1
|
Chatterjee S, Vanrobaeys Y, Gleason AI, Park BJ, Heiney SA, Rhone AE, Nourski KV, Langmack L, Basu B, Mukherjee U, Kovach CK, Kocsis Z, Kikuchi Y, Ayala YA, Petkov CI, Hefti MM, Bahl E, Michaelson JJ, Kawasaki H, Oya H, Howard MA, Nickl-Jockschat T, Lin LC, Abel T. The gene expression signature of electrical stimulation in the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.21.558812. [PMID: 37790527 PMCID: PMC10542502 DOI: 10.1101/2023.09.21.558812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Direct electrical stimulation has been used for decades as a gold standard clinical tool to map cognitive function in neurosurgery patients 1-8 . However, the molecular impact of electrical stimulation in the human brain is unknown. Here, using state-of-the-art transcriptomic and epigenomic sequencing techniques, we define the molecular changes in bulk tissue and at the single-cell level in the human cerebral cortex following direct electrical stimulation of the anterior temporal lobe in patients undergoing neurosurgery. Direct electrical stimulation surprisingly had a robust and consistent impact on the expression of genes related to microglia-specific cytokine activity, an effect that was replicated in mice. Using a newly developed deep learning computational tool, we further demonstrate cell type-specific molecular activation, which underscores the effects of electrical stimulation on gene expression in microglia. Taken together, this work challenges the notion that the immediate impact of electrical stimulation commonly used in the clinic has a primary effect on neuronal gene expression and reveals that microglia robustly respond to electrical stimulation, thus enabling these non-neuronal cells to sculpt and shape the activity of neuronal circuits in the human brain.
Collapse
|
2
|
Oliveira GVM, Hernandes PM, Santos FHD, Soares VPMN, Falconi-Sobrinho LL, Coimbra NC, Wotjak CT, Almada RC. Orexin mechanisms in the prelimbic cortex modulate the expression of contextual conditioned fear. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06701-x. [PMID: 39387863 DOI: 10.1007/s00213-024-06701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
RATIONALE Despite the existing anatomical and physiological evidence pointing to the involvement of orexinergic projections from the lateral hypothalamus (LH) in regulating fear-related responses, little is known regarding the contribution of the orexin system in the prelimbic cortex (PL) on contextual fear. OBJECTIVES We investigated the role of orexin-A (OrxA) and orexin type 1 receptors (Orx1R) in the PL during the expression of contextual conditioned fear in mice. METHODS Neural tract tracing of the LH-PL pathway and Orx1R immunoreactivity in the PL of C57BL/6 male mice were performed. In a pharmacological approach, the animals were treated with either the Orx1R selective antagonist SB 334,867 (3, 30, and 300 nM/0.1 µL) or OrxA (28, 70, and 140 pmol/0.1 µL) in the PL before the test session of contextual fear conditioning. RESULTS Neural tract tracing deposits in the LH showed some perikarya, mainly axons and terminal buttons in the PL, suggesting LH-PL reciprocate pathways. Furthermore, we showed a profuse network comprised of Orx1R-labeled thin varicose fibers widely distributed in the same field of LH-PL pathways projection. The selective blockade of Orx1R with SB 334,867 at 30 and 300 nM in the PL caused a decrease in freezing response, whereas the treatment with OrxA at 140 pmol promoted an increase in freezing response. CONCLUSION In summary, these data confirmed an anatomical link between LH and PL, established the presence of Orx1R in the PL, and a modulatory role of the orexin system in such structure, possibly mainly via Orx1R, during contextual fear conditioning.
Collapse
Affiliation(s)
- Gabriela V M Oliveira
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (Unesp), Assis, São Paulo, 19806-900, Brazil
| | - Paloma M Hernandes
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (Unesp), Assis, São Paulo, 19806-900, Brazil
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Fábio H Dos Santos
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (Unesp), Assis, São Paulo, 19806-900, Brazil
| | - Victor P M N Soares
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (Unesp), Assis, São Paulo, 19806-900, Brazil
| | - Luiz Luciano Falconi-Sobrinho
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Behavioural Neuroscience Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Norberto C Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
- Behavioural Neuroscience Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carsten T Wotjak
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharmaceuticals Die Gesellschaft mit Beschränkter Haftung & Compagnie Kommanditgesellschaft, Biberach Riss, Germany
| | - Rafael Carvalho Almada
- Laboratory of Neurobiology and Neurobiotechnology, Department of Biological Sciences, School of Sciences, Humanities and Languages of the São Paulo State University (Unesp), Assis, São Paulo, 19806-900, Brazil.
- Behavioural Neuroscience Institute (INeC), Ribeirão Preto, São Paulo, Brazil.
