1
|
Clement A, Viot G, Elder K, Clement P, Menezo YJR. Can some metabolic one-carbon cycle linked diseases be prevented? The impact of treating hypo-fertile couples carrying MTHFR SNPs with folic acid and 5-MTHF on outcomes in the offspring: a case retrospective series. J Assist Reprod Genet 2024:10.1007/s10815-024-03343-y. [PMID: 39658735 DOI: 10.1007/s10815-024-03343-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
PURPOSE In our practice, testing hypo-fertile patients for circulating homocysteine (Hcy) and the two principal MTHFR SNPs (677C > T and 1298A > C) has been routine for the past 7 years. Couples carrying a genetic background known to be associated with the disease were proposed treatment regimens consisting of 5-methyl tetrahydrofolate (5-MTHF) together with nutritional support of the one-carbon cycle (1-CC). Some patients preferred to continue with folic acid (FA) as prescribed by their referring gynecologist/obstetrician: this gave us the opportunity to compare outcomes between the two groups of patients. METHODS After successful live birth deliveries, we compared health characteristics and circulating Hcy in the offspring from ages 2 to 6 years, i.e., after cessation of breastfeeding and before puberty. Follow-up included children of 21 couples who were treated with FA vs 36 couples treated with 5-MTHF. RESULTS In the FA-treated group, we found two children with autism spectrum disorder (ASD) syndrome, one child with significantly elevated circulating Hcy (19 µM at the age of 2 years), and one child affected by oculo-auriculo-vertebral spectrum (OAVS), a syndrome known to be linked to DNA methylation. No pathology of any kind was detected in children of the 5-MTHF treatment group. CONCLUSION Treatment with 5-MTHF is safe and effective for both males and females. It should be implemented in order to avoid disruption of methylation linked to folate metabolism during oocyte maturation and pregnancy, and subsequently in the offspring. This type of treatment should be considered to avoid metabolic diseases linked to elevated homocysteine.
Collapse
Affiliation(s)
- Arthur Clement
- Laboratoire Clément, Avenue d'Eylau, 75016, Paris, France
| | - Geraldine Viot
- Cabinet Médical, 40 Boulevard de Courcelles, 75017, Paris, France
| | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge, UK
| | | | | |
Collapse
|
2
|
Calzari L, Dragani DF, Zanotti L, Inglese E, Danesi R, Cavagnola R, Brusati A, Ranucci F, Di Blasio AM, Persani L, Campi I, De Martino S, Farsetti A, Barbi V, Gottardi Zamperla M, Baldrighi GN, Gaetano C, Parati G, Gentilini D. Epigenetic patterns, accelerated biological aging, and enhanced epigenetic drift detected 6 months following COVID-19 infection: insights from a genome-wide DNA methylation study. Clin Epigenetics 2024; 16:112. [PMID: 39164752 PMCID: PMC11337605 DOI: 10.1186/s13148-024-01724-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND The epigenetic status of patients 6-month post-COVID-19 infection remains largely unexplored. The existence of long-COVID, or post-acute sequelae of SARS-CoV-2 infection (PASC), suggests potential long-term changes. Long-COVID includes symptoms like fatigue, neurological issues, and organ-related problems, regardless of initial infection severity. The mechanisms behind long-COVID are unclear, but virus-induced epigenetic changes could play a role. METHODS AND RESULTS Our study explores the lasting epigenetic impacts of SARS-CoV-2 infection. We analyzed genome-wide DNA methylation patterns in an Italian cohort of 96 patients 6 months after COVID-19 exposure, comparing them to 191 healthy controls. We identified 42 CpG sites with significant methylation differences (FDR < 0.05), primarily within CpG islands and gene promoters. Dysregulated genes highlighted potential links to glutamate/glutamine metabolism, which may be relevant to PASC symptoms. Key genes with potential significance to COVID-19 infection and long-term effects include GLUD1, ATP1A3, and ARRB2. Furthermore, Horvath's epigenetic clock showed a slight but significant age acceleration in post-COVID-19 patients. We also observed a substantial increase in stochastic epigenetic mutations (SEMs) in the post-COVID-19 group, implying potential epigenetic drift. SEM analysis identified 790 affected genes, indicating dysregulation in pathways related to insulin resistance, VEGF signaling, apoptosis, hypoxia response, T-cell activation, and endothelin signaling. CONCLUSIONS Our study provides valuable insights into the epigenetic consequences of COVID-19. Results suggest possible associations with accelerated aging, epigenetic drift, and the disruption of critical biological pathways linked to insulin resistance, immune response, and vascular health. Understanding these epigenetic changes could be crucial for elucidating the complex mechanisms behind long-COVID and developing targeted therapeutic interventions.
