1
|
Klimov VV, Shilin AK, Kusakovskiy DA, Kolyaganova OV, Kharlamov VO, Rudnev AV, Le MD, Bryuzgin EV, Navrotskii AV. Formation of Superhydrophobic Coatings Based on Dispersion Compositions of Hexyl Methacrylate Copolymers with Glycidyl Methacrylate and Silica Nanoparticles. Polymers (Basel) 2024; 16:3094. [PMID: 39518303 PMCID: PMC11548060 DOI: 10.3390/polym16213094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
In the last decade, the task of developing environmentally friendly and cost-effective methods for obtaining stable superhydrophobic coatings has become topical. In this study, we examined the effect of the concentrations of filler and polymer binder on the hydrophobic properties and surface roughness of composite coatings made from organic-aqueous compositions based on hexyl methacrylate (HMA) and glycidyl methacrylate (GMA) copolymers. Silicon dioxide nanoparticles were used as a filler. A single-stage "all-in-one" aerosol application method was used to form the coatings without additional intermediate steps for attaching the adhesive layer or texturing the substrate surface, as well as pre-modification of the surface of filler nanoparticles. As the ratio of the mass fraction of polymer binder (Wn) to filler (Wp) increases, the coatings show the lowest roll-off angles among the whole range of samples studied. Coatings with an optimal mass fraction ratio (Wn/Wp = 1.2 ÷ 1.6) of the filler to polymer binder maintained superhydrophobic properties for 24 h in contact with a drop of water in a chamber saturated with water vapor and exhibited roll-off angles of 6.1° ± 1°.
Collapse
Affiliation(s)
- Viktor V. Klimov
- Chemical Engineering Faculty, Volgograd State Technical University, 28 Lenin Ave, 400005 Volgograd, Russia; (A.K.S.); (D.A.K.); (O.V.K.); (V.O.K.); (E.V.B.); (A.V.N.)
| | - Alexey K. Shilin
- Chemical Engineering Faculty, Volgograd State Technical University, 28 Lenin Ave, 400005 Volgograd, Russia; (A.K.S.); (D.A.K.); (O.V.K.); (V.O.K.); (E.V.B.); (A.V.N.)
| | - Daniil A. Kusakovskiy
- Chemical Engineering Faculty, Volgograd State Technical University, 28 Lenin Ave, 400005 Volgograd, Russia; (A.K.S.); (D.A.K.); (O.V.K.); (V.O.K.); (E.V.B.); (A.V.N.)
| | - Olga V. Kolyaganova
- Chemical Engineering Faculty, Volgograd State Technical University, 28 Lenin Ave, 400005 Volgograd, Russia; (A.K.S.); (D.A.K.); (O.V.K.); (V.O.K.); (E.V.B.); (A.V.N.)
| | - Valentin O. Kharlamov
- Chemical Engineering Faculty, Volgograd State Technical University, 28 Lenin Ave, 400005 Volgograd, Russia; (A.K.S.); (D.A.K.); (O.V.K.); (V.O.K.); (E.V.B.); (A.V.N.)
| | - Alexander V. Rudnev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Leninsky Prospekt, 31, Building 4, 119071 Moscow, Russia;
| | - Manh D. Le
- Southern Branch of Joint Vietnam-Russia Tropical Science and Technology Research Center, 3, 3/2 Str., District 10, Ho Chi Minh City 740300, Vietnam;
| | - Evgeny V. Bryuzgin
- Chemical Engineering Faculty, Volgograd State Technical University, 28 Lenin Ave, 400005 Volgograd, Russia; (A.K.S.); (D.A.K.); (O.V.K.); (V.O.K.); (E.V.B.); (A.V.N.)
| | - Alexander V. Navrotskii
- Chemical Engineering Faculty, Volgograd State Technical University, 28 Lenin Ave, 400005 Volgograd, Russia; (A.K.S.); (D.A.K.); (O.V.K.); (V.O.K.); (E.V.B.); (A.V.N.)
| |
Collapse
|
2
|
Li T, Peng Y, You H, Guan X, Lv J, Yang C. Recent Developments in the Fabrication and Application of Superhydrophobic Suraces. CHEM REC 2024; 24:e202400065. [PMID: 39248661 DOI: 10.1002/tcr.202400065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/11/2024] [Indexed: 09/10/2024]
Abstract
A superhydrophobic surface is defined as having a contact angle exceeding 150 °C, indicating a remarkable ability to repel water. Generally, superhydrophobicity originates from the utilization of low-surface-energy materials with unique micro- and nanostructures. Superhydrophobic surfaces have gained considerable recognition and are widely employed in diverse areas for anti-icing, oil-water separation, anticorrosion, self-cleaning, blood-repellent, and antibacterial applications. These surfaces can greatly enhance industrial processes by yielding significant performance improvements. In this review, we introduce the basic theories that provide a foundation for understanding the hydrophobic properties of superhydrophobic surfaces. We then discuss current techniques for fabricating superhydrophobic coatings, critically analyzing their strengths and limitations. Furthermore, we provide an overview of recent progress in the application of superhydrophobic materials. Finally, we summarize the challenges in developing superhydrophobic materials and future trends in this field. The insights provided by this review can help researchers understand the basic knowledge of superhydrophobic surfaces and obtain the latest progress and challenges in the application of superhydrophobic surfaces. It provides help for further research and practical application of superhydrophobic surfaces.
