1
|
Kittaka M, Mizuno N, Morino H, Yoshimoto T, Zhu T, Liu S, Wang Z, Mayahara K, Iio K, Kondo K, Kondo T, Hayashi T, Coghlan S, Teno Y, Doan AAP, Levitan M, Choi RB, Matsuda S, Ouhara K, Wan J, Cassidy AM, Pelletier S, Nampoothiri S, Urtizberea AJ, Robling AG, Ono M, Kawakami H, Reichenberger EJ, Ueki Y. Loss-of-function OGFRL1 variants identified in autosomal recessive cherubism families. JBMR Plus 2024; 8:ziae050. [PMID: 38699440 PMCID: PMC11062026 DOI: 10.1093/jbmrpl/ziae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/01/2024] [Accepted: 03/24/2024] [Indexed: 05/05/2024] Open
Abstract
Cherubism (OMIM 118400) is a rare craniofacial disorder in children characterized by destructive jawbone expansion due to the growth of inflammatory fibrous lesions. Our previous studies have shown that gain-of-function mutations in SH3 domain-binding protein 2 (SH3BP2) are responsible for cherubism and that a knock-in mouse model for cherubism recapitulates the features of cherubism, such as increased osteoclast formation and jawbone destruction. To date, SH3BP2 is the only gene identified to be responsible for cherubism. Since not all patients clinically diagnosed with cherubism had mutations in SH3BP2, we hypothesized that there may be novel cherubism genes and that these genes may play a role in jawbone homeostasis. Here, using whole exome sequencing, we identified homozygous loss-of-function variants in the opioid growth factor receptor like 1 (OGFRL1) gene in 2 independent autosomal recessive cherubism families from Syria and India. The newly identified pathogenic homozygous variants were not reported in any variant databases, suggesting that OGFRL1 is a novel gene responsible for cherubism. Single cell analysis of mouse jawbone tissue revealed that Ogfrl1 is highly expressed in myeloid lineage cells. We generated OGFRL1 knockout mice and mice carrying the Syrian frameshift mutation to understand the in vivo role of OGFRL1. However, neither mouse model recapitulated human cherubism or the phenotypes exhibited by SH3BP2 cherubism mice under physiological and periodontitis conditions. Unlike bone marrow-derived M-CSF-dependent macrophages (BMMs) carrying the SH3BP2 cherubism mutation, BMMs lacking OGFRL1 or carrying the Syrian mutation showed no difference in TNF-ɑ mRNA induction by LPS or TNF-ɑ compared to WT BMMs. Osteoclast formation induced by RANKL was also comparable. These results suggest that the loss-of-function effects of OGFRL1 in humans differ from those in mice and highlight the fact that mice are not always an ideal model for studying rare craniofacial bone disorders.
Collapse
Affiliation(s)
- Mizuho Kittaka
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, United States
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hiroyuki Morino
- Department of Medical Genetics, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Tetsuya Yoshimoto
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, United States
| | - Tianli Zhu
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, United States
| | - Sheng Liu
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Ziyi Wang
- Department of Molecular Biology and Biochemistry, Okayama University Medical School, Okayama 700-8558, Japan
| | - Kotoe Mayahara
- Department of Orthodontics, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Kyohei Iio
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kaori Kondo
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo 113-8677, Japan
| | - Toshio Kondo
- Department of Molecular Biology and Biochemistry, Okayama University Medical School, Okayama 700-8558, Japan
| | - Tatsuhide Hayashi
- Department of Dental Materials Science, School of Dentistry, Aichi Gakuin University, Aichi 464-8650, Japan
| | - Sarah Coghlan
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, United States
| | - Yayoi Teno
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, United States
| | - Andrew Anh Phung Doan
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, United States
| | - Marcus Levitan
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, United States
| | - Roy B Choi
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Shinji Matsuda
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Jun Wan
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Annelise M Cassidy
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Stephane Pelletier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, Kerala 682041, India
