1
|
Yang L, Lu P, Qi X, Yang Q, Liu L, Dou T, Guan Q, Yu C. Metformin inhibits inflammatory response and endoplasmic reticulum stress to improve hypothalamic aging in obese mice. iScience 2023; 26:108082. [PMID: 37860765 PMCID: PMC10582490 DOI: 10.1016/j.isci.2023.108082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/20/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
The hypothalamus, as a vital brain region for endocrine and metabolism regulation, undergoes functional disruption during obesity.The anti-aging effect of metformin has come into focus. However, whether it has the potential to ameliorate hypothalamic aging and dysfunction in the obese state remains unclear. In this study, obese mice were utilized to investigate the effects of metformin on the hypothalamus of obese mice. According to the results, metformin treatment resulted in improved insulin sensitivity, reduced blood glucose and lipid levels, as well as attenuation of hypothalamic aging, demonstrated by decreased SA-β-gal staining and downregulation of senescence markers. Additionally, metformin decreased the expression of endoplasmic reticulum stress-related proteins in neurons and reduced the inflammatory response triggered by microglia activation. Further mechanistic analysis revealed that metformin inhibited the expression and activation of STING and NLRP3 in microglia. These results reveal a possible mechanism by which metformin ameliorates hypothalamic aging.
Collapse
Affiliation(s)
- Leilei Yang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Peng Lu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Xiangyu Qi
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Qian Yang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Luna Liu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Tao Dou
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Qingbo Guan
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Chunxiao Yu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| |
Collapse
|
2
|
Prado TP, Jara CP, Dias Bóbbo VC, Carraro RS, Sidarta-Oliveira D, de Mendonça GRA, Velloso LA, Araújo EP. A Free Fatty Acid Synthetic Agonist Accelerates Wound Healing and Improves Scar Quality in Mice. Biol Res Nurs 2023; 25:353-366. [PMID: 36444640 DOI: 10.1177/10998004221142331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
BACKGROUND Impaired wound healing is a health problem around the world, and the search for a novel product to repair wounded skin is a major topic in the field. GW9508 is a synthetic molecule described as a selective agonist of free fatty acid receptors (FFARs) 1 and 4, and there is evidence of its anti-inflammatory effects on several organs of the body. PURPOSE Here, we aimed to evaluate the effects of topical GW9508 on wound healing in mice. RESEARCH DESIGN First, we used bioinformatic methods to determine the expression of FFAR1 and FFAR4 mRNA in the skin from a human cell atlas assembled with single-cell transcriptomes. Next, we employed 6-week-old C57BL6J mice with 2 wounds inflicted in the back. The mice were randomly divided into 2 groups, a control group, which received topical vehicle, and a treatment group, which received GW9508, for 12 days. The wound was monitored by photographic documentation every 2 days, and samples were collected at day 6 and 12 post injury for RT-PCR, western blot and histology analyses. RESULTS FFAR1 and FFAR4 mRNA are expressed in skin cells in similar amounts to those in other tissues. Topical GW9508 accelerated wound healing and decreased gene expression of IL-10 and metalloproteinase 9 on days 6 and 12 post injury. It increased the quantity of Collagen I and improved the organization of collagen fibres. Conclusions: Our results show that GW9508 could be an attractive drug treatment for wounded skin. Future studies need to be performed to assess the impact of GW9508 in chronic wound models.