Collapse
Affiliation(s)
- Ting Li
- School of Mechanical Engineering, Guizhou University, Guiyang, 550025, China
| | - Yi Peng
- School of Mechanical Engineering, Guizhou University, Guiyang, 550025, China
| | - Hang You
- School of Mechanical Engineering, Guizhou University, Guiyang, 550025, China
| | - Xiaoya Guan
- School of Mechanical Engineering, Guizhou University, Guiyang, 550025, China
| | - Jin Lv
- School of Mechanical Engineering, Guizhou University, Guiyang, 550025, China
| | - Chong Yang
- School of Mechanical Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
3
|
Zhang J, Tang Y, Gao X, Pei X, Weng Y, Chen J. Preparation of Time-Sequential Functionalized ZnS-ZnO Film for Modulation of Interfacial Behavior of Metals in Biological Service Environments. Biomolecules 2024; 14:1041. [PMID: 39199426 PMCID: PMC11352253 DOI: 10.3390/biom14081041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Blood-contact devices are prone to inflammation, endothelial dysfunction, coagulation, and the uncontrolled release of metal ions during implantation and service. Therefore, it is essential to make these multifunctional. Herein, a superhydrophobic DE@ZnS-ZnO@SA film (composed of dabigatran ester, zinc sulfite, zinc oxide, and stearic acid, respectively) is produced. The prepared film has non-adhesion and antibacterial properties, superior mechanical stability, durability, corrosion resistance, and is self-cleaning and blood-repellent. The results of the hemolysis, cytotoxicity, and other anticoagulant experiments revealed that the film had good blood compatibility, no cytotoxicity, and excellent anticoagulant properties. The film displays anticoagulant properties even after being immersed in Phosphate-Buffered Saline (PBS) for 7 days. Furthermore, the film can spontaneously release H2S gas for 90 h after soaking in an acidic environment (pH = 6) for 90 h. This property improves the acidic microenvironment of the lesion and promotes the proliferation of endothelial cells by using H2S gas. In addition, the film can inhibit the uncontrollable release of Zn2+ ions, avoiding its toxicity even when immersed in an acid environment for 35 days. This time-sequential functionalized surface has the potential to typify the future of blood-contacting scaffolds for long-lasting use.
Collapse
Affiliation(s)
- Jianwen Zhang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.Z.); (Y.T.); (X.G.); (X.P.)
| | - Yujie Tang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.Z.); (Y.T.); (X.G.); (X.P.)
| | - Xiaowa Gao
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.Z.); (Y.T.); (X.G.); (X.P.)
| | - Xinyu Pei
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.Z.); (Y.T.); (X.G.); (X.P.)
| | - Yajun Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China;
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.Z.); (Y.T.); (X.G.); (X.P.)
| |
Collapse
|
4
|
Tan M, Wang F, Yang J, Zhong Z, Chen G, Chen Z. Hydroxyl silicone oil grafting onto a rough thermoplastic polyurethane surface created durable super-hydrophobicity. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1359-1378. [PMID: 38490948 DOI: 10.1080/09205063.2024.2329453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Indwelling medical catheters are frequently utilized in medical procedures, but they are highly susceptible to infection, posing a vital challenge for both health workers and patients. In this study, the superhydrophobic micro-nanostructure surface was constructed on the surface of thermoplastic polyurethane (TPU) membrane using heavy calcium carbonate (CaCO3) template. To decrease the surface free energy, hydroxyl silicone oil was grafted onto the surface, forming a super-hydrophobic surface. The water contact angle (WCA) increased from 91.1° to 143 ± 3° when the concentration of heavy calcium CaCO3 was 20% (weight-to-volume (w/v)). However, the increased WCA was unstable and tended to decrease over time. After grafting hydroxyl silicone oil, the WCA rose to 152.05 ± 1.62° and remained consistently high for a period of 30 min. Attenuated total reflection infrared spectroscopy (ATR-FTIR) analysis revealed a chemical crosslinking between silicone oil and the surface of TPU. Furthermore, Scanning electron microscope (SEM) image showed the presence of numerous nanoparticles on the micro surface. Atomic force microscope (AFM) testing indicated a significant improvement in surface roughness. This method of creating a hydrophobic surface demonstrated several advantages, including resistance to cell, bacterial, protein, and platelet adhesion and good biosecurity. Therefore, it holds promising potential for application in the development of TPU-based medical catheters with antibacterial properties.