| | | | - Alexander G Robling
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Medical School, Okayama 700-8558, Japan
| | - Hideshi Kawakami
- Department of Molecular Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Ernst J Reichenberger
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, CT 06030, United States
| | - Yasuyoshi Ueki
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, United States
| |
Collapse
|
2
|
Srivastava T, Garola RE, Zhou J, Boinpelly VC, Rezaiekhaligh MH, Joshi T, Jiang Y, Ebadi D, Sharma S, Sethna C, Staggs VS, Sharma R, Gipson DS, Hao W, Wang Y, Mariani LH, Hodgin JB, Rottapel R, Yoshitaka T, Ueki Y, Sharma M. Scaffold protein SH3BP2 signalosome is pivotal for immune activation in nephrotic syndrome. JCI Insight 2024; 9:e170055. [PMID: 38127456 PMCID: PMC10967477 DOI: 10.1172/jci.insight.170055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
Despite clinical use of immunosuppressive agents, the immunopathogenesis of minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS) remains unclear. Src homology 3-binding protein 2 (SH3BP2), a scaffold protein, forms an immune signaling complex (signalosome) with 17 other proteins, including phospholipase Cγ2 (PLCγ2) and Rho-guanine nucleotide exchange factor VAV2 (VAV2). Bioinformatic analysis of human glomerular transcriptome (Nephrotic Syndrome Study Network cohort) revealed upregulated SH3BP2 in MCD and FSGS. The SH3BP2 signalosome score and downstream MyD88, TRIF, and NFATc1 were significantly upregulated in MCD and FSGS. Immune pathway activation scores for Toll-like receptors, cytokine-cytokine receptor, and NOD-like receptors were increased in FSGS. Lower SH3BP2 signalosome score was associated with MCD, higher estimated glomerular filtration rate, and remission. Further work using Sh3bp2KI/KI transgenic mice with a gain-in-function mutation showed ~6-fold and ~25-fold increases in albuminuria at 4 and 12 weeks, respectively. Decreased serum albumin and unchanged serum creatinine were observed at 12 weeks. Sh3bp2KI/KI kidney morphology appeared normal except for increased mesangial cellularity and patchy foot process fusion without electron-dense deposits. SH3BP2 co-immunoprecipitated with PLCγ2 and VAV2 in human podocytes, underscoring the importance of SH3BP2 in immune activation. SH3BP2 and its binding partners may determine the immune activation pathways resulting in podocyte injury leading to loss of the glomerular filtration barrier.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri at Kansas City, Kansas City, Missouri, USA
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, Missouri, USA
- Department of Oral and Craniofacial Sciences, University of Missouri at Kansas City School of Dentistry, Kansas City, Missouri, USA
| | - Robert E. Garola
- Department of Pathology and Laboratory Medicine, Children’s Mercy Hospital and University of Missouri at Kansas City, Kansas City, Missouri, USA
| | - Jianping Zhou
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, Missouri, USA
- Kansas City VA Medical Center, Kansas City, Missouri, USA
| | - Varun C. Boinpelly
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, Missouri, USA
- Kansas City VA Medical Center, Kansas City, Missouri, USA
| | - Mohammad H. Rezaiekhaligh
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri at Kansas City, Kansas City, Missouri, USA
| | - Trupti Joshi
- Department of Health Management and Informatics
- Department of Electrical Engineering and Computer Science
- Christopher S. Bond Life Sciences Center, and
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
| | - Yuexu Jiang
- Department of Electrical Engineering and Computer Science
- Christopher S. Bond Life Sciences Center, and
| | - Diba Ebadi
- The Ottawa Hospital Rehabilitation Centre, Ottawa, Ontario, Canada
| | - Siddarth Sharma
- Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Christine Sethna
- Cohen Children’s Medical Center of NY, New Hyde Park, New York, USA
| | - Vincent S. Staggs
- Biostatistics and Epidemiology Core, Children’s Mercy Research Institute and Department of Pediatrics, University of Missouri, Kansas City, Missouri, USA
| | - Ram Sharma
- Kansas City VA Medical Center, Kansas City, Missouri, USA
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Debbie S. Gipson
- Division of Nephrology, Department of Internal Medicine, School of Medicine, and
| | - Wei Hao
