocatalysts are highly active and stable reaching a MG removal up to 95% at the 10th reaction cycle. These results demonstrate that BMO nanosheets, synthesized with an easy additional step, achieved the best degradation performance, and can be successfully used for environmental remediation applications.
Collapse
Affiliation(s)
- David A. Collu
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Italy; (D.A.C.); (C.C.); (D.F.P.)
| | - Cristina Carucci
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Italy; (D.A.C.); (C.C.); (D.F.P.)
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Marco Piludu
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Department of Biomedical Sciences, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Italy;
| | - Drew F. Parsons
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Italy; (D.A.C.); (C.C.); (D.F.P.)
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Andrea Salis
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Italy; (D.A.C.); (C.C.); (D.F.P.)
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
34
|
Flores JG, Delgado-García R, Sánchez-Sánchez M. Semiamorphous Fe-BDC: The missing link between the highly-demanded iron carboxylate MOF catalysts. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
35
|
Gong Y, Wang Y, Lin N, Wang R, Wang M, Zhang X. Iron-based materials for simultaneous removal of heavy metal(loid)s and emerging organic contaminants from the aquatic environment: Recent advances and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118871. [PMID: 35066106 DOI: 10.1016/j.envpol.2022.118871] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 05/16/2023]
Abstract
The existence of heavy metals and emerging organic contaminants in wastewater produces serious toxic residues to the environment. Developing cheap and efficient materials to remove these persistent pollutants is crucial. Iron-based materials are cost-effective and environmentally friendly catalysts, and their applications in the environmental field deserve attention. This paper critically reviewed the removal mechanisms of heavy metals and emerging organic pollutants by different influencing factors. The removal of pollutants (heavy metals and emerging organic pollutants) in a multi-component system was analyzed in detail. The mechanisms of synergism, antagonism and non-interference were discussed. This paper had a certain reference value for the research of wastewater remediation technology which could simultaneously remove various pollutants by iron-based materials.
Collapse
Affiliation(s)
- Yishu Gong
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yin Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Naipeng Lin
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ruotong Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Meidan Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
36
|
Gao W. Porous Biomass Carbon Derived from Clivia miniata Leaves via NaOH Activation for Removal of Dye. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1285. [PMID: 35207834 PMCID: PMC8880077 DOI: 10.3390/ma15041285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
Clivia miniata (CM), is an important ornamental plant and has been widely cultivated all over the world. However, there are no reports on Clivia miniata-based porous biomass carbon (CMBC). In this study, for the first time, CM leaves were used to generate porous biomass carbon via NaOH activation. The structures and surface characteristics were determined using scanning electron microscopy, N2 adsorption/desorption, TGA, FT-IR, X-ray diffraction, Raman and X-ray photoelectron spectra tests. CMBC has a large SSA (2716 m2/g) and a total pore volume of 1.95 cm3/g. To test the adsorption performance via adsorption experiments, the cationic and synthetic dye, malachite green (MG), was utilized as the adsorption model. The CMBC had a greatest adsorption capacity of 2622.9 mg/g at a pH value of 8 and had a fastest adsorption capacity of 1161.7 mg/g in the first 5 min. To explain MG adsorption into CMBC, the Freundlich isotherm and the pseudo-second-order kinetic model were used. The adsorption mechanism of MG was also investigated. After 10 cycles, the adsorption efficiency of CMBC to MG could still reach 85.3%. In summary, CMBC has excellent potential in dyeing wastewater pollution treatment.
