1
|
Yang W, Zhang L, Yang Y, Xiang H, Yang P. Plant secondary metabolites-mediated plant defense against bacteria and fungi pathogens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109224. [PMID: 39437667 DOI: 10.1016/j.plaphy.2024.109224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/30/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Plant diseases caused by pathogenic bacteria and fungi are major threats to both wild plants and crops. To counteract these threats, plants have evolved various defense mechanisms, including the production of plant secondary metabolites (PSMs). These compounds, such as terpenoids, phenolics, alkaloids, and glucosinolates, offer a versatile, efficient, and cost-effective means of pathogen resistance. The traditional pathogen management methods relying on synthetic microbicides are often environment unfriendly. In contrast, PSMs provide promising alternative way due to their high efficiency and environmental benefits. This article reviews the categories, biosynthetic pathways, mechanisms of actions, and the commercialization of the PSMs to enhance our understanding of their pathogen resistance capabilities. The goal is to develop sustainable disease management strategies using PSM-based bactericides and fungicides.
Collapse
Affiliation(s)
- Wenjuan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Haibo Xiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
2
|
Zambounis A, Maniatis EI, Mincuzzi A, Gray N, Hossain M, Tsitsigiannis DI, Paplomatas E, Ippolito A, Schena L, Hane JK. Highly Repetitive Genome of Coniella granati (syn. Pilidiella granati), the Causal Agent of Pomegranate Fruit Rot, Encodes a Minimalistic Proteome with a Streamlined Arsenal of Effector Proteins. Int J Mol Sci 2024; 25:9997. [PMID: 39337484 PMCID: PMC11432717 DOI: 10.3390/ijms25189997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
This study describes the first genome sequence and analysis of Coniella granati, a fungal pathogen with a broad host range, which is responsible for postharvest crown rot, shoot blight, and canker diseases in pomegranates. C. granati is a geographically widespread pathogen which has been reported across Europe, Asia, the Americas, and Africa. Our analysis revealed a 46.8 Mb genome with features characteristic of hemibiotrophic fungi. Approximately one third of its genome was compartmentalised within 'AT-rich' regions exhibiting a low GC content (30 to 45%). These regions primarily comprised transposable elements that are repeated at a high frequency and interspersed throughout the genome. Transcriptome-supported gene annotation of the C. granati genome revealed a streamlined proteome, mirroring similar observations in other pathogens with a latent phase. The genome encoded a relatively compact set of 9568 protein-coding genes with a remarkable 95% having assigned functional annotations. Despite this streamlined nature, a set of 40 cysteine-rich candidate secreted effector-like proteins (CSEPs) was predicted as well as a gene cluster involved in the synthesis of a pomegranate-associated toxin. These potential virulence factors were predominantly located near repeat-rich and AT-rich regions, suggesting that the pathogen evades host defences through Repeat-Induced Point mutation (RIP)-mediated pseudogenisation. Furthermore, 23 of these CSEPs exhibited homology to known effector and pathogenicity genes found in other hemibiotrophic pathogens. The study establishes a foundational resource for the study of the genetic makeup of C. granati, paving the way for future research on its pathogenicity mechanisms and the development of targeted control strategies to safeguard pomegranate production.
Collapse
Affiliation(s)
- Antonios Zambounis
- Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece
| | - Elisseos I Maniatis
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Annamaria Mincuzzi
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Naomi Gray
- Centre for Crop and Disease Management, Department of Molecular and Life Sciences, Curtin University, Bentley, Perth 6102, Australia
| | - Mohitul Hossain
- Centre for Crop and Disease Management, Department of Molecular and Life Sciences, Curtin University, Bentley, Perth 6102, Australia
| | - Dimitrios I Tsitsigiannis
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Epaminondas Paplomatas
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Antonio Ippolito
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Leonardo Schena
- Department of Agriculture, Mediterranea University of Reggio Calabria, 89124 Reggio Calabria, Italy
| | - James K Hane
- Centre for Crop and Disease Management, Department of Molecular and Life Sciences, Curtin University, Bentley, Perth 6102, Australia
| |
Collapse
|
3
|
Farhat G, Cheng L, Al-Dujaili EAS, Zubko M. Antimicrobial Potential of Pomegranate and Lemon Extracts Alone or in Combination with Antibiotics against Pathogens. Int J Mol Sci 2024; 25:6943. [PMID: 39000051 PMCID: PMC11241309 DOI: 10.3390/ijms25136943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Amidst the growing concern of antimicrobial resistance as a significant health challenge, research has emerged, focusing on elucidating the antimicrobial potential of polyphenol-rich extracts to reduce reliance on antibiotics. Previous studies explored the antifungal effects of extracts as potential alternatives to conventional therapeutic strategies. We aimed to assess the antibacterial and antifungal effects of standardised pomegranate extract (PE) and lemon extract (LE) using a range of Gram-negative and Gram-positive bacteria and two yeast species. Additionally, we assessed the antimicrobial activities of common antibiotics (Ciprofloxacin, Imipenem, Gentamicin, and Ceftazidime), either alone or in combination with extracts, against Staphylococcus aureus and Escherichia coli. PE displayed substantial antibacterial (primarily bactericidal) and antifungal effects against most pathogens, while LE exhibited antibacterial (mostly bacteriostatic) and antifungal properties to a lesser extent. When compared with antibiotics, PE showed a greater zone of inhibition (ZOI) than Ciprofloxacin and Ceftazidime (p < 0.01) and comparable ZOI to Gentamicin (p = 0.4) against Staphylococcus aureus. However, combinations of either PE or LE with antibiotics exhibited either neutral or antagonistic effects on antibiotic activity against Staphylococcus aureus and Escherichia coli. These findings contribute to the existing evidence regarding the antimicrobial effects of PE and LE. They add to the body of research suggesting that polyphenols exert both antagonistic and synergistic effects in antimicrobial activity. This highlights the importance of identifying optimal polyphenol concentrations that can enhance antibiotic activity and reduce antibiotic resistance. Further in vivo studies, starting with animal trials and progressing to human trials, may potentially lead to recommendation of these extracts for therapeutic use.