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Yujie Wang
- Division of Nephrology, Department of Internal Medicine, School of Medicine, and
| | - Laura H. Mariani
- Division of Nephrology, Department of Internal Medicine, School of Medicine, and
| | - Jeffrey B. Hodgin
- Division of Nephrology, Department of Internal Medicine, School of Medicine, and
| | - Robert Rottapel
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Teruhito Yoshitaka
- Department of Orthopedic Surgery, Hiroshima City Rehabilitation Hospital, Hiroshima, Hiroshima, Japan
| | - Yasuyoshi Ueki
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, Indiana, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mukut Sharma
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, Missouri, USA
- Kansas City VA Medical Center, Kansas City, Missouri, USA
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
3
|
Jiang H, Shen Z, Zhuang J, Lu C, Qu Y, Xu C, Yang S, Tian X. Understanding the podocyte immune responses in proteinuric kidney diseases: from pathogenesis to therapy. Front Immunol 2024; 14:1335936. [PMID: 38288116 PMCID: PMC10822972 DOI: 10.3389/fimmu.2023.1335936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
The glomerular filtration barrier, comprising the inner layer of capillary fenestrated endothelial cells, outermost podocytes, and the glomerular basement membrane between them, plays a pivotal role in kidney function. Podocytes, terminally differentiated epithelial cells, are challenging to regenerate once injured. They are essential for maintaining the integrity of the glomerular filtration barrier. Damage to podocytes, resulting from intrinsic or extrinsic factors, leads to proteinuria in the early stages and eventually progresses to chronic kidney disease (CKD). Immune-mediated podocyte injury is a primary pathogenic mechanism in proteinuric glomerular diseases, including minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, and lupus nephritis with podocyte involvement. An extensive body of evidence indicates that podocytes not only contribute significantly to the maintenance of the glomerular filtration barrier and serve as targets of immune responses but also exhibit immune cell-like characteristics, participating in both innate and adaptive immunity. They play a pivotal role in mediating glomerular injury and represent potential therapeutic targets for CKD. This review aims to systematically elucidate the mechanisms of podocyte immune injury in various podocyte lesions and provide an overview of recent advances in podocyte immunotherapy. It offers valuable insights for a deeper understanding of the role of podocytes in proteinuric glomerular diseases, and the identification of new therapeutic targets, and has significant implications for the future clinical diagnosis and treatment of podocyte-related disorders.
Collapse
Affiliation(s)
- Hong Jiang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhirang Shen
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jing Zhuang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chen Lu
- Division of Nephrology, Department of Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yue Qu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chengren Xu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shufen Yang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
4
|
Takezaki D, Morizane S, Ikeda K, Iseki M, Sakamoto Y, Kawakami Y, Hashiguchi T, Shirakata Y, Nishina S, Mukai T. Co-occurrence of non-alcoholic steatohepatitis exacerbates psoriasis associated with decreased adiponectin expression in a murine model. Front Immunol 2023; 14:1214623. [PMID: 37646025 PMCID: PMC10461570 DOI: 10.3389/fimmu.2023.1214623] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction Clinical studies have suggested a bidirectional association between non-alcoholic steatohepatitis (NASH) and psoriasis, affecting each other's development and severity. Here, we explored bidirectional causal linkages between NASH and psoriasis using a murine model. Methods NASH was induced in mice by streptozotocin injection at 2 days of age and by high-fat diet feeding (STAM™ model). Psoriasis was induced by topical application of imiquimod (IMQ) on the ear. The severities of liver damage and psoriatic skin changes were determined using histological analysis. Gene expression in the skin tissues was evaluated using quantitative PCR analysis. Serum cytokine levels were