Collapse
Affiliation(s)
- Luciano Calzari
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy
| | - Davide Fernando Dragani
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy
| | - Lucia Zanotti
- Department of Cardiology, S. Luca Hospital, IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Elvira Inglese
- Clinical Chemistry Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Romano Danesi
- Clinical Chemistry Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy
| | - Rebecca Cavagnola
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Alberto Brusati
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Francesco Ranucci
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Anna Maria Di Blasio
- Molecular Biology Laboratory, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy
| | - Luca Persani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, Lab of Endocrine and Metabolic Research, San Luca Hospital, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Irene Campi
- Department of Endocrine and Metabolic Diseases, Lab of Endocrine and Metabolic Research, San Luca Hospital, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Sara De Martino
- Consiglio Nazionale delle Ricerche (CNR) - IASI, Rome, Italy
| | | | - Veronica Barbi
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100, Pavia, Italy
| | - Michela Gottardi Zamperla
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100, Pavia, Italy
| | - Giulia Nicole Baldrighi
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100, Pavia, Italy
| | - Gianfranco Parati
- Department of Cardiology, S. Luca Hospital, IRCCS, Istituto Auxologico Italiano, Milan, Italy
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Davide Gentilini
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy.
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy.
| |
Collapse
|
3
|
Petrin AL, Machado-Paula LA, Hinkle A, Hovey L, Awotoye W, Chimenti M, Darbro B, Ribeiro-Bicudo LA, Dabdoub SM, Peter T, Breheny P, Murray J, Van Otterloo E, Rengasamy Venugopalan S, Moreno-Uribe LM. Whole genome sequencing of a family with autosomal dominant features within the oculoauriculovertebral spectrum. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.07.24301824. [PMID: 38370836 PMCID: PMC10871465 DOI: 10.1101/2024.02.07.24301824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Background Oculoauriculovertebral Spectrum (OAVS) encompasses abnormalities on derivatives from the first and second pharyngeal arches including macrostomia, hemifacial microsomia, micrognathia, preauricular tags, ocular and vertebral anomalies. We present genetic findings on a three-generation family affected with macrostomia, preauricular tags and uni- or bilateral ptosis following an autosomal dominant pattern. Methods We generated whole genome sequencing data for the proband, affected parent and unaffected paternal grandparent followed by Sanger sequencing on 23 family members for the top 10 candidate genes: KCND2, PDGFRA, CASP9, NCOA3, WNT10A, SIX1, MTF1, KDR/VEGFR2, LRRK1, and TRIM2 We performed parent and sibling-based transmission disequilibrium tests and burden analysis via a penalized linear mixed model, for segregation and mutation burden respectively. Next, via bioinformatic tools we predicted protein function, mutation pathogenicity and pathway enrichment to investigate the biological relevance of mutations identified. Results Rare missense mutations in SIX1, KDR/VEGFR2, and PDGFRA showed the best segregation with the OAV phenotypes in this family. When considering any of the 3 OAVS phenotypes as an outcome, SIX1 had the strongest associations in parent-TDTs and sib-TDTs (p=0.025, p=0.052) (unadjusted p-values). Burden analysis identified SIX1 (RC=0.87) and PDGFRA (RC=0.98) strongly associated with OAVS severity. Using phenotype-specific outcomes, sib-TDTs identified SIX1 with uni- or bilateral ptosis (p=0.049) and ear tags (p=0.01), and PDGFRA and KDR/VEGFR2 with ear tags (both p<0.01). Conclusion SIX1, PDGFRA, and KDR/VEGFR2 are strongly associated to OAVS phenotypes. SIX1 has been previously associated with OAVS ear malformations and is co-expressed with EYA1 during ear development. Efforts to strengthen the genotype-phenotype co-relation underlying the OAVS are key to discover etiology, family counseling and prevention.
Collapse
Affiliation(s)
- A L Petrin
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - L A Machado-Paula
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - A Hinkle
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - L Hovey
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - W Awotoye
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - M Chimenti
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - B Darbro
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - S M Dabdoub
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - T Peter
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - P Breheny
- College of Public Health, University of Iowa, Iowa City, IA, USA
| | - J Murray
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - E Van Otterloo
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | | | - L M Moreno-Uribe
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
4
|
Xing X, Zeng Z, Wang Y, Pan B, Huang X. Identification of potential molecular mechanism related to craniofacial dysmorphism caused by FOXI3 deficiency. Mol Genet Genomic Med 2024; 12:e2411. [PMID: 38433559 PMCID: PMC10910234 DOI: 10.1002/mgg3.2411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Hemifacial macrosomia (HFM, OMIM 164210) is a complex and highly heterogeneous disease. FORKHEAD BOX I3 (FOXI3) is a susceptibility gene for HFM, and mice with loss of function of Foxi3 did exhibit a phenotype similar to craniofacial dysmorphism. However, the specific pathogenesis of HFM caused by FOXI3 deficiency remains unclear till now. METHOD In this study, we first constructed a Foxi3 deficiency (Foxi3-/- ) mouse model to verify the craniofacial phenotype of Foxi3-/- mice, and then used RNAseq data for gene differential expression analysis to screen candidate pathogenic genes, and conducted gene expression verification analysis using quantitative real-time PCR. RESULTS By observing the phenotype of Foxi3-/- mice, we found that craniofacial dysmorphism was present. The results of comprehensive bioinformatics analysis suggested that the craniofacial dysmorphism caused by Foxi3 deficiency may be involved in the PI3K-Akt signaling pathway. Quantitative real-time PCR results showed that the expression of PI3K-Akt signaling pathway-related gene Akt2 was significantly increased in Foxi3-/- mice. CONCLUSION The craniofacial dysmorphism caused by the deficiency of Foxi3 may be related to the expression of Akt2 and PI3K-Akt signaling pathway. This study laid a foundation for understanding the function of FOXI3 and the pathogenesis and treatment of related craniofacial dysmorphism caused by FOXI3 dysfunction.