Collapse
Affiliation(s)
- Miaomiao Tan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Fuping Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Jinlan Yang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Zhengpeng Zhong
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Zhongmin Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
5
|
Goldberg LA, Zomer HD, McFetridge C, McFetridge PS. Silica nanoparticles enhance the cyto- and hemocompatibility of a multilayered extracellular matrix scaffold for vascular tissue regeneration. Biotechnol Lett 2024; 46:249-261. [PMID: 38279044 DOI: 10.1007/s10529-023-03459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/04/2023] [Accepted: 12/14/2023] [Indexed: 01/28/2024]
Abstract
PURPOSE The limited availability of autologous vessels for vascular bypass surgeries is a major roadblock to treating severe cardiovascular diseases. Based on this clinical priority, our group has developed a novel engineered vascular graft by rolling human amniotic membranes into multilayered extracellular matrixes (ECM). When treated with silica nanoparticles (SiNP), these rolled scaffolds showed a significant improvement in their structural and mechanical properties, matching those from gold standard autologous grafts. However, it remained to be determined how cells respond to SiNP-treated materials. As a first step toward understanding the biocompatibility of SiNP-dosed biomaterials, we aimed to assess how endothelial cells and blood components interact with SiNP-treated ECM scaffolds. METHODS To test this, we used established in vitro assays to study SiNP and SiNP-treated scaffolds' cyto and hemocompatibility. RESULTS Our results showed that SiNP effects on cells were concentration-dependent with no adverse effects observed up to 10 μg/ml of SiNP, with higher concentrations inducing cytotoxic and hemolytic responses. The SiNP also enhanced the scaffold's hydrophobicity state, a feature known to inhibit platelet and immune cell adhesion. Accordingly, SiNP-treated scaffolds were also shown to support endothelial cell growth while preventing platelet and leukocyte adhesion. CONCLUSION Our findings suggest that the addition of SiNP to human amniotic membrane extracellular matrixes improves the cyto- and hemocompatibility of rolled scaffolds and highlights this strategy as a robust mechanism to stabilize layered collagen scaffolds for vascular tissue regeneration.
Collapse
Affiliation(s)
- Leslie A Goldberg
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-56, 1275 Center Drive, Gainesville, FL, 32611-6131, USA
| | - Helena D Zomer
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Calum McFetridge
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-56, 1275 Center Drive, Gainesville, FL, 32611-6131, USA
| | - Peter S McFetridge
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-56, 1275 Center Drive, Gainesville, FL, 32611-6131, USA.
| |
Collapse
|
6
|
Roberts TR, Seekell RP, Zang Y, Harea G, Zhang Z, Batchinsky AI. In vitro hemocompatibility screening of a slippery liquid impregnated surface coating for extracorporeal organ support applications. Perfusion 2024; 39:76-84. [PMID: 35514052 DOI: 10.1177/02676591221095469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Clot formation, infection, and biofouling are unfortunate but frequent complications associated with the use of blood-contacting medical devices. The challenge of blood-foreign surface interactions is exacerbated during medical device applications involving substantial blood contact area and extended duration of use, such as extracorporeal life support (ECLS). We investigated a novel surface modification, a liquid-impregnated surface (LIS), designed to minimize protein adsorption and thrombus development on medical plastics. METHODS The hemocompatibility and efficacy of LIS was investigated first in a low-shear model with LIS applied to the lumen of blood incubation vials and exposed to human whole blood. Additionally, LIS was evaluated in a 6 h ex vivo circulation model with swine blood using full-scale ECLS circuit tubing and centrifugal pumps with clinically relevant flow rate (1.5 L/min) and shear conditions for extracorporeal carbon dioxide removal. RESULTS Under low-shear, LIS preserved fibrinogen concentration in blood relative to control polymers (+40 ± 6 mg/dL vs polyvinyl chloride, p < .0001), suggesting protein adsorption was minimized. A fibrinogen adhesion assay demonstrated a dramatic reduction in protein adsorption under low shear (87% decrease vs polyvinyl chloride, p = .01). Thrombus deposition and platelet adhesion visualized by scanning electron microscopy were drastically reduced. During the 6 h ex vivo circulation, platelets in blood exposed to LIS tubing did not become significantly activated or procoagulant, as occurred with control tubing; and again, thrombus deposition was visually reduced. CONCLUSIONS A LIS coating demonstrated potential to reduce thrombus formation on medical devices. Further testing is needed specialized to clinical setting and duration of use for specific medical target applications.
Collapse
Affiliation(s)
- Teryn R Roberts
- Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, TX, USA
| | | | - Yanyi Zang
- Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, TX, USA
| | - George Harea
- Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, TX, USA
| | | | - Andriy I Batchinsky
- Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, TX, USA
| |
Collapse
|
7
|
ISHIHARA K. Biomimetic polymers with phosphorylcholine groups as biomaterials for medical devices. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:579-606. [PMID: 39662944 PMCID: PMC11704457 DOI: 10.2183/pjab.100.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/01/2024] [Indexed: 12/13/2024]
Abstract
Biomimetic molecular designs can yield superior biomaterials. Polymers with a phosphorylcholine group, a polar group of phospholipid molecules, are particularly interesting. A methacrylate monomer, 2-methacryloyloxyethyl phosphorylcholine (MPC), was developed using efficient synthetic reactions and purification techniques. This process has been applied in industrial production to supply MPC globally. Polymers with various structures can be readily synthesized using MPC and their properties have been studied. The MPC polymer surface has a highly hydrated structure in biological conditions, leading to the prevention of adsorption of proteins and lipid molecules, adhesion of cells, and inhibition of bacterial adhesion and biofilm formation. Additionally, it provides an extremely lubricious surface. MPC polymers are used in various applications and can be stably immobilized on material surfaces such as metals and ceramics and polymers such as elastomers. They are also stable under sterilization and in vivo conditions. This makes them ideal for application in the surface treatment of various medical devices, including artificial organs, implanted in humans.