Collapse
Affiliation(s)
- Grace Farhat
- Faculty of Health and Education, Manchester Metropolitan University, Manchester M15 6BG, UK
| | - Lewis Cheng
- Faculty of Health and Education, Manchester Metropolitan University, Manchester M15 6BG, UK
| | - Emad A S Al-Dujaili
- Centre for Cardiovascular Science, Faculty of Medicine and Veterinary Medicine, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Mikhajlo Zubko
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M15 6BH, UK
| |
Collapse
|
4
|
Tsafouros A, Tsalgatidou PC, Boutsika A, Delis C, Mincuzzi A, Ippolito A, Zambounis A. Deciphering the Interaction between Coniella granati and Pomegranate Fruit Employing Transcriptomics. Life (Basel) 2024; 14:752. [PMID: 38929736 PMCID: PMC11205003 DOI: 10.3390/life14060752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Pomegranate fruit dry rot is caused by Coniella granati, also referred as Pilidiella granati. In order to decipher the induced responses of mature pomegranates inoculated with the pathogen, an RNA-seq analysis was employed. A high number of differentially expressed genes (DEGs) were observed through a three-time series inoculation period. The transcriptional reprogramming was time-dependent, whereas the majority of DEGs were suppressed and the expression patterns of specific genes may facilitate the pathogen colonization at 1 day after inoculation (dai). In contrast, at 2 dai and mainly thereafter at 3 dai, defense responses were partially triggered in delay. Particularly, DEGs were mainly upregulated at the latest time point. Among them, specific DEGs involved in cell wall modification and degradation processes, pathogen recognition and signaling transduction cascades, activation of specific defense and metabolite biosynthesis-related genes, as well in induction of particular families of transcriptional factors, may constitute crucial components of a defense recruiting strategy employed by pomegranate fruit upon C. granati challenge. Overall, our findings provide novel insights to the compatible interaction of pomegranates-C. granati and lay the foundations for establishing integrated pest management (IPM) strategies involving advanced approaches, such as gene editing or molecular breeding programs for disease resistance, according to European Union (EU) goals.
Collapse
Affiliation(s)
- Athanasios Tsafouros
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
| | - Polina C. Tsalgatidou
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
- Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece
| | - Anastasia Boutsika
- Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece
| | - Costas Delis
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
| | - Annamaria Mincuzzi
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Antonio Ippolito
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Antonios Zambounis
- Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece
| |
Collapse
|
5
|
Huang S, Wang Y, Zhu Q, Guo H, Hong Z, Zhong S. Network Pharmacology and Intestinal Microbiota Analysis Revealing the Mechanism of Punicalagin Improving Bacterial Enteritis. Curr Comput Aided Drug Des 2024; 20:104-120. [PMID: 37246319 PMCID: PMC10641859 DOI: 10.2174/1573409919666230526165501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/07/2023] [Accepted: 04/12/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND The Chinese medicine punicalagin (Pun), the most important active ingredient in pomegranate peel, has significant bacteriostatic and anti-inflammatory properties. The potential mechanisms of Pun for bacterial enteritis, however, are unknown. OBJECTIVE The goal of our research is to investigate the mechanism of Pun in the treatment of bacterial enteritis using computer-aided drug technology, as well as to investigate the intervention effect of Pun on mice with bacterial enteritis using intestinal flora sequencing. METHODS The targets of Pun and Bacterial enteritis were obtained by using the specific database, and cross-targets were screened among these targets, followed by PPI and enrichment analysis of the targets. Furthermore, the degree of binding between Pun and key targets was predicted through molecular docking. After successfully establishing the bacterial enteritis model in vivo, mice were randomly assigned to groups. They were treated for 7 days, the symptoms were observed daily, and the daily DAI and body weight change rate were calculated. Following administration, the intestinal tissue was removed, and the contents were separated. The tight junction protein expression was detected in the small intestine by the immunohistochemical method; ELISA and Western Blot (WB) were performed to detect the expressions of tumor necrosis factor-α (TNF-α) and interleukin- 6 (IL-6) in the serum and intestinal wall of mice. The 16S rRNA sequence was used to determine the composition and diversity of the intestinal flora of mice. RESULTS In total, 130 intersection targets of Pun and disease were screened by network pharmacology. The enrichment analysis showed cross genes were closely related and enriched in the cancer regulation and the TNF signal pathway. The active components of Pun could specifically bind to the core targets TNF, IL-6, etc., determined from molecular docking results. In vivo experiment results showed that the symptoms in the PUN group mice were alleviated, and the expression levels of TNF-α and IL-6 were significantly reduced. A Pun can cause substantial changes in the intestinal flora of mice in terms of structure and function. CONCLUSION Pun plays a multi-target role in alleviating bacterial enteritis by regulating intestinal flora.
