1
|
Liu J, Zhang Y, Dai L. Relationship between serum level of miR-338-3p and miR-105-3p and bone metabolic markers in patients with diabetes nephropathy. Ren Fail 2024; 46:2406390. [PMID: 39378116 PMCID: PMC11463021 DOI: 10.1080/0886022x.2024.2406390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/28/2024] [Accepted: 09/14/2024] [Indexed: 10/10/2024] Open
Abstract
OBJECTIVES Diabetic nephropathy (DN) is one of the most common and serious complications of diabetes. The purpose of this study was to explore the relationship between serum microRNA-338-3p (miR-338-3p) and miR-105-3p and bone metabolic markers in patients with DN at different stages. METHODS A total of 153 patients diagnosed and treated in the Department of Nephrology from July 2020 to October 2021 were selected as the study objects. According to the staging criteria of diabetic nephropathy and 24-h urinary albumin quantitative level, the patients were divided into control group (35 cases), microalbuminuria group (37 cases), clinical stage albuminuria group (27 cases) and renal failure group (54 cases). Gene expressions were measured by real-time fluorescence quantitative PCR. The correlation was analyzed by Spearman. Serum miR-338-3p and miR-150-5p in the prediction of renal failure in DN was analyzed by ROC curve. RESULTS The levels of urinary albumin and serum creatinine were markedly increased with the increase of DN stage (p < 0.05). Compared with the microalbuminuria group, the expression levels of serum miR-383-3p, serum miR-105-3p, 25(OH)-D, BGP and PINP were obviously decreased, but the expression of parathyroid hormone (PTH) and type I collagen (β-CTX) was largely increased in clinical proteinuria group (p < 0.05). Compared with the clinical proteinuria group, the expression levels of serum miR-383-3p, serum miR-105-3p, 25(OH)-D, BGP and PINP were largely decreased, but the expression of PTH and β-CTX was obviously increased in the renal failure group (p < 0.05). Spearman correlation results showed that serum expressions of miR-383-3p and miR-105-3p were negatively correlated with PTH and β-CTX, and positively correlated with 25(OH)-D, BGP and PINP (p < 0.05). ROC curve analysis showed that the AUC of serum miR-338-3p and miR-150-5p was 0.896 with the specificity and sensitivity of 96.66% and 73.47%, which had certain predictive value for the occurrence of renal failure in DN. CONCLUSIONS The expression levels of serum miR-383-3p and miR-105-3p were significantly correlated with bone metabolism markers. The combined test can provide new ideas and insights for the clinical treatment of osteoporosis in DN.
Collapse
Affiliation(s)
- Jinlan Liu
- Department of General Practice, Hubei NO.3 People’s Hospital of Jianghan University, Hubei Province, China
| | - Yi Zhang
- Department of Endocrinology, Hubei NO.3 People’s Hospital of Jianghan University, Hubei Province, China
| | - Lixing Dai
- Department of General Practice, Hubei NO.3 People’s Hospital of Jianghan University, Hubei Province, China
| |
Collapse
|
2
|
Ahmadzadeh AM, Aliabadi MM, Mirheidari SB, Hamedi-Asil M, Garousi S, Mottahedi M, Sahebkar A. Beneficial effects of resveratrol on diabetes mellitus and its complications: focus on mechanisms of action. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03527-4. [PMID: 39446148 DOI: 10.1007/s00210-024-03527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Diabetes mellitus (DM) is a significant global health issue, associated with various microvascular and macrovascular complications that significantly impair patients' quality of life as well as healthspan and lifespan. Despite the availability of several anti-diabetic medications with different mechanisms of action, there remains no definite curative treatment. Hence, discovering new efficient complementary therapies is essential. Natural products have received significant attention due to their advantages in various pathological conditions. Resveratrol is a natural polyphenol that possesses antioxidant and anti-inflammatory properties, and its efficacy has been previously investigated in several diseases, including DM. Herein, we aimed to provide a holistic view of the signaling pathways and mechanisms of action through which resveratrol exerts its effects against DM and its complications.