Collapse
Affiliation(s)
- Xiao‐Liang Xing
- School of Basic MedicineNingxia Medical UniversityYinchuanNingxiaChina
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese MedicineHunan University of MedicineChangshaChina
| | - Ziqiang Zeng
- School of Basic MedicineNingxia Medical UniversityYinchuanNingxiaChina
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese MedicineHunan University of MedicineChangshaChina
| | - Yana Wang
- School of Basic MedicineNingxia Medical UniversityYinchuanNingxiaChina
| | - Bo Pan
- Department of Auricular Reconstruction, Plastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xueshuang Huang
- School of Basic MedicineNingxia Medical UniversityYinchuanNingxiaChina
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese MedicineHunan University of MedicineChangshaChina
| |
Collapse
|
5
|
Chen X, Ma J, Zhang T. Genetics and Epigenetics in the Genesis and Development of Microtia. J Craniofac Surg 2024; 35:00001665-990000000-01343. [PMID: 38345940 PMCID: PMC11045557 DOI: 10.1097/scs.0000000000010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/03/2023] [Indexed: 04/28/2024] Open
Abstract
Microtia is a congenital malformation of the external and middle ear associated with varying degrees of severity that range from mild structural abnormalities to the absence of the external ear and auditory canal. Globally, it is the second most common congenital craniofacial malformation and is typically caused by inherited defects, external factors, or the interaction between genes and external factors. Epigenetics notably represents a bridge between genetics and the environment. This review has devoted attention to the current proceedings of the genetics and epigenetics of microtia and related syndromes.
Collapse
Affiliation(s)
- Xin Chen
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital, Fudan University
| | - Jing Ma
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital, Fudan University
| | - Tianyu Zhang
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital, Fudan University
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Serigatto HR, Kokitsu-Nakata NM, Vendramini-Pittoli S, Tonello C, Moura PP, Peixoto AP, Gomes LP, Zechi-Ceide RM. Oculoauriculofrontonasal syndrome: Refining the phenotype through a new case series and literature review. Am J Med Genet A 2023; 191:2493-2507. [PMID: 37282829 DOI: 10.1002/ajmg.a.63319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023]
Abstract
The oculoauriculofrontonasal syndrome (OAFNS) is a rare condition, with unknown etiology, characterized by the association of frontonasal dysplasia (FND) and oculoauriculovertebral spectrum (OAVS). Main clinical findings include widely spaced eyes, epibulbar dermoid, broad nose, mandibular hypoplasia, and preauricular tags. Here, we describe a case series of 32 Brazilian individuals with OAFNS and review the literature ascertaining individuals presenting phenotypes compatible with the diagnosis of OAFNS, aiming to refine the phenotype. This series emphasizes the phenotypic variability of the OAFNS and highlights the occurrence of rare craniofacial clefts as a part of the phenotype. The ectopic nasal bone, a hallmark of OAFNS, was frequent in our series, reinforcing the clinical diagnosis. The absence of recurrence, consanguinity, chromosomal, and genetic abnormalities reinforces the hypothesis of a nontraditional inheritance model. The phenotypic refinement provided by this series contributes to an investigation regarding the etiology of OAFNS.