Collapse
Affiliation(s)
- Shuyun Huang
- Tissue and Embryo Department, Wannan Medical College, Wuhu, 241002, China
| | - Ying Wang
- Tissue and Embryo Department, Wannan Medical College, Wuhu, 241002, China
| | - Qingsong Zhu
- Computer and Information Department, Hohai University, Nanjing, 210024, China
| | - Hongmin Guo
- Tissue and Embryo Department, Wannan Medical College, Wuhu, 241002, China
| | - Zongyuan Hong
- Tissue and Embryo Department, Wannan Medical College, Wuhu, 241002, China
| | - Shuzhi Zhong
- Tissue and Embryo Department, Wannan Medical College, Wuhu, 241002, China
| |
Collapse
|
6
|
Ma S, Weng M, Yang T, Ge L, Yang K. Triterpenes and Pheophorbides from Camellia ptilosperma and Their Cytotoxicity, Photocytotoxicity, and Photodynamic Antibacterial Activity. Molecules 2023; 28:7058. [PMID: 37894536 PMCID: PMC10609551 DOI: 10.3390/molecules28207058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Phytochemical investigation of the leaves of Camellia ptilosperma S. Y. Liang et Q. D. Chen led to the isolation of ten undescribed compounds, including six new triterpenes (1-6) and four new pheophorbide-related compounds (7-10). Meanwhile, the cytotoxic activity of the six triterpenes against six cancer cell lines was evaluated by MTT assay. Compound 2 showed potent cytotoxicity toward HepG2 cells with an IC50 value of 2.57 μM. Compounds 4 and 5 exhibited cytotoxicity against MDA-MB231 cells, with IC50 values of 11.31 and 5.52 μM, respectively. Additionally, the cytotoxicity of four new pheophorbides against these cancer cells was evaluated both in the presence and absence of light treatment. Compound 7 exhibited exceptional photocytotoxicity against Hela, MCF-7, and A549 cells, with IC50 values of 0.43 μM, 0.28 μM, and 0.92 μM, respectively. Compound 10 demonstrated significant photodynamic cytotoxic activity against BEL-7402 and HepG2 cells with IC50 values of 0.77 μM and 0.33 μM, respectively. The photodynamic antibacterial activity of 7-10 was also tested for S. aureus, E. coli, K. pneumoniae, and P. aeruginosa under direct illumination. Compounds 8 and 10 exhibited sensitivity to E. coli and demonstrated a photodynamic antibacterial effect, with a MIC value of 0.625 μM.
Collapse
Affiliation(s)
- Siyuan Ma
- School of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, China;
| | - Mengling Weng
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture & Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530004, China
| | - Ting Yang
- Guangxi Fangcheng Golden Camellia National Nature Reserve Management Center, Fangchenggang 538021, China
| | - Li Ge
- Medical College, Guangxi University, Nanning 530004, China
| | - Kedi Yang
- School of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, China;
- Medical College, Guangxi University, Nanning 530004, China
| |
Collapse
|
7
|
Li S, Lv Y, Yang Q, Tang J, Huang Y, Zhao H, Zhao F. Quality analysis and geographical origin identification of Rosa roxburghii Tratt from three regions based on Fourier transform infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122689. [PMID: 37043835 DOI: 10.1016/j.saa.2023.122689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/24/2023] [Accepted: 03/28/2023] [Indexed: 05/14/2023]
Abstract
The study aimed to provide new information of Rosa roxburghii Tratt (RRT) for the production of functional foods and distinguish the geographical origins of RRT. The nutritional components of RRT from three regions in China, such as vitamin C, polysaccharides, total flavonoids, and total phenolics, and their antioxidant activities were analyzed by one-way ANOVA. The results of Fourier transform infrared spectroscopy (FT-IR) combined with principal component analysis (PCA), stepwise linear discriminant analysis (SLDA), k-nearest neighbor (k-NN), and support vector machine (SVM) were used to establish discriminant models to identify the geographical origin of RRT. The results of one-way ANOVA showed that the contents of some nutrients and antioxidant activity were significantly different among RRT from different regions and their FT-IR spectra also showed significant differences. The characteristic fingerprint bands of FT-IR (1679-1618 cm-1and 1520-900 cm-1) closely related to the geographical origins of RRT were screened out. Based on SLDA, a discriminant model was established to realize the classification and identification of RRT from different regions and the correct discrimination rate of the testing sample set obtained with the established model reached 100 %. Geographical factors caused the obvious differences in nutritional components and antioxidant activity in RRT. The characteristic fingerprint bands of RRT obtained with FT-IR could be used to identify the geographical origins of RRT more quickly and accurately.
Collapse
Affiliation(s)
- Shuqin Li
- College of Food Science and Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, China.
| | - Yuemeng Lv
- College of Food Science and Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, China.