Collapse
Affiliation(s)
- Thais P Prado
- Nursing School, Laboratory of Cell Signaling Obesity and Comorbidities Center, OCRC, University of Campinas, Campinas, Brazil
- Faculty of Medical Sciences, Laboratory of Cell Signaling, Obesity and Comorbidities Center - OCRC, University of Campinas, Campinas, Brazil
| | - Carlos P Jara
- Nursing School, Laboratory of Cell Signaling Obesity and Comorbidities Center, OCRC, University of Campinas, Campinas, Brazil
- Faculty of Medical Sciences, Laboratory of Cell Signaling, Obesity and Comorbidities Center - OCRC, University of Campinas, Campinas, Brazil
| | - Vanessa C Dias Bóbbo
- Nursing School, Laboratory of Cell Signaling Obesity and Comorbidities Center, OCRC, University of Campinas, Campinas, Brazil
- Faculty of Medical Sciences, Laboratory of Cell Signaling, Obesity and Comorbidities Center - OCRC, University of Campinas, Campinas, Brazil
| | - Rodrigo S Carraro
- Faculty of Medical Sciences, Laboratory of Cell Signaling, Obesity and Comorbidities Center - OCRC, University of Campinas, Campinas, Brazil
- Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Davi Sidarta-Oliveira
- Faculty of Medical Sciences, Laboratory of Cell Signaling, Obesity and Comorbidities Center - OCRC, University of Campinas, Campinas, Brazil
- Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Guilherme R A de Mendonça
- Faculty of Medical Sciences, Laboratory of Cell Signaling, Obesity and Comorbidities Center - OCRC, University of Campinas, Campinas, Brazil
- Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Licio A Velloso
- Faculty of Medical Sciences, Laboratory of Cell Signaling, Obesity and Comorbidities Center - OCRC, University of Campinas, Campinas, Brazil
- Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Eliana P Araújo
- Nursing School, Laboratory of Cell Signaling Obesity and Comorbidities Center, OCRC, University of Campinas, Campinas, Brazil
- Faculty of Medical Sciences, Laboratory of Cell Signaling, Obesity and Comorbidities Center - OCRC, University of Campinas, Campinas, Brazil
| |
Collapse
|
3
|
Liu H, Hu L, Zuo L, Ning G, Shi L, Xu Z, Ren W. Short-term exposure of HFD depresses intestinal cholinergic anti-inflammatory activity through hypothalamic inflammation in mice. J Nutr Biochem 2023; 111:109151. [PMID: 36064087 DOI: 10.1016/j.jnutbio.2022.109151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 05/16/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022]
Abstract
High-fat diet (HFD) exposure has been proven to impair vagus nerve function. However, it is not yet known whether the HFD challenge impacts vagal efferent-based intestinal cholinergic anti-inflammation activity. This investigation aims to evaluate the effect of HFD on intestinal cholinergic anti-inflammatory activity in mice. Mice with or without intracerebroventricular treatment with an antibody against toll-like receptor 4 (TLR4) were fed with HFD or standard chow for 2 weeks. Vagus nerve-based anti-inflammatory activity was analyzed by heart rate variability. Acetylcholine (ACh) content, nicotinic acetylcholine receptor α7 subtype (α7nAChR), and pro-inflammatory cytokines were analyzed by biochemical kits or qRT-PCR. HFD feeding mice exhibit a significant increase in high frequency (HF) and a decrease in the ratio of low frequency/HF, which were accompanied by lower ACh levels and α7nAChR mRNA expression in the intestinal segments. However, anti-TLR4 antibody-treated HFD mice showed normal ACh levels and α7nAChR mRNA expression in the intestinal segments. Moreover, TNF-α production in small intestine was significantly reduced in HFD + antibody group compared with HFD + vehicle group. Collectively, our present results reveal that HFD challenge depresses intestinal cholinergic anti-inflammatory activity, which is mediated by hypothalamic inflammation. Impairment of intestinal cholinergic anti-inflammatory pathway is the cause of intestinal low-grade inflammation by HFD consumption.
Collapse
Affiliation(s)
- Huiying Liu
- Department of Endocrinology, The First Affiliated Hospital of North University of Hebei, Zhangjiakou, Hebei, China.
| | - Limei Hu
- Department of Endocrinology, The First Affiliated Hospital of North University of Hebei, Zhangjiakou, Hebei, China
| | - Lijuan Zuo
- Department of Endocrinology, The First Affiliated Hospital of North University of Hebei, Zhangjiakou, Hebei, China
| | - Gaijun Ning
- Department of Endocrinology, The First Affiliated Hospital of North University of Hebei, Zhangjiakou, Hebei, China
| | - Li Shi
- Department of Endocrinology, The First Affiliated Hospital of North University of Hebei, Zhangjiakou, Hebei, China
| | - Zhengrong Xu
- Department of Endocrinology, The First Affiliated Hospital of North University of Hebei, Zhangjiakou, Hebei, China
| | - Weidong Ren
- Department of Endocrinology, The First Affiliated Hospital of North University of Hebei, Zhangjiakou, Hebei, China
| |
Collapse
|
4
|
Kirshina AS, Kazakova AA, Kolosova ES, Imasheva EA, Vasileva OO, Zaborova OV, Terenin IM, Muslimov AR, Reshetnikov VV. Effects of various mRNA-LNP vaccine doses on neuroinflammation in BALB/c mice. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
It has been proven that mRNA vaccines are highly effective against the COVID-19 outbreak, and low prevalence of side effects has been shown. However, there are still many gaps in our understanding of the biology and biosafety of nucleic acids as components of lipid nanoparticles (LNPs) most often used as a system for inctracellular delivery of mRNA-based vaccines. It is known that LNPs cause severe injection site inflammation, have broad biodistribution profiles, and are found in multiple tissues of the body, including the brain, after administration. The role of new medications with such pharmacokinetics in inflammation developing in inaccessible organs is poorly understood. The study was aimed to assess the effects of various doses of mRNA-LNP expressing the reporter protein (0, 5, 10, and 20 μg of mRNA encoding the firefly luciferase) on the expression of neuroinflammation markers (Tnfα, Il1β, Gfap, Aif1) in the prefrontal cortex and hypothalamus of laboratory animals 4, 8, and 30 h after the intramuscular injection of LNP nanoemulsion. It was shown that mRNA-LNP vaccines in a dose of 10–20 μg of mRNA could enhance Aif1 expression in the hypothalamus 8 h after vaccination, however, no such differences were observed after 30 h. It was found that the Gfap, l11β, Tnfα expression levels in the hypothalamus observed at different times in the experimental groups were different. According to the results, mRNA-LNPs administered by the parenteral route can stimulate temporary activation of microglia in certain time intervals in the dose-dependent and site specific manner.