Collapse
Affiliation(s)
- Henrique Regonaschi Serigatto
- Department of Clinical Genetics, Hospital of Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Nancy Mizue Kokitsu-Nakata
- Department of Clinical Genetics, Hospital of Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Siulan Vendramini-Pittoli
- Department of Clinical Genetics, Hospital of Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Cristiano Tonello
- Department of Craniofacial Surgery, Hospital of Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Priscila Padilha Moura
- Department of Clinical Genetics, Hospital of Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Adriano Porto Peixoto
- Department of Orthodontics, Hospital of Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Luiz Paulo Gomes
- Department of Craniofacial Surgery, Hospital of Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Roseli Maria Zechi-Ceide
- Department of Clinical Genetics, Hospital of Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| |
Collapse
|
7
|
Exploration of Novel Genetic Evidence and Clinical Significance Into Hemifacial Microsomia Pathogenesis. J Craniofac Surg 2023; 34:834-838. [PMID: 36745106 DOI: 10.1097/scs.0000000000009167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/24/2022] [Indexed: 02/07/2023] Open
Abstract
The authors browsed through past genetic findings in hemifacial microsomia along with our previously identified mutations in ITGB4 and PDE4DIP from whole genome sequencing of hemifacial microsomia patients. Wondering whether these genes influence mandibular bone modeling by regulation on osteogenesis, the authors approached mechanisms of hemifacial microsomia through this investigation into gene knockdown effects in vitro. MC3T3E1 cells were divided into 5 groups: the negative control group without osteogenesis induction or siRNA, the positive control group with only osteogenesis induction, and 3 gene silenced groups with both osteogenesis induction and siRNA. Validation of transfection was through fluorescence microscopy and quantitative real-time Polymerase chain reaction on knockdown efficiency. Changes in expression levels of the 3 genes during osteogenesis and impact of Itgb4 and Pde4dip knockdown on osteogenesis were examined by quantitative real-time Polymerase chain reaction, alkaline phosphatase, and alizarin red staining. Elevation of osteogenic genes Alpl, Col1a1, Bglap, Spp1, and Runx2 verified successful osteogenesis. Both genes were upregulated under osteogenic induction, while they had different trends over time. Intracellular fluorophores under microscope validated successful transfection and si-m-Itgb4_003, si-m-Pde4dip_002 had satisfactory knockdown effects. During osteogenesis, Pde4dip knockdown enhanced Spp1 expression (1.95±0.13 folds, P =0.045). The authors speculated that these genes may have different involvements in osteogenesis. Stimulated expression of Spp1 by Pde4dip knockdown may suggest that Pde4dip inhibits osteogenesis.
Collapse
|
8
|
Calzari L, Zanotti L, Inglese E, Scaglione F, Cavagnola R, Ranucci F, Di Blasio AM, Stefanini G, Carlo G, Parati G, Gentilini D. Role of epigenetics in the clinical evolution of COVID-19 disease. Epigenome-wide association study identifies markers of severe outcome. Eur J Med Res 2023; 28:81. [PMID: 36800980 PMCID: PMC9936487 DOI: 10.1186/s40001-023-01032-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND COVID-19 has a wide spectrum of clinical manifestations and given its impact on morbidity and mortality, there is an unmet medical need to discover endogenous cellular and molecular biomarkers that predict the expected clinical course of the disease. Recently, epigenetics and especially DNA methylation have been pointed out as a promising tool for outcome prediction in several diseases. METHODS AND RESULTS Using the Illumina Infinium Methylation EPIC BeadChip850K, we investigated genome-wide differences in DNA methylation in an Italian Cohort of patients with comorbidities and compared severe (n = 64) and mild (123) prognosis. Results showed that the epigenetic signature, already present at the time of Hospital admission, can significantly predict risk of severe outcomes. Further analyses provided evidence of an association between age acceleration and a severe prognosis after COVID-19 infection. The burden of Stochastic Epigenetic Mutation (SEMs) has been significantly increased in patients with poor prognosis. Results have been replicated in silico considering COVID-19 negative subjects and available previously published datasets. CONCLUSIONS Using original methylation data and taking advantage of already published datasets, we confirmed in the blood that epigenetics is actively involved in immune response after COVID-19 infection, allowing the identification of a specific signature able to discriminate the disease evolution. Furthermore, the study showed that epigenetic drift and age acceleration are associated with severe prognosis. All these findings prove that host epigenetics undergoes notable and specific rearrangements to respond to COVID-19 infection which can be used for a personalized, timely, and targeted management of COVID-19 patients during the first stages of hospitalization.
Collapse
Affiliation(s)
- Luciano Calzari
- grid.418224.90000 0004 1757 9530Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy
| | - Lucia Zanotti
- grid.418224.90000 0004 1757 9530Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, San Luca Hospital, Milan, Italy
| | - Elvira Inglese
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy ,Chemical-Clinical Analysis Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Francesco Scaglione
- Chemical-Clinical Analysis Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Rebecca Cavagnola
- grid.418224.90000 0004 1757 9530Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy ,grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Francesco Ranucci
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Anna Maria Di Blasio
- grid.418224.90000 0004 1757 9530Molecular Biology Laboratory, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy
| | - Giulio Stefanini
- grid.452490.eDepartment of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy ,grid.417728.f0000 0004 1756 8807IRCCS Humanitas Research Hospital, Rozzano-Milan, Italy
| | - Gaetano Carlo
- grid.511455.1Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
| | - Gianfranco Parati
- grid.418224.90000 0004 1757 9530Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, San Luca Hospital, Milan, Italy ,grid.7563.70000 0001 2174 1754Department of Medicine and Surgery, University of Milan‐Bicocca, Milan, Italy
| | - Davide Gentilini
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy. .,Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy.