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, China.
| | - Juan Tang
- College of Food Science and Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, China.
| | - Yue Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Haiyan Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, China.
| | - Fangyuan Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China.
| |
Collapse
|
8
|
Mincuzzi A, Picciotti U, Sanzani SM, Garganese F, Palou L, Addante R, Ragni M, Ippolito A. Postharvest Diseases of Pomegranate: Alternative Control Means and a Spiderweb Effect. J Fungi (Basel) 2023; 9:808. [PMID: 37623578 PMCID: PMC10456121 DOI: 10.3390/jof9080808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
The pomegranate is a fruit known since ancient times for its beneficial properties. It has recently aroused great interest in the industry and among consumers, leading to a significant increase in demand. Consequently, its cultivation has been boosted all over the world. The pomegranate crop suffers considerable yield losses, especially at the postharvest stage, because it is a "minor crop" with few permitted control means. To control latent (Alternaria spp., Botrytis spp., Coniella spp., Colletotrichum spp., and Cytospora spp.) and wound (Aspergillus spp., Penicillium spp., and Talaromyces spp.) fungal pathogens, different alternative compounds, previously evaluated in vitro, were tested in the field on pomegranate cv. Wonderful. A chitosan solution, a plant protein hydrolysate, and a red seaweed extract were compared with a chemical control treatment, all as preharvest (field application) and postharvest treatments and their combinations. At the end of the storage period, the incidence of stamen infections and external and internal rots, and the severity of internal decay were evaluated. Obtained data revealed that pre- and postharvest application of all substances reduced the epiphytic population on stamens. Preharvest applications of seaweed extract and plant hydrolysate were the most effective treatments to reduce the severity of internal pomegranate decays. Furthermore, the influence of spider (Cheiracanthium mildei) cocoons on the fruit calyx as a possible barrier against postharvest fungal pathogens was assessed in a 'Mollar de Elche' pomegranate organic orchard. Compared to no-cocoon fruit (control), the incidence of infected stamens and internal molds in those with spiderwebs was reduced by about 30%, and the mean severity of internal rots was halved. Spiderwebs analyzed via Scanning Electron Microscopy (SEM) disclosed a layered, unordered structure that did not allow for the passage of fungal spores due to its mean mesh size (1 to 20 µm ca). The aims of this research were (i) to evaluate alternative compounds useful to control postharvest pomegranate decays and (ii) to evaluate the effectiveness of spiders in reducing postharvest fungal infections by analyzing related mechanisms of action. Alternative control means proposed in the present work and calyx spider colonization may be helpful to reduce postharvest pomegranate diseases, yield losses, and waste production in an integrated control strategy, satisfying organic agriculture and the planned goals of Zero Hunger Challenge launched by the United Nations.
Collapse
Affiliation(s)
- Annamaria Mincuzzi
- Department of Soil, Plant, and Food Sciences, University of Bari Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (U.P.); (S.M.S.); (F.G.); (R.A.); (M.R.); (A.I.)
| | - Ugo Picciotti
- Department of Soil, Plant, and Food Sciences, University of Bari Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (U.P.); (S.M.S.); (F.G.); (R.A.); (M.R.); (A.I.)
- Department of Marine Science and Applied Biology, University of Alicante, 03690 Alicante, Spain
| | - Simona Marianna Sanzani
- Department of Soil, Plant, and Food Sciences, University of Bari Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (U.P.); (S.M.S.); (F.G.); (R.A.); (M.R.); (A.I.)
| | - Francesca Garganese
- Department of Soil, Plant, and Food Sciences, University of Bari Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (U.P.); (S.M.S.); (F.G.); (R.A.); (M.R.); (A.I.)
| | - Lluís Palou
- Pathology Laboratory, Postharvest Technology Center (CTP), Valencian Institute of Agrarian Research (IVIA), CV-315, Km 10.7, Montcada, 46113 Valencia, Spain;
| | - Rocco Addante
- Department of Soil, Plant, and Food Sciences, University of Bari Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (U.P.); (S.M.S.); (F.G.); (R.A.); (M.R.); (A.I.)
| | - Marco Ragni
- Department of Soil, Plant, and Food Sciences, University of Bari Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (U.P.); (S.M.S.); (F.G.); (R.A.); (M.R.); (A.I.)
| | - Antonio Ippolito
- Department of Soil, Plant, and Food Sciences, University of Bari Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (U.P.); (S.M.S.); (F.G.); (R.A.); (M.R.); (A.I.)
| |
Collapse
|
9
|
Lombardi A, Campo M, Vignolini P, Papalini M, Pizzetti M, Bernini R. Phenolic-Rich Extracts from Circular Economy: Chemical Profile and Activity against Filamentous Fungi and Dermatophytes. Molecules 2023; 28:molecules28114374. [PMID: 37298850 DOI: 10.3390/molecules28114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Fungal infections represent a relevant issue in agri-food and biomedical fields because they could compromise quality of food and humans' health. Natural extracts represent a safe alternative to synthetic fungicides and in the green chemistry and circular economy scenario, agro-industrial wastes and by-products offer an eco-friendly source of bioactive natural compounds. In this paper, phenolic-rich extracts from Olea europaea L. de-oiled pomace, Castanea sativa Mill. wood, Punica granatum L. peel, and Vitis vinifera L. pomace and seeds were characterized by HPLC-MS-DAD analysis. Finally, these extracts were tested as antimicrobial agents against pathogenic filamentous fungi and dermatophytes such as Aspergillus brasiliensis, Alternaria sp., Rhizopus stolonifer, and Trichophyton interdigitale. The experimental results evidenced that all extracts exhibited a significant growth inhibition for Trichophyton interdigitale. Punica granatum L., Castanea sativa Mill., and Vitis vinifera L. extracts showed a high activity against Alternaria sp. and Rhizopus stolonifer. These data are promising for the potential applications of some of these extracts as antifungal agents in the food and biomedical fields.