Collapse
Affiliation(s)
- Kazuhiko ISHIHARA
- Division of Materials & Manufacturing Science, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
8
|
Paul S, Rao L, Stein LH, Salemi A, Mitra S. Development of a Carbon Nanotube-Enhanced FAS Bilayer Amphiphobic Coating for Biological Fluids. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3138. [PMID: 38133035 PMCID: PMC10745810 DOI: 10.3390/nano13243138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
This study reports the development of a novel amphiphobic coating. The coating is a bilayer arrangement, where carbon nanotubes (CNTs) form the underlayer and fluorinated alkyl-silane (FAS) forms the overlayer, resulting in the development of highly amphiphobic coatings suitable for a wide range of substrates. The effectiveness of these coatings is demonstrated through enhanced contact angles for water and artificial blood plasma fluid on glass, stainless steel, and porous PTFE. The coatings were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), atomic force microscopy (AFM), and contact angle (CA) measurements. The water contact angles achieved with the bilayer coating were 106 ± 2°, 116 ± 2°, and 141 ± 2° for glass, stainless steel, and PTFE, respectively, confirming the hydrophobic nature of the coating. Additionally, the coating displayed high repellency for blood plasma, exhibiting contact angles of 102 ± 2°, 112 ± 2°, and 134 ± 2° on coated glass, stainless steel, and PTFE surfaces, respectively. The presence of the CNT underlayer improved plasma contact angles by 29%, 21.7%, and 16.5% for the respective surfaces. The presence of the CNT layer improved surface roughness significantly, and the average roughness of the bilayer coating on glass, stainless steel, and PTFE was measured to be 488 nm, 301 nm, and 274 nm, respectively. Mechanistically, the CNT underlayer contributed to the surface roughness, while the FAS layer provided high amphiphobicity. The maximum effect was observed on modified glass, followed by stainless steel and PTFE surfaces. These findings highlight the promising potential of this coating method across diverse applications, particularly in the biomedical industry, where it can help mitigate complications associated with device-fluid interactions.
Collapse
Affiliation(s)
- Sumona Paul
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 161 Warren Street, Newark, NJ 07102, USA; (S.P.); (L.R.)
| | - Lingfen Rao
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 161 Warren Street, Newark, NJ 07102, USA; (S.P.); (L.R.)
| | - Louis H. Stein
- Northern Department of Cardiothoracic Surgery, RWJBarnabas Health, 94 Old Short Hills Road, Livingston, NJ 07039, USA; (L.H.S.); (A.S.)
| | - Arash Salemi
- Northern Department of Cardiothoracic Surgery, RWJBarnabas Health, 94 Old Short Hills Road, Livingston, NJ 07039, USA; (L.H.S.); (A.S.)
- Department of Surgery, Rutgers New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA
| | - Somenath Mitra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 161 Warren Street, Newark, NJ 07102, USA; (S.P.); (L.R.)
| |
Collapse
|
9
|
Zhang J, Pei X, Liu Y, Ke X, Peng Y, Weng Y, Zhang Q, Chen J. Combining Chitosan, Stearic Acid, and (Cu-, Zn-) MOFs to Prepare Robust Superhydrophobic Coatings with Biomedical Multifunctionalities. Adv Healthc Mater 2023; 12:e2300746. [PMID: 37632326 DOI: 10.1002/adhm.202300746] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/14/2023] [Indexed: 08/27/2023]
Abstract
There is an urgent need to develop a series of multifunctional materials with good biocompatibility, high mechanical strength, hemostatic properties, antiadhesion, and anti-infection for applications in wound care. However, successfully developing multifunctional materials is challenging. In this study, two superhydrophobic composite coatings with good biocompatibility, high mechanical strength, strong antifouling and blood repellency, fast hemostasis, and good antibacterial activity are prepared on cotton fabric surface by simple, green, and low-cost one-step dip-coating technology. The results discussed in the manuscript reveals that the two superhydrophobic composite coatings can maintain good mechanical stability, strong water repellency, and durability under various types of mechanical damage, high-temperature treatment, and long-term strong light irradiation. The coatings also exhibit good repellency to various solid pollutants, highly viscous liquid pollutants, and blood. In vitro and in vivo hemostatic experiments show that both composite coatings have good hemostatic and anticlot adhesion properties. More importantly, this superhydrophobic coating prevents bacterial adhesion and growth and released Cu2+ and Zn2+ ions and chitosan to achieve bactericidal properties, thereby protecting injured skin from bacterial infection. The two superhydrophobic coatings enhance the antifouling, antiadhesion, hemostatic, and antibacterial functions of blood-repellent dressings and therefore have broad application prospects in medical and textile fields.
Collapse
Affiliation(s)
- Jianwen Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xinyu Pei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yihan Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xianlan Ke
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Ya Peng
- School of Materials Science and Engineering, Xihua University, Chengdu, Sichuan, 610039, China
| | - Yajun Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Qinyong Zhang
- School of Materials Science and Engineering, Xihua University, Chengdu, Sichuan, 610039, China
| | - Junying Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
10
|
Valtin J, Behrens S, Ruland A, Schmieder F, Sonntag F, Renner LD, Maitz MF, Werner C. A New In Vitro Blood Flow Model for the Realistic Evaluation of Antimicrobial Surfaces. Adv Healthc Mater 2023; 12:e2301300. [PMID: 37498721 DOI: 10.1002/adhm.202301300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Indexed: 07/29/2023]
Abstract
Device-associated bloodstream infections can cause serious medical problems and cost-intensive postinfection management, defining a need for more effective antimicrobial coatings. Newly developed coatings often show reduced bacterial colonization and high hemocompatibility in established in vitro tests, but fail in animal studies or clinical trials. The poor predictive power of these models is attributed to inadequate representation of in vivo conditions. Herein, a new single-pass blood flow model, with simultaneous incubation of the test surface with bacteria and freshly-drawn human blood, is presented. The flow model is validated by comparative analysis of a recently developed set of antiadhesive and contact-killing polymer coatings, and the corresponding uncoated polycarbonate surfaces. The results confirm the model's ability to differentiate the antimicrobial activities of the studied surfaces. Blood activation data correlate with bacterial surface coverage: low bacterial adhesion is associated with low inflammation and hemostasis. Shear stress correlates inversely with bacterial colonization, especially on antiadhesive surfaces. The introduced model is concluded to enable the evaluation of novel antimicrobial materials under in vivo-like conditions, capturing interactions between bacteria and biomaterials surfaces in the presence of key components of the ex vivo host response.