Collapse
Affiliation(s)
- AS Kirshina
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sirius, Russia
| | - AA Kazakova
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sirius, Russia
| | - ES Kolosova
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sirius, Russia
| | - EA Imasheva
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sirius, Russia
| | - OO Vasileva
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sirius, Russia
| | - OV Zaborova
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sirius, Russia
| | - IM Terenin
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sirius, Russia
| | - AR Muslimov
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sirius, Russia
| | - VV Reshetnikov
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sirius, Russia
| |
Collapse
|
5
|
Wang Z, Cui Y, Wen L, Yu H, Feng J, Yuan W, He X. Dietary Restriction against Parkinson's Disease: What We Know So Far. Nutrients 2022; 14:nu14194108. [PMID: 36235760 PMCID: PMC9571011 DOI: 10.3390/nu14194108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Dietary restriction (DR) is defined as a moderate reduction in food intake while avoiding malnutrition. The beneficial effects of DR are being increasingly acknowledged in aging and in a series of age-related neurodegenerative disorders, for example, Parkinson's disease (PD). To date, the pathogenesis of PD remains elusive and there is no cure for it in spite of intensive research over decades. In this review, we summarize the current knowledge on the efficacy of DR on PD, focusing on the underlying mechanisms involving general metabolism, neuroendocrinolgy, neuroinflammation, gut microbiome, and so on. We anticipate that this review will provide future perspectives for PD prevention and treatment.
Collapse
Affiliation(s)
- Zhonglei Wang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yueran Cui
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lulu Wen
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Wei Yuan
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang 110001, China
- Correspondence: (W.Y.); (X.H.); Tel.: +86-024-8328-3360 (W.Y.); +86-024-96615-28111 (X.H.)
| | - Xin He
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Correspondence: (W.Y.); (X.H.); Tel.: +86-024-8328-3360 (W.Y.); +86-024-96615-28111 (X.H.)
| |
Collapse
|
6
|
Trends in Gliosis in Obesity, and the Role of Antioxidants as a Therapeutic Alternative. Antioxidants (Basel) 2022; 11:antiox11101972. [PMID: 36290695 PMCID: PMC9598641 DOI: 10.3390/antiox11101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity remains a global health problem. Chronic low-grade inflammation in this pathology has been related to comorbidities such as cognitive alterations that, in the long term, can lead to neurodegenerative diseases. Neuroinflammation or gliosis in patients with obesity and type 2 diabetes mellitus has been related to the effect of adipokines, high lipid levels and glucose, which increase the production of free radicals. Cerebral gliosis can be a risk factor for developing neurodegenerative diseases, and antioxidants could be an alternative for the prevention and treatment of neural comorbidities in obese patients. AIM Identify the immunological and oxidative stress mechanisms that produce gliosis in patients with obesity and propose antioxidants as an alternative to reducing neuroinflammation. METHOD Advanced searches were performed in scientific databases: PubMed, ProQuest, EBSCO, and the Science Citation index for research on the physiopathology of gliosis in obese patients and for the possible role of antioxidants in its management. CONCLUSION Patients with obesity can develop neuroinflammation, conditioned by various adipokines, excess lipids and glucose, which results in an increase in free radicals that must be neutralized with antioxidants to reduce gliosis and the risk of long-term neurodegeneration.