Collapse
Affiliation(s)
- Andrea Lombardi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Margherita Campo
- Phytolab, Department of Statistics, Informatics, Applications "G. Parenti", DiSIA, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Pamela Vignolini
- Phytolab, Department of Statistics, Informatics, Applications "G. Parenti", DiSIA, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Marco Papalini
- Bioricerche S.r.l., Loc. Ferro di Cavallo, 58034 Castell'Azzara, Italy
| | - Mirco Pizzetti
- Bioricerche S.r.l., Loc. Ferro di Cavallo, 58034 Castell'Azzara, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
10
|
Valorization of Punica granatum L. Leaves Extracts as a Source of Bioactive Molecules. Pharmaceuticals (Basel) 2023; 16:ph16030342. [PMID: 36986442 PMCID: PMC10052729 DOI: 10.3390/ph16030342] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Due to a lack of innovative valorization strategies, pomegranate processing generates a significant amount of residues with a negative environmental footprint. These by-products are a rich source of bioactive compounds with functional and medicinal benefits. This study reports the valorization of pomegranate leaves as a source of bioactive ingredients using maceration, ultrasound, and microwave-assisted extraction techniques. The phenolic composition of the leaf extracts was analyzed using an HPLC-DAD-ESI/MSn system. The extracts’ antioxidant, antimicrobial, cytotoxic, anti-inflammatory, and skin-beneficial properties were determined using validated in vitro methodologies. The results showed that gallic acid, (-)-epicatechin, and granatin B were the most abundant compounds in the three hydroethanolic extracts (between 0.95 and 1.45, 0.7 and 2.4, and 0.133 and 3.0 mg/g, respectively). The leaf extracts revealed broad-spectrum antimicrobial effects against clinical and food pathogens. They also presented antioxidant potential and cytotoxic effects against all tested cancer cell lines. In addition, tyrosinase activity was also verified. The tested concentrations (50–400 µg/mL) ensured a cellular viability higher than 70% in both keratinocyte and fibroblast skin cell lines. The obtained results indicate that the pomegranate leaves could be used as a low-cost source of value-added functional ingredients for potential nutraceutical and cosmeceutical applications.
Collapse
|
11
|
Bragard C, Baptista P, Chatzivassiliou E, Di Serio F, Gonthier P, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Reignault PL, Stefani E, Thulke H, Van der Werf W, Civera AV, Yuen J, Zappalà L, Migheli Q, Vloutoglou I, Maiorano A, Streissl F, Reignault PL. Pest categorisation of Coniella granati. EFSA J 2023; 21:e07848. [PMID: 36866193 PMCID: PMC9972552 DOI: 10.2903/j.efsa.2023.7848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
The EFSA Plant Health Panel performed a pest categorisation of Coniella granati, a clearly defined fungus of the Order Diaporthales and the family Schizoparmaceae, described for the first time in 1876 as Phoma granatii and later named as Pilidiella granati. The pathogen mainly affects Punica granatum (pomegranate) and Rosa spp. (rose), causing fruit rot, shoot blight and cankers on crown and branches. The pathogen is present in North America, South America, as well as in Asia, Africa, Oceania and Eastern Europe and has also been reported in the EU (Greece, Hungary, Italy and Spain), where it is widespread in the major pomegranate growing areas. Coniella granati is not included in Commission Implementing Regulation (EU) 2019/2072 and there are no interceptions in the EU. This pest categorisation focused on those hosts for which the pathogen was detected and formally identified in natural conditions. Plants for planting, fresh fruits and as well as soil and other plant growing media are the main pathways for the further entry of the pathogen into the EU. Host availability and climate suitability factors occurring in parts of the EU are favourable for the further establishment of the pathogen. In the area of its present distribution, including Italy and Spain, the pathogen has a direct impact in pomegranate orchards as well as during post-harvest storage. Phytosanitary measures are available to prevent the further introduction and spread of the pathogen into the EU. Coniella granati does not satisfy the criteria that are within the remit of EFSA to assess for this species to be regarded as potential Union quarantine pest as it is present in several EU MSs.
Collapse
|
12
|
Aleksandrova S, Alexova R, Dragomanova S, Kalfin R, Nicoletti F, Fagone P, Petralia MC, Mangano K, Tancheva L. Preventive and Therapeutic Effects of Punica granatum L. Polyphenols in Neurological Conditions. Int J Mol Sci 2023; 24:ijms24031856. [PMID: 36768185 PMCID: PMC9916020 DOI: 10.3390/ijms24031856] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Pomegranate (Punica granatum L.) is a polyphenol-rich food and medicinal plant containing flavonols, anthocyanins, and tannins. Ellagitannins (ETs) are the most abundant polyphenols in pomegranate. A growing body of research shows that polyphenol-rich pomegranate extracts and their metabolites target multiple types of brain cell and support their redox balance, proliferation and survival, as well as cell signaling. Independent studies have demonstrated that the significant neuroprotective effects of ETs are mediated by their antioxidant and anti-inflammatory effects, their chelating properties, by their ability to activate various signaling pathways, as well as the ability to influence mitochondrial damage, thus regulating autophagy, apoptosis and neurotransmitter signaling. The multitude of in vitro and in vivo studies summarized in the present review suggest that pomegranate polyphenols act on both neuronal and glial cells directly, and also affect blood-brain barrier function, restoring redox balance in the blood and brain and increasing blood flow to the brain.