Collapse
Affiliation(s)
- Amir Mahmoud Ahmadzadeh
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Mahdie Hamedi-Asil
- School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Department of Surgical and Interventional Sciences, McGill University, Montreal, Quebec, Canada
| | - Mehran Mottahedi
- Department of Surgical and Interventional Sciences, McGill University, Montreal, Quebec, Canada
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Tariq Z, Abusnana S, Mussa BM, Zakaria H. New insights on genetic background of major diabetic vascular complications. Diabetol Metab Syndr 2024; 16:243. [PMID: 39375805 PMCID: PMC11457557 DOI: 10.1186/s13098-024-01473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/21/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND By 2045, it is expected that 693 million individuals worldwide will have diabetes and with greater risk of morbidity, mortality, loss of vision, renal failure, and a decreased quality of life due to the devastating effects of macro- and microvascular complications. As such, clinical variables and glycemic control alone cannot predict the onset of vascular problems. An increasing body of research points to the importance of genetic predisposition in the onset of both diabetes and diabetic vascular complications. OBJECTIVES Purpose of this article is to review these approaches and narrow down genetic findings for Diabetic Mellitus and its consequences, highlighting the gaps in the literature necessary to further genomic discovery. MATERIAL AND METHODS In the past, studies looking for genetic risk factors for diabetes complications relied on methods such as candidate gene studies, which were rife with false positives, and underpowered genome-wide association studies, which were constrained by small sample sizes. RESULTS The number of genetic findings for diabetes and diabetic complications has over doubled due to the discovery of novel genomics data, including bioinformatics and the aggregation of global cohort studies. Using genetic analysis to determine whether diabetes individuals are at the most risk for developing diabetic vascular complications (DVC) might lead to the development of more accurate early diagnostic biomarkers and the customization of care plans. CONCLUSIONS A newer method that uses extensive evaluation of single nucleotide polymorphisms (SNP) in big datasets is Genome-Wide Association Studies (GWAS).
Collapse
Affiliation(s)
- Zuira Tariq
- Diabetes and Endocrinology Department, University Hospital Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates
| | - Salah Abusnana
- Diabetes and Endocrinology Department, University Hospital Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates.
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| | - Bashair M Mussa
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Hala Zakaria
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
4
|
Rao G, Peng B, Zhang G, Fu X, Tian J, Tian Y. MicroRNAs in diabetic macroangiopathy. Cardiovasc Diabetol 2024; 23:344. [PMID: 39285459 PMCID: PMC11406791 DOI: 10.1186/s12933-024-02405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetic macroangiopathy is a leading cause of diabetes-related mortality worldwide. Both genetic and environmental factors, through a multitude of underlying molecular mechanisms, contribute to the pathogenesis of diabetic macroangiopathy. MicroRNAs (miRNAs), a class of non-coding RNAs known for their functional diversity and expression specificity, are increasingly recognized for their roles in the initiation and progression of diabetes and diabetic macroangiopathy. In this review, we will describe the biogenesis of miRNAs, and summarize their functions in diabetic macroangiopathy, including atherosclerosis, peripheral artery disease, coronary artery disease, and cerebrovascular disease, which are anticipated to provide new insights into future perspectives of miRNAs in basic, translational and clinical research, ultimately advancing the diagnosis, prevention, and treatment of diabetic macroangiopathy.
Collapse
Affiliation(s)
- Guocheng Rao
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China
| | - Boqiang Peng
- Department of General Surgery and Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guixiang Zhang
- Department of General Surgery and Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China.
| | - Jingyan Tian
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Niemira M, Bielska A, Chwialkowska K, Raczkowska J, Skwarska A, Erol A, Zeller A, Sokolowska G, Toczydlowski D, Sidorkiewicz I, Mariak Z, Reszec J, Lyson T, Moniuszko M, Kretowski A. Circulating serum miR-362-3p and miR-6721-5p as potential biomarkers for classification patients with adult-type diffuse glioma. Front Mol Biosci 2024; 11:1368372. [PMID: 38455766 PMCID: PMC10918470 DOI: 10.3389/fmolb.2024.1368372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
According to the fifth edition of the WHO Classification of Tumours of the Central Nervous System (CNS) published in 2021, grade 4 gliomas classification includes IDH-mutant astrocytomas and wild-type IDH glioblastomas. Unfortunately, despite precision oncology development, the prognosis for patients with grade 4 glioma remains poor, indicating an urgent need for better diagnostic and therapeutic strategies. Circulating miRNAs besides being important regulators of cancer development could serve as promising diagnostic biomarkers for patients with grade 4 glioma. Here, we propose a two-miRNA miR-362-3p and miR-6721-5p screening signature for serum for non-invasive classification of identified glioma cases into the highest-grade 4 and lower-grade gliomas. A total of 102 samples were included in this study, comprising 78 grade 4 glioma cases and 24 grade 2-3 glioma subjects. Using the NanoString platform, seven miRNAs were identified as differentially expressed (DE), which was subsequently confirmed via RT-qPCR analysis. Next, numerous combinations of DE miRNAs were employed to develop classification models. The dual panel of miR-362-3p and miR-6721-5p displayed the highest diagnostic value to differentiate grade 4 patients and lower grade cases with an AUC of 0.867. Additionally, this signature also had a high AUC = 0.854 in the verification cohorts by RT-qPCR and an AUC = 0.842 using external data from the GEO public database. The functional annotation analyses of predicted DE miRNA target genes showed their primary involvement in the STAT3 and HIF-1 signalling pathways and the signalling pathway of pluripotency of stem cells and glioblastoma-related pathways. For additional exploration of miRNA expression patterns correlated with glioma, we performed the Weighted Gene-Co Expression Network Analysis (WGCNA). We showed that the modules most associated with glioma grade contained as many as six DE miRNAs. In conclusion, this study presents the first evidence of serum miRNA expression profiling in adult-type diffuse glioma using a classification based on the WHO 2021 guidelines. We expect that the discovered dual miR-362-3p and miR-6721-5p signatures have the potential to be utilised for grading gliomas in clinical applications.