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
3
|
Laricchiuta D, Gimenez J, Sciamanna G, Termine A, Fabrizio C, Della Valle F, Caioli S, Saba L, De Bardi M, Balsamo F, Panuccio A, Passarello N, Mattioni A, Bisicchia E, Zona C, Orlando V, Petrosini L. Synaptic and transcriptomic features of cortical and amygdala pyramidal neurons predict inefficient fear extinction. Cell Rep 2023; 42:113066. [PMID: 37656620 DOI: 10.1016/j.celrep.2023.113066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/08/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023] Open
Abstract
Fear-related disorders arise from inefficient fear extinction and have immeasurable social and economic costs. Here, we characterize mouse phenotypes that spontaneously show fear-independent behavioral traits predicting adaptive or maladaptive fear extinction. We find that, already before fear conditioning, specific morphological, electrophysiological, and transcriptomic patterns of cortical and amygdala pyramidal neurons predispose to fear-related disorders. Finally, by using an optogenetic approach, we show the possibility to rescue inefficient fear extinction by activating infralimbic pyramidal neurons and to impair fear extinction by activating prelimbic pyramidal neurons.
Collapse
Affiliation(s)
| | | | - Giuseppe Sciamanna
- IRCCS Santa Lucia Foundation, 00143 Rome, Italy; Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | | | | | - Francesco Della Valle
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Silvia Caioli
- Unit of Neurology, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| | - Luana Saba
- University of Campus Biomedico, 00128 Rome, Italy
| | | | - Francesca Balsamo
- IRCCS Santa Lucia Foundation, 00143 Rome, Italy; Department of Human Sciences, Guglielmo Marconi University, 00166 Rome, Italy
| | - Anna Panuccio
- IRCCS Santa Lucia Foundation, 00143 Rome, Italy; Department of Psychology, University Sapienza of Rome, 00185 Rome, Italy
| | - Noemi Passarello
- IRCCS Santa Lucia Foundation, 00143 Rome, Italy; Department of Humanities, Federico II University of Naples, 80138 Naples, Italy
| | | | | | - Cristina Zona
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Valerio Orlando
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia.
| | | |
Collapse
|
4
|
Xu H, Jin T, Zhang R, Xie H, Zhuang C, Zhang Y, Kong D, Xiao G, Yu X. Cerebral cortex and hippocampus neural interaction during vagus nerve stimulation under in vivo large-scale imaging. Front Neurosci 2023; 17:1131063. [PMID: 36937685 PMCID: PMC10017477 DOI: 10.3389/fnins.2023.1131063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Objective The purpose of this study was to study mechanisms of VNS modulation from a single neuron perspective utilizing a practical observation platform with single neuron resolution and widefield, real-time imaging coupled with an animal model simultaneously exposing the cerebral cortex and the hippocampus. Methods We utilized the observation platform characterized of widefield of view, real-time imaging, and high spatiotemporal resolution to obtain the neuronal activities in the cerebral cortex and the hippocampus during VNS in awake states and under anesthesia. Results Some neurons in the hippocampus were tightly related to VNS modulation, and varied types of neurons showed distinct responses to VNS modulation. Conclusion We utilized such an observation platform coupled with a novel animal model to obtain more information on neuron activities in the cerebral cortex and the hippocampus, providing an effective method to further study the mechanisms of therapeutic effects modulated by VNS.
Collapse
Affiliation(s)
- Hanyun Xu
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tingting Jin
- Pulmonary and Critical Care Department, Wuhu Hospital of East China Normal University, Wuhu, Anhui, China
| | - Rujin Zhang
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hao Xie
- Department of Automation, Tsinghua University, Beijing, China
| | - Chaowei Zhuang
- Department of Automation, Tsinghua University, Beijing, China
| | - Yanyang Zhang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dongsheng Kong
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guihua Xiao
- Department of Automation, Tsinghua University, Beijing, China
- BNRist, Tsinghua University, Beijing, China
- *Correspondence: Guihua Xiao,
| | - Xinguang Yu
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Xinguang Yu,
| |
Collapse
|
5
|
Sung Y, Kaang BK. The Three Musketeers in the Medial Prefrontal Cortex: Subregion-specific Structural and Functional Plasticity Underlying Fear Memory Stages. Exp Neurobiol 2022; 31:221-231. [PMID: 36050222 PMCID: PMC9471411 DOI: 10.5607/en22012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Fear memory recruits various brain regions with long-lasting brain-wide subcellular events. The medial prefrontal cortex processes the emotional and cognitive functions required for adequately handling fear memory. Several studies have indicated that subdivisions within the medial prefrontal cortex, namely the prelimbic, infralimbic, and anterior cingulate cortices, may play different roles across fear memory states. Through a dedicated cytoarchitecture and connectivity, the three different regions of the medial prefrontal cortex play a specific role in maintaining and extinguishing fear memory. Furthermore, synaptic plasticity and maturation of neural circuits within the medial prefrontal cortex suggest that remote memories undergo structural and functional reorganization. Finally, recent technical advances have enabled genetic access to transiently activated neuronal ensembles within these regions, suggesting that memory trace cells in these regions may preferentially contribute to processing specific fear memory. We reviewed recently published reports and summarize the molecular, synaptic and cellular events occurring within the medial prefrontal cortex during various memory stages.