determined using enzyme-linked immunosorbent assay. To examine the innate immune responses of normal human epidermal keratinocytes (NHEKs), the cells were treated with interleukin (IL)-17A, tumor necrosis factor (TNF)-α, and AdipoRon, an adiponectin receptor agonist. Results and Discussion There were no differences in the degree of liver tissue damage (fat deposition, inflammation, and fibrosis) between NASH mice with and those without psoriasis. Conversely, the co-occurrence of NASH significantly augmented psoriatic skin changes, represented by epidermal hyperplasia, in psoriatic mice. Pro-inflammatory cytokines were expressed in the inflamed skin of psoriatic mice, and the expression of genes, especially Il23a, Il1b, Il36g, and Mip2, was significantly upregulated by the co-occurrence of NASH. The expression of keratinocyte activation marker genes Defb4b and Krt16 was also upregulated by the co-occurrence of NASH. The serum TNF-α and IL-17 levels were increased by the co-occurrence of NASH and psoriasis. The serum adiponectin levels decreased in NASH mice compared with that in non-NASH mice. In NHEK culture, TNF-α and IL-17A synergistically upregulated CXCL1, CXCL8, and IL1B expression. The upregulated pro-inflammatory gene expression was suppressed by AdipoRon treatment, reflecting the anti-inflammatory capacity of adiponectin. Conclusion The co-occurrence of NASH exacerbated psoriatic skin changes associated with increased serum inflammatory cytokine levels and decreased serum adiponectin levels. Combined with in vitro findings, increased inflammatory cytokine levels and decreased adiponectin levels likely promote innate immune responses in epidermal keratinocytes in psoriatic skin lesions. Overall, therapeutic intervention for co-occurring NASH is essential to achieve a favorable prognosis of psoriasis in clinical practice.
Collapse
Affiliation(s)
- Daiki Takezaki
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Okayama, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kenta Ikeda
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Dermatology, National Hospital Organization Iwakuni Clinical Center, Yamaguchi, Japan
| | - Masanori Iseki
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Okayama, Japan
| | - Yuma Sakamoto
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Okayama, Japan
| | - Yoshio Kawakami
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | - Sohji Nishina
- Department of Gastroenterology and Hepatology, Kawasaki Medical School, Okayama, Japan
| | - Tomoyuki Mukai
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Okayama, Japan
| |
Collapse
|
5
|
Mukai T, Akagi T, Asano SH, Tosa I, Ono M, Kittaka M, Ueki Y, Yahagi A, Iseki M, Oohashi T, Ishihara K, Morita Y. Imatinib has minimal effects on inflammatory and osteopenic phenotypes in a murine cherubism model. Oral Dis 2023; 29:1089-1101. [PMID: 34743383 PMCID: PMC9076755 DOI: 10.1111/odi.14073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Cherubism is a genetic disorder characterised by bilateral jawbone deformation. The associated jawbone lesions regress after puberty, whereas severe cases require surgical treatment. Although several drugs have been tested, fundamental treatment strategies for cherubism have not been established. The effectiveness of imatinib has recently been reported; however, its pharmaceutical mechanism remains unclear. In this study, we tested the effects of imatinib using a cherubism mouse model. METHODS We used Sh3bp2 P416R cherubism mutant mice, which exhibit systemic organ inflammation and osteopenia. The effects of imatinib were determined using primary bone marrow-derived macrophages. Imatinib was administered intraperitoneally to the mice, and serum tumour necrosis factor-α (TNFα), organ inflammation and bone properties were examined. RESULTS The cherubism mutant macrophages produced higher levels of TNFα in response to lipopolysaccharide compared to wild-type macrophages, and imatinib did not significantly suppress TNFα production. Although imatinib suppressed osteoclast formation in vitro, administering it in vivo did not suppress organ inflammation and osteopenia. CONCLUSION The in vivo administration of imatinib had a minimal therapeutic impact in cherubism mutant mice. To establish better pharmaceutical interventions, it is necessary to integrate new findings from murine models with clinical data from patients with a definitive diagnosis of cherubism.