Collapse
Affiliation(s)
- Juliane Valtin
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, 01069, Dresden, Germany
| | - Stephan Behrens
- Fraunhofer Institute for Material and Beam Technology IWS, 01277, Dresden, Germany
| | - André Ruland
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, 01069, Dresden, Germany
| | - Florian Schmieder
- Fraunhofer Institute for Material and Beam Technology IWS, 01277, Dresden, Germany
| | - Frank Sonntag
- Fraunhofer Institute for Material and Beam Technology IWS, 01277, Dresden, Germany
| | - Lars D Renner
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, 01069, Dresden, Germany
| | - Manfred F Maitz
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, 01069, Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, 01069, Dresden, Germany
- Technische Universität Dresden, Cluster of Excellence Physics of Life, Center for Regenerative Therapies Dresden and Faculty of Chemistry and Food Chemistry, 01307, Dresden, Germany
| |
Collapse
|
11
|
Rajaramon S, David H, Sajeevan A, Shanmugam K, Sriramulu H, Dandela R, Solomon AP. Multi-functional approach in the design of smart surfaces to mitigate bacterial infections: a review. Front Cell Infect Microbiol 2023; 13:1139026. [PMID: 37287465 PMCID: PMC10242021 DOI: 10.3389/fcimb.2023.1139026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023] Open
Abstract
Advancements in biomedical devices are ingenious and indispensable in health care to save millions of lives. However, microbial contamination paves the way for biofilm colonisation on medical devices leading to device-associated infections with high morbidity and mortality. The biofilms elude antibiotics facilitating antimicrobial resistance (AMR) and the persistence of infections. This review explores nature-inspired concepts and multi-functional approaches for tuning in next-generation devices with antibacterial surfaces to mitigate resistant bacterial infections. Direct implementation of natural inspirations, like nanostructures on insect wings, shark skin, and lotus leaves, has proved promising in developing antibacterial, antiadhesive, and self-cleaning surfaces, including impressive SLIPS with broad-spectrum antibacterial properties. Effective antimicrobial touch surfaces, photocatalytic coatings on medical devices, and conventional self-polishing coatings are also reviewed to develop multi-functional antibacterial surfaces to mitigate healthcare-associated infections (HAIs).
Collapse
Affiliation(s)
- Shobana Rajaramon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Anusree Sajeevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthi Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Hrithiha Sriramulu
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
12
|
Batool M, B. Albargi H, Ahmad A, Sarwar Z, Khaliq Z, Qadir MB, Arshad SN, Tahir R, Ali S, Jalalah M, Irfan M, Harraz FA. Nano-Silica Bubbled Structure Based Durable and Flexible Superhydrophobic Electrospun Nanofibrous Membrane for Extensive Functional Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1146. [PMID: 37049240 PMCID: PMC10096561 DOI: 10.3390/nano13071146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Nanoscale surface roughness has conventionally been induced by using complicated approaches; however, the homogeneity of superhydrophobic surface and hazardous pollutants continue to have existing challenges that require a solution. As a prospective solution, a novel bubbled-structured silica nanoparticle (SiO2) decorated electrospun polyurethane (PU) nanofibrous membrane (SiO2@PU-NFs) was prepared through a synchronized electrospinning and electrospraying process. The SiO2@PU-NFs nanofibrous membrane exhibited a nanoscale hierarchical surface roughness, attributed to excellent superhydrophobicity. The SiO2@PU-NFs membrane had an optimized fiber diameter of 394 ± 105 nm and was fabricated with a 25 kV applied voltage, 18% PU concentration, 20 cm spinning distance, and 6% SiO2 nanoparticles. The resulting membrane exhibited a water contact angle of 155.23°. Moreover, the developed membrane attributed excellent mechanical properties (14.22 MPa tensile modulus, 134.5% elongation, and 57.12 kPa hydrostatic pressure). The composite nanofibrous membrane also offered good breathability characteristics (with an air permeability of 70.63 mm/s and a water vapor permeability of 4167 g/m2/day). In addition, the proposed composite nanofibrous membrane showed a significant water/oil separation efficiency of 99.98, 99.97, and 99.98% against the water/xylene, water/n-hexane, and water/toluene mixers. When exposed to severe mechanical stresses and chemicals, the composite nanofibrous membrane sustained its superhydrophobic quality (WCA greater than 155.23°) up to 50 abrasion, bending, and stretching cycles. Consequently, this composite structure could be a good alternative for various functional applications.
Collapse
Affiliation(s)
- Misbah Batool
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan;
| | - Hasan B. Albargi
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia; (H.B.A.); (M.J.)