Collapse
Affiliation(s)
- Wei Gao
- College of Landscape Architecture, Changchun University, Changchun 130000, China
| |
Collapse
|
37
|
The Synthesis of Magnetic Nitrogen-Doped Graphene Oxide Nanocomposite for the Removal of Reactive Orange 12 Dye. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/9417542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Herein, we report the nanofabrication of magnetic calcium ferrite (CaFe2O4) with nitrogen-doped graphene oxide (N-GO) via facile ultrasonication method to produce CaFe2O4/N-GO nanocomposite for the potential removal of reactive orange 12 (RO12) dye from aqueous solution. The successful construction of the nanocomposite was confirmed using different characterization techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform-infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). The magnetic properties were studied using vibrating sample magnetometer (VSM) indicating ferromagnetic behavior of the synthesized materials that facilitate their separation using an external magnetic field after adsorption treatment. The addition of N-GO to CaFe2O4 nanoparticles enhanced the BET surface area from 24 to 52.93 m2/g as resulted from the N2 adsorption-desorption isotherm. The adsorption of the synthesized nanomaterials is controlled by several parameters (initial concentration of dye, contact time, adsorbent dosage, and pH), and the RO12 dye removal on the surface of CaFe2O4 nanoparticles and CaFe2O4/N-GO nanocomposite was reached through the chemisorption process as indicated from the kinetic study. The adsorption isotherm study indicated that the adsorption process of RO12 dye was best described through the Langmuir isotherm approving the monolayer adsorption. According to the Langmuir model, the maximum adsorption capacity for RO12 was 250 and 333.33 mg/g for CaFe2O4 nanoparticles and CaFe2O4/N-GO nanocomposite, respectively. The adsorption capacity offered by CaFe2O4/N-GO nanocomposite was higher than reported in the literature for adsorbent materials. Additionally, the regeneration study indicated that CaFe2O4/N-GO nanocomposite is reusable and cost-effective adsorbent. Therefore, the nanofabricated CaFe2O4/N-GO hybrid material is a promising adsorbent for water treatment.
Collapse
|
38
|
Martwong E, Chuetor S, Junthip J. Adsorption of Cationic Contaminants by Cyclodextrin Nanosponges Cross-Linked with 1,2,3,4-Butanetetracarboxylic Acid and Poly(vinyl alcohol). Polymers (Basel) 2022; 14:342. [PMID: 35054747 PMCID: PMC8778113 DOI: 10.3390/polym14020342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Cationic organic pollutants (dyes and pesticides) are mainly hydrosoluble and easily contaminate water and create a serious problem for biotic and abiotic species. The elimination of these dangerous contaminants from water was accomplished by adsorption using cyclodextrin nanosponges. These nanosponges were elaborated by the cross-linking between 1,2,3,4-butanetetracarboxylic acid and β-cyclodextrin in the presence of poly(vinyl alcohol). Their physicochemical characteristics were characterized by gravimetry, acid-base titration, TGA, 13C NMR, ATR-FTIR, Raman, X-ray diffraction, and Stereomicroscopy. The BP5 nanosponges displayed 68.4% yield, 3.31 mmol/g COOH groups, 0.16 mmol/g β-CD content, 54.2% swelling, 97.0% PQ removal, 96.7% SO removal, and 98.3% MG removal for 25 mg/L of initial concentration. The pseudo-second-order model was suitable for kinetics using 180 min of contact time. Langmuir isotherm was suitable for isotherm with the maximum adsorption of 120.5, 92.6, and 64.9 mg/g for paraquat (PQ), safranin (SO), and malachite green (MG) adsorption, respectively. Finally, the reusability performance after five regeneration times reached 94.1%, 91.6%, and 94.6% for PQ, SO, and MG adsorption, respectively.
Collapse
Affiliation(s)
- Ekkachai Martwong
- Division of Science (Chemistry), Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Phra Nakhon Si Ayutthaya 13000, Thailand;
| | - Santi Chuetor
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Jatupol Junthip
- Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
39
|
Nguyen MV, Nguyen HN, Nguyen TAT, Nguyen KMV. Engineering of appropriate pore size combined with sulfonic functionalization in a Zr-MOF with reo topology for the ultra-high removal of cationic malachite green dye from an aqueous medium. RSC Adv 2022; 12:30201-30212. [DOI: 10.1039/d2ra05787e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
A Zr-based metal–organic framework with reo topology, denoted as Reo-MOF-1, was fabricated through a solvothermal method capable of efficiently removing the cationic MG dye from an aqueous medium.