Collapse
Affiliation(s)
- Tomoyuki Mukai
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
- Department of Rheumatology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Takahiko Akagi
- Department of Rheumatology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Sumie Hiramatsu Asano
- Department of Rheumatology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Ikue Tosa
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Okayama 700-8558, Japan
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Okayama 700-8558, Japan
| | - Mizuho Kittaka
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, 635 Barnhill Dr, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN 46202, USA
| | - Yasuyoshi Ueki
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, 635 Barnhill Dr, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN 46202, USA
| | - Ayano Yahagi
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Masanori Iseki
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Okayama 700-8558, Japan
| | - Katsuhiko Ishihara
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Yoshitaka Morita
- Department of Rheumatology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| |
Collapse
|
6
|
Matsumoto Y, Rottapel R. PARsylation-mediated ubiquitylation: lessons from rare hereditary disease Cherubism. Trends Mol Med 2023; 29:390-405. [PMID: 36948987 DOI: 10.1016/j.molmed.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 03/24/2023]
Abstract
Modification of proteins by ADP-ribose (PARsylation) is catalyzed by the poly(ADP-ribose) polymerase (PARP) family of enzymes exemplified by PARP1, which controls chromatin organization and DNA repair. Additionally, PARsylation induces ubiquitylation and proteasomal degradation of its substrates because PARsylation creates a recognition site for E3-ubiquitin ligase. The steady-state levels of the adaptor protein SH3-domain binding protein 2 (3BP2) is negatively regulated by tankyrase (PARP5), which coordinates ubiquitylation of 3BP2 by the E3-ligase ring finger protein 146 (RNF146). 3BP2 missense mutations uncouple 3BP2 from tankyrase-mediated negative regulation and cause Cherubism, an autosomal dominant autoinflammatory disorder associated with craniofacial dysmorphia. In this review, we summarize the diverse biological processes, including bone dynamics, metabolism, and Toll-like receptor (TLR) signaling controlled by tankyrase-mediated PARsylation of 3BP2, and highlight the therapeutic potential of this pathway.
Collapse
Affiliation(s)
- Yoshinori Matsumoto
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama 700-8558, Japan.
| | - Robert Rottapel
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Division of Rheumatology, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
| |
Collapse
|
7
|
Cong B, Liu X, Chen J, Li H, Fan X. Effect of microRNA-663b on migration, invasion and epithelial‑mesenchymal transition of oral squamous cell carcinoma cells. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2022; 40:386-393. [PMID: 38596953 PMCID: PMC9396422 DOI: 10.7518/hxkq.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/10/2022] [Indexed: 04/11/2024]
Abstract
OBJECTIVES To explore the effect of microRNA-663b (miR-6636) on migration, invasion and epithelial-mesenchymal transition (EMT) of oral squamous cell carcinoma cells (OSCC). METHODS Use R Studio of gene expression omnibus (GEO) database to analyze expressions of miR-663b in the OSCC and adjacent normal tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-663b in tissues and cells. The transfection efficiency of HN30 cells with miR-663b knockout plasmid was detected. Transwell assay was used to detect the effect of the migration and invasion ability. Bioinformatics method was used to predict the targeted mRNA that may bind to miR-663b and double luciferase assay was used to verify the binding. Western blot assay was used to detect the expression of EMT-related markers. RESULTS The expression of miR-663b was up-regulated in OSCC tissues and higher in HN30, CAL27 and SCC-9 cells than in HOEC cells (P<0.05). Knockout of miR-663b could inhibit migration and invasion of HN30 cells (P<0.05) and inhibit the occurrence of EMT. Bioinformatics prediction software predicts that SH3BP2 was the target gene of miR-663b, and patients with low SH3BP2 expression had a poor prognosis (P<0.05). MiR-663b could bind to SHBP2 (P<0.05). The expression of SH3BP2 was increased and the occurrence of EMT was inhibited in HN30 cells with miR-663b knocked out. CONCLUSIONS Knockout of miR-663b can inhibit the migration, invasion and EMT of OSCC by targeting SH3BP2.