- Department of Physics, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - Adnan Ahmad
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan; (Z.S.); (R.T.); (S.A.)
| | - Zahid Sarwar
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan; (Z.S.); (R.T.); (S.A.)
| | - Zubair Khaliq
- Department of Materials, National Textile University, Faisalabad 37610, Pakistan;
| | - Muhammad Bilal Qadir
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan; (Z.S.); (R.T.); (S.A.)
| | - Salman Noshear Arshad
- Department of Chemistry and Chemical Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan;
| | - Rizwan Tahir
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan; (Z.S.); (R.T.); (S.A.)
| | - Sultan Ali
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan; (Z.S.); (R.T.); (S.A.)
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia; (H.B.A.); (M.J.)
- Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia;
| | - Muhammad Irfan
- Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia;
| | - Farid A. Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia; (H.B.A.); (M.J.)
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia
| |
Collapse
|
13
|
Zhang J, Pei X, Huang J, Ke X, Xu C, Zhao W, Li L, Weng Y, Chen J. Construction of Hierarchical Micro/Nanostructured ZnO/Cu-ZnMOFs@SA Superhydrophobic Composite Coatings with Excellent Multifunctionality of Anticorrosion, Blood-Repelling, and Antimicrobial Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:265-280. [PMID: 36537551 DOI: 10.1021/acsami.2c15102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Naked medical devices are often damaged by blood, bacteria, and other extreme environmental conditions (heat, humidity, acid, alkali, salts, and others), causing device failure and increasing difficulty for the operator. They can also cause inflammation and coagulation resulting in severe complications and even death. In this work, the superhydrophobic ZnO/copper-zinc metal-organic frameworks@stearic acid (ZnO/Cu-ZnMOFs@SA) composite coatings with hierarchical micro/nanostructures were fabricated on Zn substrates via a one-step hydrothermal method. The effects of hierarchical micro/nanostructures on surface wettability, physicochemical stability, and biological properties have been studied in this manuscript. The structure not only provided the coatings with robust waterproofing, abrasive resistance, durability, and thermal and light irradiation stability but also successfully recovered their superhydrophobicity by remodifying the surface with SA, showing excellent repeatability. In addition, the coating demonstrates excellent corrosion resistance and self-cleaning ability and rejects various solid and liquid contaminants. The superhydrophobic ZnO/Cu-ZnMOFs@SA composite coatings also exhibited excellent antibacterial and thrombosis resistance. The findings indicated that the superhydrophobic composite coatings have a strong potential for application in medical instruments for exhibiting multifunctional properties in various extreme environments.
Collapse
Affiliation(s)
- Jianwen Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu610031, People's Republic of China
| | - Xinyu Pei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu610031, People's Republic of China
| | - Jinquan Huang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu610031, People's Republic of China
| | - Xianlan Ke
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu610031, People's Republic of China
| | - Cong Xu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu610031, People's Republic of China
| | - Wei Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu610031, People's Republic of China
| | - Li Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu610031, People's Republic of China
| | - Yajun Weng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu610031, People's Republic of China
| | - Junying Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu610031, People's Republic of China
| |
Collapse
|
14
|
Manivasagam VK, Popat KC. Improved Hemocompatibility on Superhemophobic Micro-Nano-Structured Titanium Surfaces. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010043. [PMID: 36671615 PMCID: PMC9855096 DOI: 10.3390/bioengineering10010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Blood-contacting titanium-based implants such as endovascular stents and heart valve casings are prone to blood clotting due to improper interactions at the surface level. In complement, the current clinical demand for cardiovascular implants is at a new apex. Hence, there is a crucial necessity to fabricate an implant with optimal mechanical properties and improved blood compatibility, while simultaneously interacting differentially with cells and other microbial agents. The present study intends to develop a superhydrophobic implant surface with the novel micro-nano topography, developed using a facile thermochemical process. The surface topography, apparent contact angle, and crystal structure are characterized on different surfaces. The hemo/blood compatibility on different surfaces is assessed by evaluating hemolysis, fibrinogen adsorption, cell adhesion and identification, thrombin generation, complement activation, and whole blood clotting kinetics. The results indicate that the super-hemo/hydrophobic micro-nano titanium surface improved hemocompatibility by significantly reducing fibrinogen adsorption, platelet adhesion, and leukocyte adhesion. Thus, the developed surface has high potential to be used as an implant. Further studies are directed towards analyzing the mechanisms causing the improved hemocompatibility of micro/nano surface features under dynamic in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Vignesh K. Manivasagam
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Ketul C. Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80523, USA
- Correspondence:
| |
Collapse
|
15
|
Ge-Zhang S, Cai T, Yang H, Ding Y, Song M. Biology and nature: Bionic superhydrophobic surface and principle. Front Bioeng Biotechnol 2022; 10:1033514. [PMID: 36324886 PMCID: PMC9618887 DOI: 10.3389/fbioe.2022.1033514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Nature is the source of human design inspiration. In order to adapt to the environment better, creatures in nature have formed various morphological structures during billions of years of evolution, among which the superhydrophobic characteristics of some animal and plant surface structures have attracted wide attention. At present, the preparation methods of bionic superhydrophobic surface based on the microstructure of animal and plant body surface include vapor deposition, etching modification, sol-gel method, template method, electrostatic spinning method and electrostatic spraying method, etc., which have been used in medical care, military industry, shipping, textile and other fields. Based on nature, this paper expounds the development history of superhydrophobic principle, summarizes the structure and wettability of superhydrophobic surfaces in nature, and introduces the characteristics differences and applications of different superhydrophobic surfaces in detail. Finally, the challenge of bionic superhydrophobic surface is discussed, and the future development direction of this field is prospected.