Collapse
Affiliation(s)
- Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Bielska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Karolina Chwialkowska
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Justyna Raczkowska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Anna Skwarska
- Albert Einstein College of Medicine, Cancer Center, Bronx, NY, United States
| | - Anna Erol
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Anna Zeller
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Gabriela Sokolowska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Damian Toczydlowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Zenon Mariak
- Department of Neurosurgery, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Reszec
- Department of Medical Pathology, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Lyson
- Department of Neurosurgery, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Moniuszko
- Centre of Regenerative Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
6
|
Singh DD, Kim Y, Choi SA, Han I, Yadav DK. Clinical Significance of MicroRNAs, Long Non-Coding RNAs, and CircRNAs in Cardiovascular Diseases. Cells 2023; 12:1629. [PMID: 37371099 DOI: 10.3390/cells12121629] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Based on recent research, the non-coding genome is essential for controlling genes and genetic programming during development, as well as for health and cardiovascular diseases (CVDs). The microRNAs (miRNAs), lncRNAs (long ncRNAs), and circRNAs (circular RNAs) with significant regulatory and structural roles make up approximately 99% of the human genome, which does not contain proteins. Non-coding RNAs (ncRNA) have been discovered to be essential novel regulators of cardiovascular risk factors and cellular processes, making them significant prospects for advanced diagnostics and prognosis evaluation. Cases of CVDs are rising due to limitations in the current therapeutic approach; most of the treatment options are based on the coding transcripts that encode proteins. Recently, various investigations have shown the role of nc-RNA in the early diagnosis and treatment of CVDs. Furthermore, the development of novel diagnoses and treatments based on miRNAs, lncRNAs, and circRNAs could be more helpful in the clinical management of patients with CVDs. CVDs are classified into various types of heart diseases, including cardiac hypertrophy (CH), heart failure (HF), rheumatic heart disease (RHD), acute coronary syndrome (ACS), myocardial infarction (MI), atherosclerosis (AS), myocardial fibrosis (MF), arrhythmia (ARR), and pulmonary arterial hypertension (PAH). Here, we discuss the biological and clinical importance of miRNAs, lncRNAs, and circRNAs and their expression profiles and manipulation of non-coding transcripts in CVDs, which will deliver an in-depth knowledge of the role of ncRNAs in CVDs for progressing new clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Youngsun Kim
- Department of Obstetrics and Gynecology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Ah Choi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul 08826, Republic of Korea
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Biodisplay, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Dharmendra Kumar Yadav
- Department of Pharmacy, Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Incheon 21924, Republic of Korea
| |
Collapse
|
7
|
Liu H, Guan H, He F, Song Y, Li F, Sun-Waterhouse D, Li D. Therapeutic actions of tea phenolic compounds against oxidative stress and inflammation as central mediators in the development and progression of health problems: A review focusing on microRNA regulation. Crit Rev Food Sci Nutr 2023; 64:8414-8444. [PMID: 37074177 DOI: 10.1080/10408398.2023.2202762] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Many health problems including chronic diseases are closely associated with oxidative stress and inflammation. Tea has abundant phenolic compounds with various health benefits including antioxidant and anti-inflammatory properties. This review focuses on the present understanding of the impact of tea phenolic compounds on the expression of miRNAs, and elucidates the biochemical and molecular mechanisms underlying the transcriptional and post-transcriptional protective actions of tea phenolic compounds against oxidative stress- and/or inflammation-mediated diseases. Clinical studies showed that drinking tea or taking catechin supplement on a daily basis promoted the endogenous antioxidant defense system of the body while inhibiting inflammatory factors. The regulation of chronic diseases based on epigenetic mechanisms, and the epigenetic-based therapies involving different tea phenolic compounds, have been insufficiently studied. The molecular mechanisms and application strategies of miR-27 and miR-34 involved in oxidative stress response and miR-126 and miR-146 involved in inflammation process were preliminarily investigated. Some emerging evidence suggests that tea phenolic compounds may promote epigenetic changes, involving non-coding RNA regulation, DNA methylation, histone modification, ubiquitin and SUMO modifications. However, epigenetic mechanisms and epigenetic-based disease therapies involving phenolic compounds from different teas, and the potential cross-talks among the epigenetic events, remain understudied.