Collapse
Affiliation(s)
- Simona Aleksandrova
- Department of Biological Activity of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ralitza Alexova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University—Sofia, 2 Zdrave St., 1431 Sofia, Bulgaria
| | - Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University, 9002 Varna, Bulgaria
| | - Reni Kalfin
- Department of Biological Activity of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Department of Health Care, South-West University “Neofit Rilski”, Ivan Mihailov St. 66, 2700 Blagoevgrad, Bulgaria
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
- Correspondence:
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Maria Cristina Petralia
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Lyubka Tancheva
- Department of Biological Activity of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
13
|
Kondaka K, Gabriel I. Targeting DNA Topoisomerase II in Antifungal Chemotherapy. Molecules 2022; 27:molecules27227768. [PMID: 36431868 PMCID: PMC9698242 DOI: 10.3390/molecules27227768] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Topoisomerase inhibitors have been in use clinically for the treatment of several diseases for decades. Although those enzymes are significant molecular targets in antibacterial and anticancer chemotherapy very little is known about the possibilities to target fungal topoisomerase II (topo II). Raising concern for the fungal infections, lack of effective drugs and a phenomenon of multidrug resistance underlie a strong need to expand the range of therapeutic options. In this review paper, we discussed the usefulness of fungal topo II as a molecular target for new drug discovery. On the basis of previously published data, we described structural and biochemical differences between fungal and human enzymes as well as a molecular basis of differential sensitivity to known anticancer drugs targeting the latter. This review focuses especially on highlighting the differences that may underlie the selectivity of action of new inhibitors. Distinct sites within fungal topo II in comparison with human counterparts are observed and should be further studied to understand the significance of those sites and their possible usage in design of new drugs.
Collapse
Affiliation(s)
| | - Iwona Gabriel
- Correspondence: ; Tel.: +48-58-348-6078; Fax: +48-58-347-1144
| |
Collapse
|
14
|
Colombari B, Tagliazucchi D, Odorici A, Pericolini E, Foltran I, Pinetti D, Meto A, Peppoloni S, Blasi E. Pomegranate Extract Affects Fungal Biofilm Production: Consumption of Phenolic Compounds and Alteration of Fungal Autoinducers Release. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14146. [PMID: 36361021 PMCID: PMC9657062 DOI: 10.3390/ijerph192114146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Candida albicans expresses numerous virulence factors that contribute to pathogenesis, including its dimorphic transition and even biofilm formation, through the release of specific quorum sensing molecules, such as the autoinducers (AI) tyrosol and farnesol. In particular, once organized as biofilm, Candida cells can elude conventional antifungal therapies and the host's immune defenses as well. Accordingly, biofilm-associated infections become a major clinical challenge underlining the need of innovative antimicrobial approaches. The aim of this in vitro study was to assess the effects of pomegranate peel extract (PomeGr) on C. albicans growth and biofilm formation; in addition, the release of tyrosol and farnesol was investigated. The phenolic profile of PomeGr was assessed by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) analysis before and after exposure to C. albicans. Here, we showed that fungal growth, biofilm formation and AI release were altered by PomeGr treatment. Moreover, the phenolic content of PomeGr was substantially hampered upon exposure to fungal cells; particularly pedunculagin, punicalin, punicalagin, granatin, di-(HHDP-galloyl-hexoside)-pentoside and their isomers as well as ellagic acid-hexoside appeared highly consumed, suggesting their role as bioactive molecules against Candida. Overall, these new insights on the anti-Candida properties of PomeGr and its potential mechanisms of action may represent a relevant step in the design of novel therapeutic approaches against fungal infections.