Collapse
Affiliation(s)
| | | | | | | | - Mingbo Song
- Northeast Forestry University, Harbin, China
| |
Collapse
|
16
|
Park K, Kim S, Jo Y, Park J, Kim I, Hwang S, Lee Y, Kim SY, Seo J. Lubricant skin on diverse biomaterials with complex shapes via polydopamine-mediated surface functionalization for biomedical applications. Bioact Mater 2022; 25:555-568. [PMID: 37056251 PMCID: PMC10088055 DOI: 10.1016/j.bioactmat.2022.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/08/2022] [Accepted: 07/17/2022] [Indexed: 12/28/2022] Open
Abstract
Implantable biomedical devices require an anti-biofouling, mechanically robust, low friction surface for a prolonged lifespan and improved performance. However, there exist no methods that could provide uniform and effective coatings for medical devices with complex shapes and materials to prevent immune-related side effects and thrombosis when they encounter biological tissues. Here, we report a lubricant skin (L-skin), a coating method based on the application of thin layers of bio-adhesive and lubricant-swellable perfluoropolymer that impart anti-biofouling, frictionless, robust, and heat-mediated self-healing properties. We demonstrate biocompatible, mechanically robust, and sterilization-safe L-skin in applications of bioprinting, microfluidics, catheter, and long and narrow medical tubing. We envision that diverse applications of L-skin improve device longevity, as well as anti-biofouling attributes in biomedical devices with complex shapes and material compositions.
Collapse
Affiliation(s)
- Kijun Park
- School of Electronic and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seunghoi Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technologies, Seoul, 02792, Republic of Korea
| | - Yejin Jo
- School of Electronic and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae Park
- School of Electronic and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Inwoo Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technologies, Seoul, 02792, Republic of Korea
| | - Sooyoung Hwang
- School of Electronic and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeontaek Lee
- School of Electronic and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - So Yeon Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technologies, Seoul, 02792, Republic of Korea
| | - Jungmok Seo
- School of Electronic and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Corresponding author.
| |
Collapse
|
17
|
Recent Mitigation Strategies in Engineered Health Care Materials Towards Antimicrobial Applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Fabrication and Characterization of Superhydrophobic Graphene/Titanium Dioxide Nanoparticles Composite. Polymers (Basel) 2021; 14:polym14010122. [PMID: 35012144 PMCID: PMC8747427 DOI: 10.3390/polym14010122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
Materials with superhydrophobic surfaces have received vast attention in various industries due to their valuable properties, such as their self-cleaning and antifouling effects. These promising superhydrophobic properties are taken into high priority, particularly for medical devices and applications. The development of an ideal superhydrophobic surface is a challenging task and is constantly progressing. Various strategies have been introduced; however, a minority of them are cost-effective. This work presents a facile fabrication of the superhydrophobic surface by using graphene and titanium dioxide (TiO2) nanoparticles. The graphene and TiO2 hybrid nanoparticles are dip-coated on a biodegradable thermoplastic poly(lactic acid) (PLA) substrate. The thermoplastic PLA is approved by the Food and Drug Administration (FDA), and is widely utilized in medical devices. The graphene/TiO2 coating is substantiated to transform the hydrophilic PLA film into superhydrophobic biomaterials that can help to reduce hazardous medical-device complications. The surface wettability of the graphene/TiO2 nanoparticle-coated PLA surface was evaluated by measuring the apparent water contact angle. The surface chemical composition and surface morphology were analyzed via Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The graphene/TiO2-coated PLA film achieved superhydrophobic properties by demonstrating a water contact angle greater than 150°. The water contact angle of the graphene/TiO2 coating increased along with the concentration of the nanoparticles and the ratio of TiO2 to graphene. Moreover, the graphene/TiO2 coating exhibited excellent durability, whereby the contact angle of the coated surface remained unchanged after water immersion for 24 h. The duration of the effectiveness of the superhydrophobic coating suggests its suitability for medical devices, for which a short duration of administration is involved. This study reports an easy-to-replicate and cost-effective method for fabricating superhydrophobic graphene/TiO2-coated surfaces, which additionally substantiates a potential solution for the manufacturing of biomaterials in the future.
Collapse
|
19
|
Allione M, Limongi T, Marini M, Torre B, Zhang P, Moretti M, Perozziello G, Candeloro P, Napione L, Pirri CF, Di Fabrizio E. Micro/Nanopatterned Superhydrophobic Surfaces Fabrication for Biomolecules and Biomaterials Manipulation and Analysis. MICROMACHINES 2021; 12:1501. [PMID: 34945349 PMCID: PMC8708205 DOI: 10.3390/mi12121501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 01/04/2023]
Abstract
Superhydrophobic surfaces display an extraordinary repulsion to water and water-based solutions. This effect emerges from the interplay of intrinsic hydrophobicity of the surface and its morphology. These surfaces have been established for a long time and have been studied for decades. The increasing interest in recent years has been focused towards applications in many different fields and, in particular, biomedical applications. In this paper, we review the progress achieved in the last years in the fabrication of regularly patterned superhydrophobic surfaces in many different materials and their exploitation for the manipulation and characterization of biomaterial, with particular emphasis on the issues affecting the yields of the fabrication processes and the quality of the manufactured devices.