Collapse
Affiliation(s)
- Hui Liu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Hui Guan
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Fatao He
- All-China Federation of Supply & Marketing Co-operatives, Jinan Fruit Research Institute, Jinan, P.R. China
| | - Ye Song
- All-China Federation of Supply & Marketing Co-operatives, Jinan Fruit Research Institute, Jinan, P.R. China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| |
Collapse
|
8
|
Al-Mahayni S, Ali M, Khan M, Jamsheer F, Moin ASM, Butler AE. Glycemia-Induced miRNA Changes: A Review. Int J Mol Sci 2023; 24:ijms24087488. [PMID: 37108651 PMCID: PMC10144997 DOI: 10.3390/ijms24087488] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetes is a rapidly increasing global health concern that significantly strains the health system due to its downstream complications. Dysregulation in glycemia represents one of the fundamental obstacles to achieving glycemic control in diabetic patients. Frequent hyperglycemia and/or hypoglycemia events contribute to pathologies that disrupt cellular and metabolic processes, which may contribute to the development of macrovascular and microvascular complications, worsening the disease burden and mortality. miRNAs are small single-stranded non-coding RNAs that regulate cellular protein expression and have been linked to various diseases, including diabetes mellitus. miRNAs have proven useful in the diagnosis, treatment, and prognosis of diabetes and its complications. There is a vast body of literature examining the role of miRNA biomarkers in diabetes, aiming for earlier diagnoses and improved treatment for diabetic patients. This article reviews the most recent literature discussing the role of specific miRNAs in glycemic control, platelet activity, and macrovascular and microvascular complications. Our review examines the different miRNAs involved in the pathological processes leading to the development of type 2 diabetes mellitus, such as endothelial dysfunction, pancreatic beta-cell dysfunction, and insulin resistance. Furthermore, we discuss the potential applications of miRNAs as next-generation biomarkers in diabetes with the aim of preventing, treating, and reversing diabetes.
Collapse
Affiliation(s)
- Sara Al-Mahayni
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Mohamed Ali
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Muhammad Khan
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Fatema Jamsheer
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Abu Saleh Md Moin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| |
Collapse
|
9
|
Abdel Mageed SS, Doghish AS, Ismail A, El-Husseiny AA, Fawzi SF, Mahmoud AMA, El-Mahdy HA. The role of miRNAs in insulin resistance and diabetic macrovascular complications - A review. Int J Biol Macromol 2023; 230:123189. [PMID: 36623613 DOI: 10.1016/j.ijbiomac.2023.123189] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
Diabetes is the most prevalent metabolic disturbance disease and has been regarded globally as one of the principal causes of mortality. Diabetes is accompanied by several macrovascular complications, including stroke, coronary artery disease (CAD), and cardiomyopathy as a consequence of atherosclerosis. The onset of type 2 diabetes is closely related to insulin resistance (IR). miRNAs have been linked to various metabolic processes, including glucose homeostasis, regulation of lipid metabolism, gluconeogenesis, adipogenesis, glucose transporter type 4 expression, insulin sensitivity, and signaling. Consequently, miRNA dysregulation mediates IR in some target organs, comprising liver, muscle, and adipose tissue. Moreover, miRNAs are crucial in developing diabetes and its associated macrovascular complications through their roles in several signaling pathways implicated in inflammation, apoptosis, cellular survival and migration, the proliferation of vascular smooth muscle cells, neurogenesis, angiogenesis, autophagy, oxidative stress, cardiac remodeling, and fibrosis. Therefore, the purpose of this review is to clarify the role of miRNAs in hepatic, muscle, and adipose tissue IR and explain their roles in the pathogenesis of macrovascular diabetic complications, including stroke, CAD, and cardiomyopathy. Also, explain their roles in gestational diabetes mellitus (GDM). Besides, this review discusses the latest updates on the alteration of miRNA expression in diabetic macrovascular complications.
Collapse
Affiliation(s)
- Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Sylvia F Fawzi
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| |
Collapse
|
10
|
HDL-Based Therapy: Vascular Protection at All Stages. Biomedicines 2023; 11:biomedicines11030711. [PMID: 36979690 PMCID: PMC10045384 DOI: 10.3390/biomedicines11030711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
It is known that lipid metabolism disorders are involved in a wide range of pathologies. These pathologies include cardiovascular, metabolic, neurodegenerative diseases, and even cancer. All these diseases lead to serious health consequences, which makes it impossible to ignore them. Unfortunately, these diseases most often have a complex pathogenesis, which makes it difficult to study them and, in particular, diagnose and treat them. HDL is an important part of lipid metabolism, performing many functions under normal conditions. One of such functions is the maintaining of the reverse cholesterol transport. These functions are also implicated in pathology development. Thus, HDL contributes to vascular protection, which has been demonstrated in various conditions: Alzheimer’s disease, atherosclerosis, etc. Many studies have shown that serum levels of HDL cholesterol correlate negatively with CV risk. With these data, HDL-C is a promising therapeutic target. In this manuscript, we reviewed HDL-based therapeutic strategies that are currently being used or may be developed soon.