Collapse
Affiliation(s)
- Bruna Colombari
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Davide Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2—Pad. Besta, 42100 Reggio Emilia, Italy
| | - Alessandra Odorici
- Laboratory of Microbiology and Virology, School of Doctorate in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Eva Pericolini
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Ismaela Foltran
- Incos-Cosmeceutica Industriale, Funo di Argelato, 40050 Bologna, Italy
| | - Diego Pinetti
- Centro Interdipartimentale Grandi Strumenti (C.I.G.S), University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Aida Meto
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Department of Dentistry, Faculty of Dental Sciences, University of Aldent, 1007 Tirana, Albania
| | - Samuele Peppoloni
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Elisabetta Blasi
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| |
Collapse
|
15
|
Sannomiya M, Rodrigues CM, Oliveira GCA, Carvalho JCS, da Costa LS, Spadari CDC, Ferreira MJP, Vilegas W, Ishida K. Galloylquinic acid derivatives from Byrsonima fagifolia leaf extract and potential antifungal activity. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115534. [PMID: 35842178 DOI: 10.1016/j.jep.2022.115534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Byrsonima fagifolia Niedenzu (Malpighiaceae) and other Byrsonima species are popularly employed in Brazilian traditional medicine in the form of preparations as cicatrizing, anti-inflammatory, and antimicrobial. AIM OF THE STUDY To characterize the phytochemical profile of the hydromethanolic extract obtained from B. fagifolia leaves (BF extract) and to evaluate the toxicity and the antifungal activity. MATERIALS AND METHODS The compounds from BF extract were isolated by HPLC and the structures were elucidated based on extensive analyses of 1D and 2D NMR spectra (HMQC, HMBC and COSY) data. The antifungal effect was determined by the broth microdilution method and the toxicity was evaluated on erythrocytes from sheep's blood and Galleria mellonella larvae. RESULTS Phytochemical investigation of the BF extract led to the isolation and characterization of pyrogallol, n-butyl gallate, 3,4-di-O-galloylquinic acid, 3,5-di-O-galloylquinic acid, 3,4,5-tri-O-galloylquinic acid, and 1,3,4,5-tetra-O-galloylquinic acid. The BF extract showed high content of galloylquinic acid derivatives reaching more than twenty-times the quercetin derivatives content, according to the quantification by HPLC. These galloylquinic acid derivatives, obtained during this study, and quercetin derivatives, previously isolated, were submitted to the antifungal assays. The BF extract inhibited yeast growth mainly against Cryptococcus spp., at concentrations of 1-16 μg/mL, comparable to isolated compounds galloylquinic acid derivatives. However, the quercetin derivatives as well as quinic acid, gallic acid, and methyl gallate showed lower antifungal effect compared with galloylquinic derivatives. In addition, the BF extract had no hemolytic effect and no toxicity on G. mellonella. CONCLUSION The phytochemical analysis revealed that galloylquinic acid derivatives are the major compounds in the leaves of B. fagifolia and they are associated to anti-cryptococcal activity and presented reduced toxicity.
Collapse
Affiliation(s)
- Miriam Sannomiya
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo/SP, Brazil.
| | - Clenilson Martins Rodrigues
- Laboratory of Chemistry and Biomass and Biofuels, Embrapa Agroenergy, Brazilian Agricultural Research Corporation, Brasília/DF, Brazil.
| | | | | | - Letícia Serafim da Costa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo/SP, Brazil.
| | - Cristina de Castro Spadari
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo/SP, Brazil.
| | | | - Wagner Vilegas
- Institute of Biosciences, São Paulo State University, Coastal Campus of São Vicente/SP, Brazil.
| | - Kelly Ishida
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo/SP, Brazil.
| |
Collapse
|
16
|
Yang X, Niu Z, Wang X, Lu X, Sun J, Carpena M, Prieto M, Simal-Gandara J, Xiao J, Liu C, Li N. The Nutritional and Bioactive Components, Potential Health Function and Comprehensive Utilization of Pomegranate: A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2110260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Xuhan Yang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Zhonglu Niu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Xiaorui Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Xiaoming Lu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Jinyue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - M. Carpena
- Faculty of Science, Department of Analytical Chemistry and Food Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - M.A. Prieto
- Faculty of Science, Department of Analytical Chemistry and Food Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Jesus Simal-Gandara
- Faculty of Science, Department of Analytical Chemistry and Food Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Jianbo Xiao
- Faculty of Science, Department of Analytical Chemistry and Food Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ningyang Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
17
|
Abstract
B-Raf is a protein kinase participating to the regulation of many biological processes in cells. Several studies have demonstrated that this protein is frequently upregulated in human cancers, especially when it bears activating mutations. In the last years, few ATP-competitive inhibitors of B-Raf have been marketed for the treatment of melanoma and are currently under clinical evaluation on a variety of other types of cancer. Although the introduction of drugs targeting B-Raf has provided significant advances in cancer treatment, responses to ATP-competitive inhibitors remain limited, mainly due to selectivity issues, side effects, narrow therapeutic windows, and the insurgence of drug resistance. Impressive research efforts have been made so far towards the identification of novel ATP-competitive modulators with improved efficacy against cancers driven by mutant Raf monomers and dimers, some of them showing good promises. However, several limitations could still be envisioned for these compounds, according to literature data. Besides, increased attentions have arisen around approaches based on the design of allosteric modulators, polypharmacology, proteolysis targeting chimeras (PROTACs) and drug repurposing for the targeting of B-Raf proteins. The design of compounds acting through such innovative mechanisms is rather challenging. However, valuable therapeutic opportunities can be envisioned on these drugs, as they act through innovative mechanisms in which limitations typically observed for approved ATP-competitive B-Raf inhibitors are less prone to emerge. In this article, current approaches adopted for the design of non-ATP competitive inhibitors targeting B-Raf are described, discussing also on the possibilities, ligands acting through such innovative mechanisms could provide for the obtainment of more effective therapies.