Collapse
Affiliation(s)
- Marco Allione
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy;
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (M.M.); (B.T.); (L.N.); (E.D.F.)
| | - Tania Limongi
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (M.M.); (B.T.); (L.N.); (E.D.F.)
| | - Monica Marini
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (M.M.); (B.T.); (L.N.); (E.D.F.)
| | - Bruno Torre
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (M.M.); (B.T.); (L.N.); (E.D.F.)
| | - Peng Zhang
- Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (P.Z.); (M.M.)
| | - Manola Moretti
- Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (P.Z.); (M.M.)
| | - Gerardo Perozziello
- BioNEM Laboratory, Department of Experimental and Clinical Medicine, Campus S. Venuta, Magna Graecia University, Germaneto, Viale Europa, 88100 Catanzaro, Italy; (G.P.); (P.C.)
| | - Patrizio Candeloro
- BioNEM Laboratory, Department of Experimental and Clinical Medicine, Campus S. Venuta, Magna Graecia University, Germaneto, Viale Europa, 88100 Catanzaro, Italy; (G.P.); (P.C.)
| | - Lucia Napione
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (M.M.); (B.T.); (L.N.); (E.D.F.)
| | - Candido Fabrizio Pirri
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy;
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (M.M.); (B.T.); (L.N.); (E.D.F.)
| | - Enzo Di Fabrizio
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (M.M.); (B.T.); (L.N.); (E.D.F.)
| |
Collapse
|
20
|
Marini M, Legittimo F, Torre B, Allione M, Limongi T, Scaltrito L, Pirri CF, di Fabrizio E. DNA Studies: Latest Spectroscopic and Structural Approaches. MICROMACHINES 2021; 12:mi12091094. [PMID: 34577737 PMCID: PMC8465297 DOI: 10.3390/mi12091094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/28/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022]
Abstract
This review looks at the different approaches, techniques, and materials devoted to DNA studies. In the past few decades, DNA nanotechnology, micro-fabrication, imaging, and spectroscopies have been tailored and combined for a broad range of medical-oriented applications. The continuous advancements in miniaturization of the devices, as well as the continuous need to study biological material structures and interactions, down to single molecules, have increase the interdisciplinarity of emerging technologies. In the following paragraphs, we will focus on recent sensing approaches, with a particular effort attributed to cutting-edge techniques for structural and mechanical studies of nucleic acids.
Collapse
Affiliation(s)
- Monica Marini
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
- Correspondence: ; Tel.: +39-011-090-43-22
| | - Francesca Legittimo
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
| | - Bruno Torre
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
| | - Marco Allione
- Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Torino, Italy;
| | - Tania Limongi
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
| | - Luciano Scaltrito
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
| | - Candido Fabrizio Pirri
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
- Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Torino, Italy;
| | - Enzo di Fabrizio
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
| |
Collapse
|
21
|
Towards Biohybrid Lung: Induced Pluripotent Stem Cell Derived Endothelial Cells as Clinically Relevant Cell Source for Biologization. MICROMACHINES 2021; 12:mi12080981. [PMID: 34442603 PMCID: PMC8401467 DOI: 10.3390/mi12080981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022]
Abstract
In order to provide an alternative treatment option to lung transplantation for patients with end-stage lung disease, we aim for the development of an implantable biohybrid lung (BHL), based on hollow fiber membrane (HFM) technology used in extracorporeal membrane oxygenators. Complete hemocompatibility of all blood contacting surfaces is crucial for long-lasting BHL durability and can be achieved by their endothelialization. Autologous endothelial cells (ECs) would be the ideal cell source, but their limited proliferation potential excludes them for this purpose. As induced pluripotent stem cell-derived ECs enable the generation of a large number of ECs, we assessed and compared their capacity to form a viable and confluent monolayer on HFM, while indicating physiologic EC-specific anti-thrombogenic and anti-inflammatory properties. ECs were generated from three different human iPSC lines, and seeded onto fibronectin-coated poly-4-methyl-1-pentene (PMP) HFM. Following phenotypical characterization, ECs were analyzed for their thrombogenic and inflammatory behavior with or without TNFα induction, using FACS and qRT-PCR. Complementary, leukocyte- and platelet adhesion assays were carried out. The capacity of the iPSC-ECs to reendothelialize cell-free monolayer areas was assessed in a scratch assay. ECs sourced from umbilical cord blood (hCBECs) were used as control. iPSC-derived ECs formed confluent monolayers on the HFM and showed the typical EC-phenotype by expression of VE-cadherin and collagen-IV. A low protein and gene expression level of E-selectin and tissue factor was detected for all iPSC-ECs and the hCBECs, while a strong upregulation of these markers was noted upon stimulation with TNFα. This was in line with the physiological and strong induction of leukocyte adhesion detected after treatment with TNFα, iPSC-EC and hCBEC monolayers were capable of reducing thrombocyte adhesion and repopulating scratched areas. iPSCs offer the possibility to provide patient-specific ECs in abundant numbers needed to cover all blood contacting surfaces of the BHL with a viable, non-thrombogenic and non-inflammatory monolayer. iPSC-EC clones can differ in terms of their reendothelialization rate, and pro-inflammatory response. However, a less profound inflammatory response may even be advantageous for BHL application. With the proven ability of the seeded iPSC-ECs to reduce thrombocyte adhesion, we expect that thrombotic events that could lead to BHL occlusion can be avoided, and thus, justifies further studies on enabling BHL long-term application.
Collapse
|