| |
Collapse
|
9
|
Gentilini D, Muzza M, de Filippis T, Vigone MC, Weber G, Calzari L, Cassio A, Di Frenna M, Bartolucci M, Grassi ES, Carbone E, Olivieri A, Persani L. Stochastic epigenetic mutations as possible explanation for phenotypical discordance among twins with congenital hypothyroidism. J Endocrinol Invest 2023; 46:393-404. [PMID: 36071330 PMCID: PMC9859866 DOI: 10.1007/s40618-022-01915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE The elevated frequency of discordance for congenital hypothyroidism (CH) phenotype between monozygotic twins suggests the involvement of non-mendelian mechanisms. The aim of the study was to investigate the role of epigenetics in CH pathogenesis. METHODS A genome-wide DNA methylation analysis was performed on the peripheral blood of 23 twin pairs (10 monozygotic and 13 dizygotic), 4 concordant and 19 discordant pairs for CH at birth. RESULTS Differential methylation analysis did not show significant differences in methylation levels between CH cases and controls, but a different methylation status of several genes may explain the CH discordance of a monozygotic twin couple carrying a monoallelic nonsense mutation of DUOX2. In addition, the median number of hypo-methylated Stochastic Epigenetic Mutations (SEMs) resulted significantly increased in cases compared to controls. The prioritization analysis for CH performed on the genes epimutated exclusively in the cases identified SLC26A4, FOXI1, NKX2-5 and TSHB as the genes with the highest score. The analysis of significantly SEMs-enriched regions led to the identification of two genes (FAM50B and MEG8) that resulted epigenetically dysregulated in cases. CONCLUSION Epigenetic modifications may potentially account for CH pathogenesis and explain discordance among monozygotic twins.
Collapse
Affiliation(s)
- D Gentilini
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, Cusano Milanino, 20095, Milan, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - M Muzza
- Laboratory of Endocrine and Metabolic Research, Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Piazzale Brescia 20, 20149, Milan, Italy
| | - T de Filippis
- Laboratory of Endocrine and Metabolic Research, Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Piazzale Brescia 20, 20149, Milan, Italy
| | - M C Vigone
- Department of Pediatrics, Endocrine Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - G Weber
- Department of Pediatrics, Endocrine Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - L Calzari
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, Cusano Milanino, 20095, Milan, Italy
| | - A Cassio
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - M Di Frenna
- Department of Pediatrics, Endocrine Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - M Bartolucci
- Department of Maternal and Child Sciences and Urology, University "La Sapienza", Rome, Italy
| | - E S Grassi
- Department of Medical Biotechnology and Experimental Medicine, University of Milan, 20122, Milan, Italy
| | - E Carbone
- Laboratory of Endocrine and Metabolic Research, Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Piazzale Brescia 20, 20149, Milan, Italy
| | - A Olivieri
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - L Persani
- Laboratory of Endocrine and Metabolic Research, Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Piazzale Brescia 20, 20149, Milan, Italy.
- Department of Medical Biotechnology and Experimental Medicine, University of Milan, 20122, Milan, Italy.
| |
Collapse
|
10
|
Davide G, Rebecca C, Irene P, Luciano C, Francesco R, Marta N, Miriam O, Natascia B, Pierluigi P. Epigenetics of Autism Spectrum Disorders: A Multi-level Analysis Combining Epi-signature, Age Acceleration, Epigenetic Drift and Rare Epivariations Using Public Datasets. Curr Neuropharmacol 2023; 21:2362-2373. [PMID: 37489793 PMCID: PMC10556384 DOI: 10.2174/1570159x21666230725142338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Epigenetics of Autism Spectrum Disorders (ASD) is still an understudied field. The majority of the studies on the topic used an approach based on mere classification of cases and controls. OBJECTIVE The present study aimed at providing a multi-level approach in which different types of epigenetic analysis (epigenetic drift, age acceleration) are combined. METHODS We used publicly available datasets from blood (n = 3) and brain tissues (n = 3), separately. Firstly, we evaluated for each dataset and meta-analyzed the differential methylation profile between cases and controls. Secondly, we analyzed age acceleration, epigenetic drift and rare epigenetic variations. RESULTS We observed a significant epi-signature of ASD in blood but not in brain specimens. We did not observe significant age acceleration in ASD, while epigenetic drift was significantly higher compared to controls. We reported the presence of significant rare epigenetic variations in 41 genes, 35 of which were never associated with ASD. Almost all genes were involved in pathways linked to ASD etiopathogenesis (i.e., neuronal development, mitochondrial metabolism, lipid biosynthesis and antigen presentation). CONCLUSION Our data support the hypothesis of the use of blood epi-signature as a potential tool for diagnosis and prognosis of ASD. The presence of an enhanced epigenetic drift, especially in brain, which is linked to cellular replication, may suggest that alteration in epigenetics may occur at a very early developmental stage (i.e., fetal) when neuronal replication is still high.