Collapse
Affiliation(s)
- Yongmin Sung
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
6
|
Lei Z, Lam Y, Li C, Fu Z, Ramkrishnan AS, Liu S, Li Y. β2-Adrenoceptors in the Medial Prefrontal Cortex Excitatory Neurons Regulate Anxiety-like Behavior in Mice. Int J Mol Sci 2022; 23:ijms23105578. [PMID: 35628393 PMCID: PMC9145949 DOI: 10.3390/ijms23105578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 12/04/2022] Open
Abstract
The medial prefrontal cortex (mPFC) and β-adrenoceptors (βARs) have been implicated in modulating anxiety-like behavior. However, the specific contributions of the β2-AR subtype in mPFC in anxiety are still unclear. To address this issue, we used optogenetic and microRNA-based (miRNA) silencing to dissect the role of β2-AR in mPFC in anxiety-like behavior. On the one hand, we use a chimeric rhodopsin/β2-AR (Opto-β2-AR) with in vivo optogenetic techniques to selectively activate β2-adrenergic signaling in excitatory neurons of the mPFC. We found that opto-activation of β2-AR is sufficient to induce anxiety-like behavior and reduce social interaction. On the other hand, we utilize the miRNA silencing technique to specifically knock down the β2-AR in mPFC excitatory neurons. We found that the β2-AR knock down induces anxiolytic-like behavior and promotes social interaction compared to the control group. These data suggest that β2-AR signaling in the mPFC has a critical role in anxiety-like states. These findings suggest that inhibiting of β2-AR signaling in the mPFC may be an effective treatment of anxiety disorders.
Collapse
Affiliation(s)
- Zhuogui Lei
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China; (Z.L.); (Z.F.); (A.S.R.); (S.L.)
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (Y.L.); (C.L.)
| | - Yukyan Lam
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (Y.L.); (C.L.)
| | - Cheukhin Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (Y.L.); (C.L.)
| | - Zhongqi Fu
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China; (Z.L.); (Z.F.); (A.S.R.); (S.L.)
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong 999077, China
| | - Aruna S. Ramkrishnan
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China; (Z.L.); (Z.F.); (A.S.R.); (S.L.)
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (Y.L.); (C.L.)
| | - Shu Liu
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China; (Z.L.); (Z.F.); (A.S.R.); (S.L.)
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (Y.L.); (C.L.)
| | - Ying Li
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China; (Z.L.); (Z.F.); (A.S.R.); (S.L.)
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (Y.L.); (C.L.)
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong 999077, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong 999077, China
- Correspondence:
| |
Collapse
|
7
|
Memories are not written in stone: Re-writing fear memories by means of non-invasive brain stimulation and optogenetic manipulations. Neurosci Biobehav Rev 2021; 127:334-352. [PMID: 33964307 DOI: 10.1016/j.neubiorev.2021.04.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/29/2021] [Accepted: 04/29/2021] [Indexed: 11/21/2022]
Abstract
The acquisition of fear associative memory requires brain processes of coordinated neural activity within the amygdala, prefrontal cortex (PFC), hippocampus, thalamus and brainstem. After fear consolidation, a suppression of fear memory in the absence of danger is crucial to permit adaptive coping behavior. Acquisition and maintenance of fear extinction critically depend on amygdala-PFC projections. The robust correspondence between the brain networks encompassed cortical and subcortical hubs involved into fear processing in humans and in other species underscores the potential utility of comparing the modulation of brain circuitry in humans and animals, as a crucial step to inform the comprehension of fear mechanisms and the development of treatments for fear-related disorders. The present review is aimed at providing a comprehensive description of the literature on recent clinical and experimental researches regarding the noninvasive brain stimulation and optogenetics. These innovative manipulations applied over specific hubs of fear matrix during fear acquisition, consolidation, reconsolidation and extinction allow an accurate characterization of specific brain circuits and their peculiar interaction within the specific fear processing.
Collapse
|