Collapse
Affiliation(s)
- My V. Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam
| | - Hung N. Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam
| | - Tuyet A. T. Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam
| | - Khang M. V. Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam
| |
Collapse
|
40
|
Mikhailov OV. The Physical Chemistry and Chemical Physics (PCCP) Section of the International Journal of Molecular Sciences in Its Publications: The First 300 Thematic Articles in the First 3 Years. Int J Mol Sci 2021; 23:241. [PMID: 35008667 PMCID: PMC8745423 DOI: 10.3390/ijms23010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The Physical Chemistry and Chemical Physics Section (PCCP Section) is one of the youngest among the sections of the International Journal of Molecular Sciences (IJMS)-the year 2021 will only mark three years since its inception [...].
Collapse
Affiliation(s)
- Oleg V Mikhailov
- Department of Analytical Chemistry, Certification and Quality Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
41
|
Joseph J, Iftekhar S, Srivastava V, Fallah Z, Zare EN, Sillanpää M. Iron-based metal-organic framework: Synthesis, structure and current technologies for water reclamation with deep insight into framework integrity. CHEMOSPHERE 2021; 284:131171. [PMID: 34198064 DOI: 10.1016/j.chemosphere.2021.131171] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Water is a supreme requirement for the existence of life, the contamination from the point and non-point sources are creating a great threat to the water ecosystem. Advance tools and techniques are required to restore the water quality and metal-organic framework (MOFs) with a tunable porous structure, striking physical and chemical properties are an excellent candidate for it. Fe-based MOFs, which developed rapidly in recent years, are foreseen as most promising to overcome the disadvantages of traditional water depolluting practices. Fe-MOFs with low toxicity and preferable stability possess excellent performance potential for almost all water remedying techniques in contrast to other MOF structures, especially visible light photocatalysis, Fenton, and Fenton-like heterogeneous catalysis. Fe-MOFs become essential tool for water treatment due to their high catalytic activity, abundant active site and pollutant-specific adsorption. However, the structural degradation under external chemical, photolytic, mechanical, and thermal stimuli is impeding Fe-MOFs from further improvement in activity and their commercialization. Understanding the shortcomings of structural integrity is crucial for large-scale synthesis and commercial implementation of Fe-MOFs-based water treatment techniques. Herein we summarize the synthesis, structure and recent advancements in water remediation methods using Fe-MOFs in particular more attention is paid for adsorption, heterogeneous catalysis and photocatalysis with clear insight into the mechanisms involved. For ease of analysis, the pollutants have been classified into two major classes; inorganic pollutants and organic pollutants. In this review, we present for the first time a detailed insight into the challenges in employing Fe-MOFs for water remediation due to structural instability.
Collapse
Affiliation(s)
- Jessy Joseph
- Department of Chemistry, Jyväskylä University, Jyväskylä, Finland
| | - Sidra Iftekhar
- Department of Applied Physics, University of Eastern Finland, Kuopio, 70120, Finland
| | - Varsha Srivastava
- Department of Chemistry, Jyväskylä University, Jyväskylä, Finland; Research Unit of Sustainable Chemistry, Faculty of Technology, University of Oulu, Oulu, 90014, Finland.