Collapse
Affiliation(s)
- Gentilini Davide
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Milan, 20090, Italy
| | - Cavagnola Rebecca
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - Possenti Irene
- Department of Statistical Sciences Paolo Fortunati, University of Bologna, Bologna, Italy
| | - Calzari Luciano
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Milan, 20090, Italy
| | - Ranucci Francesco
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - Nola Marta
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - Olivola Miriam
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - Brondino Natascia
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - Politi Pierluigi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| |
Collapse
|
11
|
Zhang Y, Li J, Ji Y, Cheng Y, Fu X. Mutations in the TBX15-ADAMTS2 pathway associate with a novel soft palate dysplasia. Hum Mutat 2022; 43:2102-2115. [PMID: 36124393 DOI: 10.1002/humu.24473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 01/25/2023]
Abstract
We reported de novo variants in specific exons of the TBX15 and ADAMTS2 genes in a hitherto undescribed class of patients with unique craniofacial developmental defects. The nine unrelated patients represent unilateral soft palate hypoplasia, lost part of the sphenoid bone in the pterygoid process, but the uvula developed completely. Interestingly, these clinical features are contrary to the palate's anterior-posterior (A-P) developmental direction. Based on developmental characteristics, we suggested that these cases correspond to a novel craniofacial birth defect different from cleft palate, and we named it soft palate dysplasia (SPD). However, little is known about the molecular mechanism of the ADAMTS2 and TBX15 genes in the regulation of soft palate development. Phylogenetic analysis showed that the sequences around these de novo mutation sites are conserved between species. Through cellular co-transfections and chromatin immunoprecipitation assays, we demonstrate that TBX15 binds to the promoter regions of the ADAMTS2 gene and activates the promoter activity. Furthermore, we show that TBX15 and ADAMTS2 are colocalization in the posterior palatal mesenchymal cells during soft palate development in E13.5 mice embryos. Based on these data, we propose that the disruption of the TBX15-ADAMTS2 signaling pathway during embryogenesis leads to a novel SPD.
Collapse
Affiliation(s)
- Yuying Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,The Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jian Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,The Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaoting Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yibin Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiazhou Fu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Celse T, Tingaud-Sequeira A, Dieterich K, Siegfried G, Lecaignec C, Bouneau L, Fannemel M, Salaun G, Laffargue F, Martinez G, Satre V, Vieville G, Bidart M, Soussi Zander C, Turesson AC, Splitt M, Reboul D, Chiesa J, Khau Van Kien P, Godin M, Gruchy N, Goel H, Palmer E, Demetriou K, Shalhoub C, Rooryck-Thambo C, Coutton C. OTX2 duplications: a recurrent cause of oculo-auriculo-vertebral spectrum. J Med Genet 2022; 60:620-626. [DOI: 10.1136/jmg-2022-108678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022]
Abstract
BackgroundOculo-auriculo-vertebral spectrum (OAVS) is the second most common cause of head and neck malformations in children after orofacial clefts. OAVS is clinically heterogeneous and characterised by a broad range of clinical features including ear anomalies with or without hearing loss, hemifacial microsomia, orofacial clefts, ocular defects and vertebral abnormalities. Various genetic causes were associated with OAVS and copy number variations represent a recurrent cause of OAVS, but the responsible gene often remains elusive.MethodsWe described an international cohort of 17 patients, including 10 probands and 7 affected relatives, presenting with OAVS and carrying a 14q22.3 microduplication detected using chromosomal microarray analysis. For each patient, clinical data were collected using a detailed questionnaire addressed to the referring clinicians. We subsequently studied the effects ofOTX2overexpression in a zebrafish model.ResultsWe defined a 272 kb minimal common region that only overlaps with theOTX2gene. Head and face defects with a predominance of ear malformations were present in 100% of patients. The variability in expressivity was significant, ranging from simple chondromas to severe microtia, even between intrafamilial cases. Heterologous overexpression ofOTX2in zebrafish embryos showed significant effects on early development with alterations in craniofacial development.ConclusionsOur results indicate that properOTX2dosage seems to be critical for the normal development of the first and second branchial arches. Overall, we demonstrated thatOTX2genomic duplications are a recurrent cause of OAVS marked by auricular malformations of variable severity.
Collapse
|
13
|
Company V, Murcia‐Ramón R, Andreu‐Cervera A, Aracil‐Pastor P, Almagro‐García F, Martínez S, Echevarría D, Puelles E. Adhesion molecule Amigo2 is involved in the fasciculation process of the fasciculus retroflexus. Dev Dyn 2022; 251:1834-1847. [PMID: 35727300 PMCID: PMC9796841 DOI: 10.1002/dvdy.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The fasciculus retroflexus is the prominent efferent pathway from the habenular complex. Medial habenular axons form a core packet whereas lateral habenular axons course in a surrounding shell. Both groups of fibers share the same initial pathway but differ in the final segment of the tract, supposedly regulated by surface molecules. The gene Amigo2 codes for a membrane adhesion molecule with an immunoglobulin-like domain 2 and is selectively expressed in the medial habenula. We present it as a candidate for controlling the fasciculation behavior of medial habenula axons. RESULTS First, we studied the development of the habenular efferents in an Amigo2 lack of function mouse model. The fasciculus retroflexus showed a variable defasciculation phenotype. Gain of function experiments allowed us to generate a more condensed tract and rescued the Amigo2 knock-out phenotype. Changes in Amigo2 function did not alter the course of habenular fibers. CONCLUSION We have demonstrated that Amigo2 plays a subtle role in the fasciculation of the fasciculus retroflexus.