Collapse
|
11
|
Inflammatory and Prothrombotic Biomarkers, DNA Polymorphisms, MicroRNAs and Personalized Medicine for Patients with Peripheral Arterial Disease. Int J Mol Sci 2022; 23:ijms231912054. [PMID: 36233355 PMCID: PMC9569699 DOI: 10.3390/ijms231912054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 12/24/2022] Open
Abstract
Classical risk factors play a major role in the initiation and development of atherosclerosis. However, the estimation of risk for cardiovascular events based only on risk factors is often insufficient. Efforts have been made to identify biomarkers that indicate ongoing atherosclerosis. Among important circulating biomarkers associated with peripheral arterial disease (PAD) are inflammatory markers which are determined by the expression of different genes and epigenetic processes. Among these proinflammatory molecules, interleukin-6, C-reactive protein, several adhesion molecules, CD40 ligand, osteoprotegerin and others are associated with the presence and progression of PAD. Additionally, several circulating prothrombotic markers have a predictive value in PAD. Genetic polymorphisms significantly, albeit moderately, affect risk factors for PAD via altered lipoprotein metabolism, diabetes, arterial hypertension, smoking, inflammation and thrombosis. However, most of the risk variants for PAD are located in noncoding regions of the genome and their influence on gene expression remains to be explored. MicroRNAs (miRNAs) are single-stranded, noncoding RNAs that modulate gene expression at the post-transcriptional level. Patterns of miRNA expression, to some extent, vary in different atherosclerotic cardiovascular diseases. miRNAs appear to be useful in the detection of PAD and the prediction of progression and revascularization outcomes. In conclusion, taking into account one’s predisposition to PAD, i.e., DNA polymorphisms and miRNAs, together with circulating inflammatory and coagulation markers, holds promise for more accurate prediction models and personalized therapeutic options.
Collapse
|
12
|
Saini VM, Liu KR, Surve AS, Gupta S, Gupta A. MicroRNAs as biomarkers for monitoring cardiovascular changes in Type II Diabetes Mellitus (T2DM) and exercise. J Diabetes Metab Disord 2022; 21:1819-1832. [PMID: 35818628 PMCID: PMC9261151 DOI: 10.1007/s40200-022-01066-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/10/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022]
Abstract
Introduction MicroRNAs (miRNAs) have been shown to be altered in both CVD and T2DM and can have an application as diagnostic and prognostic biomarkers. miRNAs are released into circulation when the cardiomyocyte is subjected to injury and damage. Objectives Measuring circulating miRNA levels in human plasma may be of great potential use for measuring the extent of damage to cardiomyocytes and response to exercise. This review is aimed to highlight the potential application of miRNAs as biomarkers of CVD progression in T2DM, and the impact of exercise on recovery. Methods The review aims to examine whether the health improvements following exercise in T2DM patients are reflective of changes in expression of plasma miRNAs. For this purpose, studies were identified from the literature that have established a correlation between diabetes, disease progression and plasma miRNA levels. We also reviewed studies which looked at the effect of exercise on plasma miRNA levels. Results The review identified miRNA signatures that are affected by T2DM and DHD and a subset of these miRNAs that are also affected by different types of exercise. This approach helped us to identify those miRNAs whose expression and function can be altered by regular bouts of exercise. Conclusions miRNAs identified as part of this review can serve as tools to monitor the cardio-protective, anti-inflammatory and metabolic effects of exercise in people suffering from T2DM. Future research should focus on regulation of these miRNAs in T2DM and how they can be altered by appropriate exercise interventions. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-022-01066-4.
Collapse
|
13
|
Li Q, Liu X, Jia M, Sun F, Li Y, Zhang H, Liu X, He H, Zhao Z, Yan Z, Zhu Z. Assessment of sublingual microcirculation for the screening of diabetic nephropathy. Diabetol Metab Syndr 2022; 14:90. [PMID: 35794676 PMCID: PMC9258215 DOI: 10.1186/s13098-022-00864-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To investigate the potential of employing sublingual microcirculation as an early noninvasive screening technique for diabetic nephropathy (DN). RESEARCH DESIGN AND METHODS We recruited 89 patients with type 2 diabetes mellitus (T2DM) and 41 healthy subjects in this cross-sectional observational study. All participants underwent fluorescein fundus angiography, vibration perception testing, 10 g (Semmes-Weinstein) monofilament examination, nerve conduction velocity, and 24-h urine microalbumin determination. HbA1c, fasting plasma glucose, blood lipid, and estimated glomerular filtration rate(eGFR) were measured. Sublingual microcirculatory images were captured using side-stream dark-field (SDF) microcirculation microscopy, and total and perfused vascular density (TVD and PVD) were calculated. RESULTS The sublingual microcirculatory parameters denoting microvascular density and perfusion were negatively correlated with both fasting plasma glucose (TVD, r = - 0.316, P < 0.001; PVD, r = - 0.350, P < 0.001; PPV, r = - 0.279, P = 0.001) and HbA1c (TVD, r = - 0.367, P < 0.001; PVD, r = - 0.423, P < 0.001; PPV, r = - 0.399, P < 0.001). Diabetes patients already had a reduction in sublingual microcirculation compared with healthy control, and more severe reductions in TVD (7.07 ± 1.64 vs. 9.67 ± 1.94 mm/mm2, P < 0.001) and PVD (5.88 ± 1.82 vs. 8.64 ± 2.46 mm/mm2, P < 0.001) were found in those diabetes patients developed microvascular complications. Sublingual microcirculation impairment was accompanied with higher urinary albumin creatinine ratio (UACR). Receiver operating characteristic (ROC) analysis showed that TVD (area under the curve, AUC = 0.890 [0.836 0.944], P < 0.001) and PVD (AUC = 0.883 [0.826, 0.940], P < 0.001) could be indicators for DN screening. We derived a combined predictor index (CPI) considering both TVD and PVD for screening DN, and both the AUC (0.892, [0.838 0.945], P < 0.001) and cutoff point of 11.30 mm/mm2 showed great improvement (sensitivity: 95.5%, specificity: 67.4%). CONCLUSIONS Diabetes patients experienced impaired sublingual microcirculation, which was closely correlated with UACR. Sublingual microcirculation monitoring could be used for the noninvasive early detection of DN.