Collapse
Affiliation(s)
- Biqiao Cong
- Dept.of Stomatology, Affiliated Hospital of Weifang Medical University, Weifang 261000, China
- School of Stomatology, Weifang Medical University, Weifang 261053, China
| | - Xiaoping Liu
- Dept.of Stomatology, Affiliated Hospital of Weifang Medical University, Weifang 261000, China
| | - Jiawen Chen
- Dept.of Stomatology, Affiliated Hospital of Weifang Medical University, Weifang 261000, China
| | - Hongli Li
- Medicine Research Center, Weifang Medical University, Weifang 261053, China
| | - Xin Fan
- Dept.of Stomatology, Affiliated Hospital of Weifang Medical University, Weifang 261000, China
- Medicine Research Center, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
8
|
Akagi T, Hiramatsu-Asano S, Ikeda K, Hirano H, Tsuji S, Yahagi A, Iseki M, Matsuyama M, Mak TW, Nakano K, Ishihara K, Morita Y, Mukai T. TRAPS mutations in Tnfrsf1a decrease the responsiveness to TNFα via reduced cell surface expression of TNFR1. Front Immunol 2022; 13:926175. [PMID: 35936010 PMCID: PMC9355097 DOI: 10.3389/fimmu.2022.926175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor necrosis factor (TNF) receptor-associated periodic syndrome (TRAPS) is an autoinflammatory periodic fever syndrome associated with heterozygous mutations in TNFRSF1A, which encodes TNF receptor type I (TNFR1). Although possible proinflammatory mechanisms have been proposed, most previous studies were performed using in vitro overexpression models, which could lead to undesirable inflammatory responses due to artificial overexpression. It is crucial to reproduce heterozygous mutations at physiological expression levels; however, such studies remain limited. In this study, we generated TRAPS mutant mice and analyzed their phenotypes. Three Tnfrsf1a mutant strains were generated by introducing T79M, G87V, or T90I mutation. T79M is a known mutation responsible for TRAPS, whereas G87V is a TRAPS mutation that we have reported, and T90I is a variant of unknown significance. Using these murine models, we investigated whether TRAPS mutations could affect the inflammatory responses in vivo and in vitro. We found that none of the mutant mice exhibited detectable inflammatory phenotypes under standard housing conditions for 1 year. Interestingly, TRAPS mutant (T79M and G87V) mice had reduced mortality rates after the administration of lipopolysaccharide (LPS) and D-galactosamine, which induce TNFα-dependent lethal hepatitis. Moreover, TRAPS mutations strongly suppressed the development of TNFα-mediated arthritis when crossed with human TNFα transgenic mice. In in vitro primary bone marrow-derived macrophage cultures, the T79M and G87V mutations attenuated the inflammatory responses to TNFα compared with the wild-type, whereas these mutations did not alter the responsiveness of these cells to LPS. The T90I mutant macrophages behaved similarly to wild type in response to LPS and TNFα. The TNFR1 levels were increased in whole-cell lysates of TRAPS mutant macrophages, whereas the cell surface expression of TNFR1 was significantly decreased in TRAPS mutant macrophages. Taken together, TRAPS mutations did not augment the inflammatory responses to TNFα and LPS; instead, they suppressed the response to TNFα via decreased cell surface expression of TNFR1. The stimulation of lymphotoxin-α, adenosine triphosphate, and norepinephrine in primary macrophages or various stimuli in murine splenocytes did not induce detectable inflammatory responses. In conclusion, TRAPS mutations suppressed responsiveness to TNFα, and TRAPS-associated inflammation is likely induced by unconfirmed disease-specific proinflammatory factors.
Collapse
Affiliation(s)
- Takahiko Akagi
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Japan
| | | | - Kenta Ikeda
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Japan
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
| | - Hiroyasu Hirano
- Department of General Internal Medicine 1, Kawasaki Medical School, Okayama, Japan
| | - Shoko Tsuji
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Japan
| | - Ayano Yahagi
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
| | - Masanori Iseki
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama, Japan
| | - Tak W. Mak
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Kazuhisa Nakano
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Japan
| | - Katsuhiko Ishihara
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
| | - Yoshitaka Morita
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Japan
| | - Tomoyuki Mukai
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Japan
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
- *Correspondence: Tomoyuki Mukai, ;
| |
Collapse
|