Collapse
Affiliation(s)
- Verónica Company
- Instituto de NeurocienciasUniversidad Miguel Hernández de Elche‐CSICSant Joan d'AlacantAlicanteSpain
| | - Raquel Murcia‐Ramón
- Instituto de NeurocienciasUniversidad Miguel Hernández de Elche‐CSICSant Joan d'AlacantAlicanteSpain
| | - Abraham Andreu‐Cervera
- Instituto de NeurocienciasUniversidad Miguel Hernández de Elche‐CSICSant Joan d'AlacantAlicanteSpain
| | - Paula Aracil‐Pastor
- Instituto de NeurocienciasUniversidad Miguel Hernández de Elche‐CSICSant Joan d'AlacantAlicanteSpain
| | - Francisca Almagro‐García
- Instituto de NeurocienciasUniversidad Miguel Hernández de Elche‐CSICSant Joan d'AlacantAlicanteSpain
| | - Salvador Martínez
- Instituto de NeurocienciasUniversidad Miguel Hernández de Elche‐CSICSant Joan d'AlacantAlicanteSpain
| | - Diego Echevarría
- Instituto de NeurocienciasUniversidad Miguel Hernández de Elche‐CSICSant Joan d'AlacantAlicanteSpain
| | - Eduardo Puelles
- Instituto de NeurocienciasUniversidad Miguel Hernández de Elche‐CSICSant Joan d'AlacantAlicanteSpain
| |
Collapse
|
14
|
The Enigmatic Etiology of Oculo-Auriculo-Vertebral Spectrum (OAVS): An Exploratory Gene Variant Interaction Approach in Candidate Genes. Life (Basel) 2022; 12:life12111723. [PMID: 36362878 PMCID: PMC9693117 DOI: 10.3390/life12111723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
The clinical diagnosis of oculo-auriculo-vertebral spectrum (OAVS) is established when microtia is present in association with hemifacial hypoplasia (HH) and/or ocular, vertebral, and/or renal malformations. Genetic and non-genetic factors have been associated with microtia/OAVS. Although the etiology remains unknown in most patients, some cases may have an autosomal dominant, autosomal recessive, or multifactorial inheritance. Among the possible genetic factors, gene−gene interactions may play important roles in the etiology of complex diseases, but the literature lacks related reports in OAVS patients. Therefore, we performed a gene−variant interaction analysis within five microtia/OAVS candidate genes (HOXA2, TCOF1, SALL1, EYA1 and TBX1) in 49 unrelated OAVS Mexican patients (25 familial and 24 sporadic cases). A statistically significant intergenic interaction (p-value < 0.001) was identified between variants p.(Pro1099Arg) TCOF1 (rs1136103) and p.(Leu858=) SALL1 (rs1965024). This intergenic interaction may suggest that the products of these genes could participate in pathways related to craniofacial alterations, such as the retinoic acid (RA) pathway. The absence of clearly pathogenic variants in any of the analyzed genes does not support a monogenic etiology for microtia/OAVS involving these genes in our patients. Our findings could suggest that in addition to high-throughput genomic approaches, future gene−gene interaction analyses could contribute to improving our understanding of the etiology of microtia/OAVS.
Collapse
|
15
|
Tingaud-Sequeira A, Trimouille A, Sagardoy T, Lacombe D, Rooryck-Thambo C. Oculo-auriculo-vertebral spectrum: new genes and literature review on a complex disease. J Med Genet 2022; 59:417-427. [PMID: 35110414 DOI: 10.1136/jmedgenet-2021-108219] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/30/2021] [Indexed: 12/23/2022]
Abstract
Oculo-auriculo-vertebral spectrum (OAVS) or Goldenhar syndrome is due to an abnormal development of first and second branchial arches derivatives during embryogenesis and is characterised by hemifacial microsomia associated with auricular, ocular and vertebral malformations. The clinical and genetic heterogeneity of this spectrum with incomplete penetrance and variable expressivity, render its molecular diagnosis difficult. Only a few recurrent CNVs and genes have been identified as causatives in this complex disorder so far. Prenatal environmental causal factors have also been hypothesised. However, most of the patients remain without aetiology. In this review, we aim at updating clinical diagnostic criteria and describing genetic and non-genetic aetiologies, animal models as well as novel diagnostic tools and surgical management, in order to help and improve clinical care and genetic counselling of these patients and their families.