Collapse
Affiliation(s)
- Qiang Li
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - XiaoXiao Liu
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Mengxiao Jia
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Fang Sun
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yingsha Li
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hexuan Zhang
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiaoli Liu
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hongbo He
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhigang Zhao
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhencheng Yan
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhiming Zhu
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
14
|
Seferović P, Farmakis D, Bayes-Genis A, Ben Gal T, Böhm M, Chioncel O, Ferrari R, Filippatos G, Hill L, Jankowska E, Lainscak M, Lopatin Y, Lund LH, Mebazaa A, Metra M, Moura B, Rosano G, Thum T, Voors A, Coats AJS. Biomarkers for the prediction of heart failure and cardiovascular events in patients with type 2 diabetes: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2022; 24:1162-1170. [PMID: 35703329 DOI: 10.1002/ejhf.2575] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/21/2022] [Accepted: 06/13/2022] [Indexed: 11/08/2022] Open
Abstract
Knowledge on risk predictors of incident heart failure (HF) in patients with type 2 diabetes (T2D) is crucial given the frequent coexistence of the two conditions and the fact that T2D doubles the risk of incident HF. In addition, HF is increasingly being recognized as an important endpoint in trials in T2D. On the other hand, the diagnostic and prognostic performance of established cardiovascular biomarkers may be modified by the presence of T2D. The present position paper, derived by an expert panel workshop organized by the Heart Failure Association of the European Society of Cardiology, summarizes the current knowledge and gaps in evidence regarding the use of a series of different biomarkers, reflecting various pathogenic pathways, for the prediction of incident HF and cardiovascular events in patients with T2D and in those with established HF and T2D.
Collapse
Affiliation(s)
- Peter Seferović
- Faculty of Medicine, University of Belgrade Belgrade, Serbia and Serbian Academy of Sciences and Arts, Belgrade, Serbia.,University of Belgrade Belgrade, Belgrade, Serbia
| | | | - Antoni Bayes-Genis
- Heart Institute, Hospital Universitari German Trias i Pujol, Badalona, Spain.,Department of Medicine, Universitat Autónoma de Barcelona, Barcelona, Spain.,CIBERCV, Instituto de Salud, Madrid, Spain
| | - Tuvia Ben Gal
- Heart Failure Unit, Cardiology Department, Rabin Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Böhm
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Saarland University, Homburg, Germany
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases 'Prof. C.C. Iliescu', Bucharest, and University of Medicine Carol Davila, Bucharest, Romania
| | - Roberto Ferrari
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Gerasimos Filippatos
- Second Department of Cardiology, Athens University Hospital Attikon, National and Kapodistrina University of Athens Medical School, Athens, Greece
| | - Loreena Hill
- School of Nursing and Midwifery, Queen's University, Belfast, UK
| | - Ewa Jankowska
- Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland.,Centre for Heart Diseases, University Hospital, Wroclaw, Poland
| | - Mitja Lainscak
- Division of Cardiology, General Hospital Murska Sobota, Murska Sobota, Slovenia, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Yuri Lopatin
- Volgograd State Medical University, Regional Cardiology Centre Volgograd, Volgograd, Russian Federation
| | - Lars H Lund
- Department of Medicine, Karolinska Institutet, and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Alexandre Mebazaa
- INSERM UMR-S 942, Paris, France; Department of Anesthesiology and Critical Care Medicine, St. Louis and Lariboisère University Hospitals, Paris, France
| | - Marco Metra
- Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Brenda Moura
- CINTESIS - Centro de Investigação em Tecnologias e Serviços de Saúde, Porto, Portugal; Serviço de Cardiologia, Hospital das Forças Armadas - Pólo do Porto, Porto, Portugal
| | - Giuseppe Rosano
- Cardiovascular Clinical Academic Group, St George's Hospitals NHS Trust University of London, London, UK.,IRCCS San Raffaele Pisana, Rome, Italy
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Adriaan Voors
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | |
Collapse
|
15
|