| | - Zari Fallah
- Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
| | | | - Mika Sillanpää
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; School of Resources and Environment, University of Electronic Science and Technology of China (UESTC), NO. 2006, Xiyuan Ave., West High-Tech Zone, Chengdu, Sichuan, 611731, PR China; Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; School of Chemistry, Shoolini University, Solan, Himachal Pradesh, 173229, India; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000, Aarhus C, Denmark
| |
Collapse
|
42
|
Li L, Yang L, Zou R, Lan J, Shang J, Dou B, Liu H, Lin S. Facile and scalable preparation of ZIF-67 decorated cotton fibers as recoverable and efficient adsorbents for removal of malachite green. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-021-00069-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractRecently, metal–organic frameworks (MOFs) have received considerable attention as highly efficient adsorbents for dye wastewater remediation. However, the immobilization of MOFs on the substrate surfaces to fabricate easy recyclable adsorbents via a facile route is still a challenge. In this work, ZIF-67/cotton fibers as adsorbents for dye removal were prepared in a large-scale using a simple coordination replication method. The successful fabrication of the ZIF-67/cotton fibers was confirmed by FTIR, XRD, XPS, SEM and BET analysis, respectively. As expected, the as-prepared ZIF-67/cotton fibers exhibited high adsorption capacity of 3787 mg/g towards malachite green (MG). Meanwhile, the adsorption kinetics and isotherm obeyed the pseudo-second-order kinetics and Langmuir model, respectively. Moreover, its removal efficiency towards MG was not significantly influenced by the pH and ionic strength of aqueous solution. Most importantly, the ZIF-67/cotton fibers can remove MG from synthetic effluents, and it can be easily regenerated without filtration or centrifugation processes, with the regeneration efficiency remaining over 90% even after 10 cycles. Additionally, the ZIF-67/cotton fibers presented excellent antimicrobial performance against E. coli and S. aureus. Hence, the distinctive features of the as-prepared ZIF-67/cotton fibers make it promisingly applicable for the colored wastewater treatment.
Collapse
|
43
|
Quaternization of Poly(2-diethyl aminoethyl methacrylate) Brush-Grafted Magnetic Mesoporous Nanoparticles Using 2-Iodoethanol for Removing Anionic Dyes. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Magnetic mesoporous silica nanoparticles (Fe3O4-MSNs) were successfully synthesized with a relatively high surface area of 568 m2g−1. Fe3O4-MSNs were then modified with poly(2-diethyl aminoethyl methacrylate) (PDEAEMA) brushes using surface-initiated ARGET atom transfer radical polymerization (ATRP) (Fe3O4@MSN-PDMAEMA). Since the charge of PDEAEMA is externally regulated by solution pH, tertiary amines in the polymer chains were quaternized using 2-iodoethanol to obtain cationic polymer chains with a permanent positive charge (Fe3O4@MSN-QPDMAEMA). The intensity of the C−O peak in the C1s X-ray photoelectron spectrum increased after reaction with 2-iodoethanol, suggesting that the quaternization process was successful. The applicability of the synthesized materials on the removal of methyl orange (MO), and sunset yellow (E110) dyes from an aqueous solution was examined. The effects of pH, contact time, and initial dyes concentrations on the removal performance were investigated by batch experiments. The results showed that the Fe3O4@MSN-PDMAEMA sample exhibited a weak adsorption performance toward both MO and E110, compared with Fe3O4@MSN-QPDMAEMA at a pH level above 5. The maximum adsorption capacities of MO and E110 using Fe3O4@MSN-QPDMAEMA were 294 mg g−1 and 194.8 mg g−1, respectively.
Collapse
|
44
|
Alguacil FJ, López FA. Organic Dyes versus Adsorption Processing. Molecules 2021; 26:5440. [PMID: 34576914 PMCID: PMC8469008 DOI: 10.3390/molecules26185440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Even in the first quarter of the XXI century, the presence of organic dyes in wastewaters was a normal occurrence in a series of countries. As these compounds are toxic, their removal from these waters is a necessity. Among the separation technologies, adsorption processing appeared as one of the most widely used to reach this goal. The present work reviewed the most recent approaches (first half of the 2021 year) regarding the use of a variety of adsorbents in the removal of a variety of organic dyes of different natures.
Collapse
Affiliation(s)
| | - Félix A. López
- National Center for Metallurgical Researcher (CENIM), Spanish National Research Council (CSIC), Avda. Gregorio del Amo 8, 28040 Madrid, Spain;
| |
Collapse
|
45
|
Nanocomposite hydrogel based on sodium alginate, poly (acrylic acid), and tetraamminecopper (II) sulfate as an efficient dye adsorbent. Carbohydr Polym 2021; 267:118182. [PMID: 34119150 DOI: 10.1016/j.carbpol.2021.118182] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
In this study, a novel nanocomposite hydrogel (NCH) was prepared by in situ crosslinking and radical polymerization of acrylic acid (AA) in the presence of sodium alginate (Na-Alg), followed by loading of Cu2+ ions and reaction with ammonia. The main advantage of the synthesized NCH is the high adsorption of dye due to the large contact area. The structure of the NCH was studied by FT-IR spectroscopy, TEM, and SEM. TEM showed that the size of nanoparticles is about 5-30 nm. The adsorption of dye was studied by changing the different factors. The removal efficiency of Crystal Violet (CV) and Malachite Green (MG) was found to be more than 96% at concentration of 10 mg/L and pH = 6. The dye adsorption on the NCH is well described by Freundlich isotherm and pseudo-second-order kinetic models. The reusability experiments showed that about 95% of the initial adsorption was obtained after eight cycles.