Collapse
|
7
|
Engel DF, Velloso LA. The timeline of neuronal and glial alterations in experimental obesity. Neuropharmacology 2022; 208:108983. [PMID: 35143850 DOI: 10.1016/j.neuropharm.2022.108983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/03/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
In experimental models, hypothalamic dysfunction is a key component of the pathophysiology of diet-induced obesity. Early after the introduction of a high-fat diet, neurons, microglia, astrocytes and tanycytes of the mediobasal hypothalamus undergo structural and functional changes that impact caloric intake, energy expenditure and systemic glucose tolerance. Inflammation has emerged as a central component of this response, and as in other inflammatory conditions, there is a time course of events that determine the fate of distinct cells involved in the central regulation of whole-body energy homeostasis. Here, we review the work that identified key mechanisms, cellular players and temporal features of diet-induced hypothalamic abnormalities.
Collapse
Affiliation(s)
- Daiane F Engel
- School of Pharmacy, Federal University of Ouro Preto, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Brazil.
| |
Collapse
|
8
|
Rodríguez-Rodríguez R, Miralpeix C. Hypothalamic Regulation of Obesity. Int J Mol Sci 2021; 22:ijms222413459. [PMID: 34948254 PMCID: PMC8704683 DOI: 10.3390/ijms222413459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/31/2022] Open
Affiliation(s)
- Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
- Correspondence: ; Tel.: +34-935-042-002
| | - Cristina Miralpeix
- INSERM, Neurocentre Magendie, U1215, University of Bordeaux, 3300 Bordeaux, France;
| |
Collapse
|
9
|
Wang XL, Li L. Microglia Regulate Neuronal Circuits in Homeostatic and High-Fat Diet-Induced Inflammatory Conditions. Front Cell Neurosci 2021; 15:722028. [PMID: 34720877 PMCID: PMC8549960 DOI: 10.3389/fncel.2021.722028] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are brain resident macrophages, which actively survey the surrounding microenvironment and promote tissue homeostasis under physiological conditions. During this process, microglia participate in synaptic remodeling, neurogenesis, elimination of unwanted neurons and cellular debris. The complex interplay between microglia and neurons drives the formation of functional neuronal connections and maintains an optimal neural network. However, activation of microglia induced by chronic inflammation increases synaptic phagocytosis and leads to neuronal impairment or death. Microglial dysfunction is implicated in almost all brain diseases and leads to long-lasting functional deficiency, such as hippocampus-related cognitive decline and hypothalamus-associated energy imbalance (i.e., obesity). High-fat diet (HFD) consumption triggers mediobasal hypothalamic microglial activation and inflammation. Moreover, HFD-induced inflammation results in cognitive deficits by triggering hippocampal microglial activation. Here, we have summarized the current knowledge of microglial characteristics and biological functions and also reviewed the molecular mechanism of microglia in shaping neural circuitries mainly related to cognition and energy balance in homeostatic and diet-induced inflammatory conditions.
Collapse
Affiliation(s)
- Xiao-Lan Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lianjian Li
- Department of Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
10
|
Microglia-Neuron Crosstalk in Obesity: Melodious Interaction or Kiss of Death? Int J Mol Sci 2021; 22:ijms22105243. [PMID: 34063496 PMCID: PMC8155827 DOI: 10.3390/ijms22105243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Diet-induced obesity can originate from the dysregulated activity of hypothalamic neuronal circuits, which are critical for the regulation of body weight and food intake. The exact mechanisms underlying such neuronal defects are not yet fully understood, but a maladaptive cross-talk between neurons and surrounding microglial is likely to be a contributing factor. Functional and anatomical connections between microglia and hypothalamic neuronal cells are at the core of how the brain orchestrates changes in the body's metabolic needs. However, such a melodious interaction may become maladaptive in response to prolonged diet-induced metabolic stress, thereby causing overfeeding, body weight gain, and systemic metabolic perturbations. From this perspective, we critically discuss emerging molecular and cellular underpinnings of microglia-neuron communication in the hypothalamic neuronal circuits implicated in energy balance regulation. We explore whether changes in this intercellular dialogue induced by metabolic stress may serve as a protective neuronal mechanism or contribute to disease establishment and progression. Our analysis provides a framework for future mechanistic studies that will facilitate progress into both the etiology and treatments of metabolic disorders.
Collapse
|