Systematic analysis of nutrigenomic effects of polyphenols related to cardiometabolic health in humans - Evidence from untargeted mRNA and miRNA studies. Ageing Res Rev 2022; 79:101649. [PMID: 35595185 DOI: 10.1016/j.arr.2022.101649] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/15/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular and metabolic disorders present major causes of mortality in the ageing population. Polyphenols present in human diets possess cardiometabolic protective properties, however their underlying molecular mechanisms in humans are still not well identified. Even though preclinical and in vitro studies advocate that these bioactives can modulate gene expression, most studies were performed using targeted approaches. With the objective to decipher the molecular mechanisms underlying polyphenols cardiometabolic preventive properties in humans, we performed integrative multi-omic bioinformatic analyses of published studies which reported improvements of cardiometabolic risk factors following polyphenol intake, together with genomic analyses performed using untargeted approach. We identified 5 studies within our criteria and nearly 5000 differentially expressed genes, both mRNAs and miRNAs, in peripheral blood cells. Integrative bioinformatic analyses (e.g. pathway and gene network analyses, identification of transcription factors, correlation of gene expression profiles with those associated with diseases and drug intake) revealed that these genes are involved in the processes such as cell adhesion and mobility, immune system, metabolism, or cell signaling. We also identified 27 miRNAs known to regulate processes such as cell cytoskeleton, chemotaxis, cell signaling, or cell metabolism. Gene expression profiles negatively correlated with expression profiles of cardiovascular disease patients, while a positive correlation was observed with gene expression profiles following intake of drugs against cardiometabolic disorders. These analyses further advocate for health protective effects of these bioactives against age-associated diseases. In conclusion, polyphenols can exert multi-genomic modifications in humans and use of untargeted methods coupled with bioinformatic analyses represent the best approach to decipher molecular mechanisms underlying healthy-ageing effects of these bioactives.
Collapse
|
16
|
Bielska A, Niemira M, Bauer W, Sidorkiewicz I, Szałkowska A, Skwarska A, Raczkowska J, Ostrowski D, Gugała K, Dobrzycki S, Krętowski A. Serum miRNA Profile in Diabetic Patients With Ischemic Heart Disease as a Promising Non-Invasive Biomarker. Front Endocrinol (Lausanne) 2022; 13:888948. [PMID: 35663309 PMCID: PMC9157821 DOI: 10.3389/fendo.2022.888948] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
The increasing morbidity and mortality of type 2 diabetic mellitus (T2DM) patients with ischemic heart disease (IHD) highlight an urgent need to identify early biomarkers, which would help to predict individual risk of development of IHD. Here, we postulate that circulating serum-derived micro RNAs (miRNAs) may serve as potential biomarkers for early IHD diagnosis and support the identification of diabetic individuals with a predisposition to undergo IHD. We obtained serum samples from T2DM patients either with IHD or IHD-free and analysed the expression levels of 798 miRNAs using the NanoString nCounter technology platform. The prediction of the putative miRNAs targets was performed using the Ingenuity Pathway Analysis (IPA) software. Gene Ontology (GO) analysis was used to identify the biological function and signalling pathways associated with miRNA target genes. Hub genes of protein-protein interaction (PPI) network were identified by STRING database and Cytotoscape tool. Receiver operating characteristic (ROC) analysis was used to assess the diagnostic value of identified miRNAs. Real-time quantitative polymerase chain reaction (qRT-PCR) was used for nCounter platform data validation. Our data showed that six miRNAs (miR-615-3p, miR-3147, miR-1224-5p, miR-5196-3p, miR-6732-3p, and miR-548b-3p) were significantly upregulated in T2DM IHD patients compared to T2DM patients without IHD. Further analysis indicated that 489 putative target genes mainly affected the endothelin-1 signalling pathway, glucocorticoid biosynthesis, and apelin cardiomyocyte signalling pathway. All tested miRNAs showed high diagnostic value (AUC = 0.779 - 0.877). Taken together, our research suggests that circulating miRNAs might have a crucial role in the development of IHD in diabetic patients and may be used as a potential biomarker for early diagnosis.