Collapse
|
46
|
Abstract
The industrial use of enzymes generally necessitates their immobilization onto solid supports. The well-known high affinity of enzymes for metal-organic framework (MOF) materials, together with the great versatility of MOFs in terms of structure, composition, functionalization and synthetic approaches, has led the scientific community to develop very different strategies for the immobilization of enzymes in/on MOFs. This review focuses on one of these strategies, namely, the one-pot enzyme immobilization within sustainable MOFs, which is particularly enticing as the resultant biocomposite Enzyme@MOFs have the potential to be: (i) prepared in situ, that is, in just one step; (ii) may be synthesized under sustainable conditions: with water as the sole solvent at room temperature with moderate pHs, etc.; (iii) are able to retain high enzyme loading; (iv) have negligible protein leaching; and (v) give enzymatic activities approaching that given by the corresponding free enzymes. Moreover, this methodology seems to be near-universal, as success has been achieved with different MOFs, with different enzymes and for different applications. So far, the metal ions forming the MOF materials have been chosen according to their low price, low toxicity and, of course, their possibility for generating MOFs at room temperature in water, in order to close the cycle of economic, environmental and energy sustainability in the synthesis, application and disposal life cycle.
Collapse
|
47
|
Alzahrani FM, Alsaiari NS, Katubi KM, Amari A, Ben Rebah F, Tahoon MA. Synthesis of Polymer-Based Magnetic Nanocomposite for Multi-Pollutants Removal from Water. Polymers (Basel) 2021; 13:1742. [PMID: 34073555 PMCID: PMC8199017 DOI: 10.3390/polym13111742] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 01/16/2023] Open
Abstract
A magnetic polymer-based nanocomposite was fabricated by the modification of an Fe3O4/SiO2 magnetic composite with polypyrrole (PPy) via co-precipitation polymerization to form PPy/Fe3O4/SiO2 for the removal of Congo red dye (CR) and hexavalent chromium Cr(VI) ions from water. The nanocomposite was characterized using various techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), vibration sample magnetometer, and thermogravimetric analysis (TGA). The results confirm the successful fabrication of the nanocomposite in the size of nanometers. The effect of different conditions such as the contact time, adsorbent dosage, solution pH, and initial concentration on the adsorption process was investigated. The adsorption isotherm suggested monolayer adsorption of both contaminants over the PPy/Fe3O4/SiO2 nanocomposite following a Langmuir isotherm, with maximum adsorption of 361 and 298 mg.g-1 for CR dye and Cr(VI), respectively. Furthermore, the effect of water type on the adsorption process was examined, indicating the applicability of the PPy/Fe3O4/SiO2 nanocomposite for real sample treatment. Interestingly, the reusability of the nanocomposite for the removal of the studied contaminants was investigated with good results even after six successive cycles. All results make this nanocomposite a promising material for water treatment.
Collapse
Affiliation(s)
- Fatimah Mohammed Alzahrani
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Norah Salem Alsaiari
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | | | - Abdelfattah Amari
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia
- Research Laboratory, Department of Chemical Engineering, Energy and Environment, National School of Engineers, Gabes University, Gabes 6072, Tunisia
| | - Faouzi Ben Rebah
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
- Higher Institute of Biotechnology of Sfax (ISBS), Sfax University, Sfax 3000, Tunisia
| | - Mohamed A. Tahoon
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|