Collapse
Affiliation(s)
- Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| |
Collapse
|
18
|
Mendonça AMS, Monteiro CDA, Moraes-Neto RN, Monteiro AS, Mondego-Oliveira R, Nascimento CEC, da Silva LCN, Lima-Neto LG, Carvalho RC, de Sousa EM. Ethyl Acetate Fraction of Punica granatum and Its Galloyl-HHDP-Glucose Compound, Alone or in Combination with Fluconazole, Have Antifungal and Antivirulence Properties against Candida spp. Antibiotics (Basel) 2022; 11:antibiotics11020265. [PMID: 35203867 PMCID: PMC8868470 DOI: 10.3390/antibiotics11020265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/19/2022] Open
Abstract
Candidiasis is the most common fungal infection among immunocompromised patients. Its treatment includes the use of antifungals, which poses limitations such as toxicity and fungal resistance. Plant-derived extracts, such as Punica granatum, have been reported to have antimicrobial activity, but their antifungal effects are still unknown. We aimed to evaluate the antifungal and antiviral potential of the ethyl acetate fraction of P. granatum (PgEA) and its isolated compound galloyl-hexahydroxydiphenoyl-glucose (G-HHDP-G) against Candida spp. In silico analyses predicted the biological activity of G-HHDP-G. The minimum inhibitory concentrations (MIC) of PgEA and G-HHDP-G, and their effects on biofilm formation, preformed biofilms, and phospholipase production were determined. In silico analysis showed that G-HHDP-G has antifungal and hepatoprotective effects. An in vitro assay confirmed the antifungal effects of PgEA and G-HHDP-G, with MIC in the ranges of 31.25–250 μg/mL and 31.25 ≥ 500 μg/mL, respectively. G-HHDP-G and PgEA synergistically worked with fluconazole against planktonic cells. The substances showed antibiofilm action, alone or in combination with fluconazole, and interfered with phospholipase production. The antifungal and antibiofilm actions of PgEA and G-HHDP-G, alone or in combination with fluconazole, in addition to their effects on reducing Candida phospholipase production, identify them as promising candidates for therapeutics.
Collapse
Affiliation(s)
- Aline Michelle Silva Mendonça
- Graduate Program in Microbial Biology, CEUMA University, UniCEUMA, São Luís 65055-310, MA, Brazil; (A.M.S.M.); (A.S.M.); (L.C.N.d.S.); (L.G.L.-N.); (E.M.d.S.)
| | | | - Roberval Nascimento Moraes-Neto
- Graduate Program in Health Sciences, Federal University of Maranhão, UFMA, São Luís 65080-805, MA, Brazil; (R.N.M.-N.); (C.E.C.N.)
| | - Andrea Souza Monteiro
- Graduate Program in Microbial Biology, CEUMA University, UniCEUMA, São Luís 65055-310, MA, Brazil; (A.M.S.M.); (A.S.M.); (L.C.N.d.S.); (L.G.L.-N.); (E.M.d.S.)
| | | | | | - Luís Cláudio Nascimento da Silva
- Graduate Program in Microbial Biology, CEUMA University, UniCEUMA, São Luís 65055-310, MA, Brazil; (A.M.S.M.); (A.S.M.); (L.C.N.d.S.); (L.G.L.-N.); (E.M.d.S.)
- Graduate Program in Odontology, CEUMA University, UniCEUMA, São Luís 65075-120, MA, Brazil
| | - Lidio Gonçalves Lima-Neto
- Graduate Program in Microbial Biology, CEUMA University, UniCEUMA, São Luís 65055-310, MA, Brazil; (A.M.S.M.); (A.S.M.); (L.C.N.d.S.); (L.G.L.-N.); (E.M.d.S.)
| | - Rafael Cardoso Carvalho
- Graduate Program in Health Sciences, Federal University of Maranhão, UFMA, São Luís 65080-805, MA, Brazil; (R.N.M.-N.); (C.E.C.N.)
- Correspondence:
| | - Eduardo Martins de Sousa
- Graduate Program in Microbial Biology, CEUMA University, UniCEUMA, São Luís 65055-310, MA, Brazil; (A.M.S.M.); (A.S.M.); (L.C.N.d.S.); (L.G.L.-N.); (E.M.d.S.)
- Graduate Program in Health Sciences, Federal University of Maranhão, UFMA, São Luís 65080-805, MA, Brazil; (R.N.M.-N.); (C.E.C.N.)
| |
Collapse
|
19
|
Dai JK, Dan WJ, Wan JB. Natural and synthetic β-carboline as a privileged antifungal scaffolds. Eur J Med Chem 2021; 229:114057. [PMID: 34954591 DOI: 10.1016/j.ejmech.2021.114057] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 01/04/2023]
Abstract
The discovery of antifungal agents with novel structure, broad-spectrum, low toxicity, and high efficiency has been the focus of medicinal chemists. Over the past decades, β-carboline scaffold has attracted extensive attention in the scientific community due to its potent and diverse biological activities with nine successfully marketed β-carboline-based drugs. In this review, we summarized the current states and advances in the antifungal activity of natural and synthetic β-carbolines. Additionally, the structure-activity relationships and their antifungal mechanisms targeting biofilm, cell wall, cell membrane, and fungal intracellular targets were also systematically discussed. In summary, β-carbolines have the great potential to develop new efficient scaffolds to combat fungal infections.
Collapse
Affiliation(s)
- Jiang-Kun Dai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China; College of Veterinary Medicine, Northwest A&F University, Shaanxi, China; School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Wen-Jia Dan
- School of Life Science and Technology, Weifang Medical University, Shandong, China.
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|