Collapse
Affiliation(s)
- Agnieszka Bielska
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
- *Correspondence: Agnieszka Bielska,
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Witold Bauer
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Anna Szałkowska
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Anna Skwarska
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Justyna Raczkowska
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Damian Ostrowski
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Kamil Gugała
- Department of Invasive Cardiology, Medical University of Białystok, Białystok, Poland
| | - Sławomir Dobrzycki
- Department of Invasive Cardiology, Medical University of Białystok, Białystok, Poland
| | - Adam Krętowski
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
17
|
Keller A, Gröger L, Tschernig T, Solomon J, Laham O, Schaum N, Wagner V, Kern F, Schmartz GP, Li Y, Borcherding A, Meier C, Wyss-Coray T, Meese E, Fehlmann T, Ludwig N. miRNATissueAtlas2: an update to the human miRNA tissue atlas. Nucleic Acids Res 2021; 50:D211-D221. [PMID: 34570238 PMCID: PMC8728130 DOI: 10.1093/nar/gkab808] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Small non-coding RNAs (sncRNAs) are pervasive regulators of physiological and pathological processes. We previously developed the human miRNA Tissue Atlas, detailing the expression of miRNAs across organs in the human body. Here, we present an updated resource containing sequencing data of 188 tissue samples comprising 21 organ types retrieved from six humans. Sampling the organs from the same bodies minimizes intra-individual variability and facilitates the making of a precise high-resolution body map of the non-coding transcriptome. The data allow shedding light on the organ- and organ system-specificity of piwi-interacting RNAs (piRNAs), transfer RNAs (tRNAs), microRNAs (miRNAs) and other non-coding RNAs. As use case of our resource, we describe the identification of highly specific ncRNAs in different organs. The update also contains 58 samples from six tissues of the Tabula Muris collection, allowing to check if the tissue specificity is evolutionary conserved between Homo sapiens and Mus musculus. The updated resource of 87 252 non-coding RNAs from nine non-coding RNA classes for all organs and organ systems is available online without any restrictions (https://www.ccb.uni-saarland.de/tissueatlas2).
Collapse
Affiliation(s)
- Andreas Keller
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany.,Department of Neurology and Neurobiology, Stanford University, CA 94305, USA
| | - Laura Gröger
- Center for Human and Molecular Biology, Junior Research Group Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Thomas Tschernig
- Institute for Anatomy, Saarland University, 66421 Homburg, Germany
| | - Jeffrey Solomon
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Omar Laham
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Nicholas Schaum
- Department of Neurology and Neurobiology, Stanford University, CA 94305, USA
| | - Viktoria Wagner
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Fabian Kern
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Georges Pierre Schmartz
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Yongping Li
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | | | - Carola Meier
- Institute for Anatomy, Saarland University, 66421 Homburg, Germany
| | - Tony Wyss-Coray
- Department of Neurology and Neurobiology, Stanford University, CA 94305, USA
| | - Eckart Meese
- Department of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Tobias Fehlmann
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Nicole Ludwig
- Center for Human and Molecular Biology, Junior Research Group Human Genetics, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
18
|
Zhou H, Huang L, Liang L, Chen L, Zou C, Li Z, Li R, Jian C, Zou D. Identification of an miRNA Regulatory Network and Candidate Markers for Ischemic Stroke Related to Diabetes. Int J Gen Med 2021; 14:3213-3223. [PMID: 34262334 PMCID: PMC8274709 DOI: 10.2147/ijgm.s319503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose Type 2 diabetes mellitus (T2DM) increases the risk of ischemic stroke and poor prognosis. This study aimed to identify molecular mechanisms that are dysregulated in T2DM-associated ischemic stroke and candidate genes that might serve as biomarkers. Methods The top 25% variance genes in the GSE21321 and GSE22255 datasets were analyzed for coexpression. The differentially expressed mRNAs (DEmRs) between patients with T2DM or ischemic stroke and controls were analyzed. Then, the union of overlapping coexpressed genes and overlapping DEmRs was analyzed. The miRNAs differentially expressed in T2DM-associated ischemic stroke were also analyzed. CIBERSORT was used to evaluate the levels of infiltration by immune cells in T2DM-associated stroke. Results Thirteen coexpression modules were identified in T2DM and 10 in ischemic stroke, and 594 module genes were shared between the two conditions. A total of 4452 mRNAs differentially expressed between T2DM patients and controls were identified, as were 2390 mRNAs differentially expressed between ischemic stroke and controls. The 771 union genes were enriched mainly in immune-related biological functions and signaling pathways. UBE2N, TGFB3, EXOSC1, and VIM were identified as candidate markers. In addition, we identified miR-576-3p as having the most regulatory roles in both T2DM and ischemic stroke. Mast cell activation was significantly down-regulated in T2DM but up-regulated in ischemic stroke. Conclusion These findings provide numerous testable hypotheses about the pathways underlying T2DM-associated ischemic stroke, which may help identify therapeutic targets.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Neurology, The People's Hospital of Guiping, Guiping, Guangxi, 537200, People's Republic of China
| | - Liujia Huang
- Department of Rehabilitation Medicine, The People's Hospital of Guiping, Guiping, Guangxi, 537200, People's Republic of China
| | - Lucong Liang
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China
| | - Liechun Chen
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China
| | - Chun Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China
| | - Zhenhua Li
- Department of Emergency Medicine, The First People's Hospital of Nanning, Nanning, 530022, People's Republic of China
| | - Rongjie Li
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China
| | - Chongdong Jian
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People's Republic of China
| | - Donghua Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China
| |
Collapse
|