Collapse
Affiliation(s)
- Angèle Tingaud-Sequeira
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, F-33000 Bordeaux, France
| | - Aurélien Trimouille
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, F-33000 Bordeaux, France.,CHU de Bordeaux, Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, F-33076, Bordeaux, France
| | - Thomas Sagardoy
- CHU de Bordeaux, Service d'oto-rhino-laryngologie, de chirurgie cervico-faciale et d'ORL pédiatrique, 33076 Bordeaux, France
| | - Didier Lacombe
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, F-33000 Bordeaux, France.,CHU de Bordeaux, Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, F-33076, Bordeaux, France
| | - Caroline Rooryck-Thambo
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, F-33000 Bordeaux, France .,CHU de Bordeaux, Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, F-33076, Bordeaux, France
| |
Collapse
|
16
|
Guida V, Sparascio FP, Bernardini L, Pancheri F, Melis D, Cocciadiferro D, Pagnoni M, Puzzo M, Goldoni M, Barone C, Hozhabri H, Putotto C, Giuffrida MG, Briuglia S, Palumbo O, Bianca S, Stanzial F, Benedicenti F, Kariminejad A, Forzano F, Baghernajad Salehi L, Mattina T, Brancati F, Castori M, Carella M, Fadda MT, Iannetti G, Dallapiccola B, Digilio MC, Marino B, Tartaglia M, De Luca A. Copy number variation analysis implicates novel pathways in patients with oculo-auriculo-vertebral-spectrum and congenital heart defects. Clin Genet 2021; 100:268-279. [PMID: 33988253 DOI: 10.1111/cge.13994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/22/2021] [Accepted: 05/08/2021] [Indexed: 12/19/2022]
Abstract
Oculo-auriculo-vertebral spectrum (OAVS) is a developmental disorder of craniofacial morphogenesis. Its etiology is unclear, but assumed to be complex and heterogeneous, with contribution of both genetic and environmental factors. We assessed the occurrence of copy number variants (CNVs) in a cohort of 19 unrelated OAVS individuals with congenital heart defect. Chromosomal microarray analysis identified pathogenic CNVs in 2/19 (10.5%) individuals, and CNVs classified as variants of uncertain significance in 7/19 (36.9%) individuals. Remarkably, two subjects had small intragenic CNVs involving DACH1 and DACH2, two paralogs coding for key components of the PAX-SIX-EYA-DACH network, a transcriptional regulatory pathway controlling developmental processes relevant to OAVS and causally associated with syndromes characterized by craniofacial involvement. Moreover, a third patient showed a large duplication encompassing DMBX1/OTX3, encoding a transcriptional repressor of OTX2, another transcription factor functionally connected to the DACH-EYA-PAX network. Among the other relevant CNVs, a deletion encompassing HSD17B6, a gene connected with the retinoic acid signaling pathway, whose dysregulation has been implicated in craniofacial malformations, was also identified. Our findings suggest that CNVs affecting gene dosage likely contribute to the genetic heterogeneity of OAVS, and implicate the PAX-SIX-EYA-DACH network as novel pathway involved in the etiology of this developmental trait.
Collapse
Affiliation(s)
- Valentina Guida
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Francesca Piceci Sparascio
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.,Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Laura Bernardini
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Francesco Pancheri
- Department of Pediatrics, Obstetrics and Gynecology, "Sapienza" University of Rome, Rome, Italy
| | - Daniela Melis
- Department of Translational Medical Sciences, Section of Pediatrics, University of Naples "Federico II", Naples, Italy.,Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Dario Cocciadiferro
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.,Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mario Pagnoni
- Department of Maxillo-Facial Surgery, Policlinico Umberto I, Rome, Italy
| | - Marianna Puzzo
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Marina Goldoni
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Chiara Barone
- Medical Genetics, Referral Center for Rare Genetic Diseases, ARNAS Garibaldi, Catania, Italy
| | - Hossein Hozhabri
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Carolina Putotto
- Department of Pediatrics, Obstetrics and Gynecology, "Sapienza" University of Rome, Rome, Italy
| | - Maria Grazia Giuffrida
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Silvana Briuglia
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", Unit of Emergency Pediatrics, University of Messina, Messina, Italy
| | - Orazio Palumbo
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Sebastiano Bianca
- Medical Genetics, Referral Center for Rare Genetic Diseases, ARNAS Garibaldi, Catania, Italy
| | - Franco Stanzial
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Francesco Benedicenti
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | | | - Francesca Forzano
- Clinical Genetics Department, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | | | - Teresa Mattina
- Unit of Medical Genetics, University of Catania, Catania, Italy
| | - Francesco Brancati
- Department of Life, Health and Environmental Sciences, Unit of Medical Genetics University of L'Aquila, L'Aquila, Italy
| | - Marco Castori
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Massimo Carella
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Maria Teresa Fadda
- Department of Maxillo-Facial Surgery, Policlinico Umberto I, Rome, Italy
| | - Giorgio Iannetti
- Department of Maxillo-Facial Surgery, Policlinico Umberto I, Rome, Italy
| | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Bruno Marino
- Department of Pediatrics, Obstetrics and Gynecology, "Sapienza" University of Rome, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| |
Collapse
|