1
|
Xue JD, Gao J, Tang AF, Feng C. Shaping the immune landscape: Multidimensional environmental stimuli refine macrophage polarization and foster revolutionary approaches in tissue regeneration. Heliyon 2024; 10:e37192. [PMID: 39296009 PMCID: PMC11408064 DOI: 10.1016/j.heliyon.2024.e37192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
In immunology, the role of macrophages extends far beyond their traditional classification as mere phagocytes; they emerge as pivotal architects of the immune response, with their function being significantly influenced by multidimensional environmental stimuli. This review investigates the nuanced mechanisms by which diverse external signals ranging from chemical cues to physical stress orchestrate macrophage polarization, a process that is crucial for the modulation of immune responses. By transitioning between pro-inflammatory (M1) and anti-inflammatory (M2) states, macrophages exhibit remarkable plasticity, enabling them to adapt to and influence their surroundings effectively. The exploration of macrophage polarization provides a compelling narrative on how these cells can be manipulated to foster an immune environment conducive to tissue repair and regeneration. Highlighting cutting-edge research, this review presents innovative strategies that leverage the dynamic interplay between macrophages and their environment, proposing novel therapeutic avenues that harness the potential of macrophages in regenerative medicine. Moreover, this review critically evaluates the current challenges and future prospects of translating macrophage-centered strategies from the laboratory to clinical applications.
Collapse
Affiliation(s)
- Jing-Dong Xue
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jing Gao
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ai-Fang Tang
- Department of Geratology, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Chao Feng
- Department of Reproductive Medicine, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| |
Collapse
|
2
|
Anitua E, Troya M, Alkhraisat MH. Immunoregulatory role of platelet derivatives in the macrophage-mediated immune response. Front Immunol 2024; 15:1399130. [PMID: 38983851 PMCID: PMC11231193 DOI: 10.3389/fimmu.2024.1399130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Background Macrophages are innate immune cells that display remarkable phenotypic heterogeneity and functional plasticity. Due to their involvement in the pathogenesis of several human conditions, macrophages are considered to be an attractive therapeutic target. In line with this, platelet derivatives have been successfully applied in many medical fields and as active participants in innate immunity, cooperation between platelets and macrophages is essential. In this context, the aim of this review is to compile the current evidence regarding the effects of platelet derivatives on the phenotype and functions of macrophages to identify the advantages and shortcomings for feasible future clinical applications. Methods A total of 669 articles were identified during the systematic literature search performed in PubMed and Web of Science databases. Results A total of 27 articles met the inclusion criteria. Based on published findings, platelet derivatives may play an important role in inducing a dynamic M1/M2 balance and promoting a timely M1-M2 shift. However, the differences in procedures regarding platelet derivatives and macrophages polarization and the occasional lack of information, makes reproducibility and comparison of results extremely challenging. Furthermore, understanding the differences between human macrophages and those derived from animal models, and taking into account the peculiarities of tissue resident macrophages and their ontogeny seem essential for the design of new therapeutic strategies. Conclusion Research on the combination of macrophages and platelet derivatives provides relevant information on the function and mechanisms of the immune response.
Collapse
Affiliation(s)
- Eduardo Anitua
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - María Troya
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Mohammad H. Alkhraisat
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| |
Collapse
|
3
|
Sadeghi S, Nimtz L, Niebergall-Roth E, Norrick A, Hägele S, Vollmer L, Esterlechner J, Frank MH, Ganss C, Scharffetter-Kochanek K, Kluth MA. Potency assay to predict the anti-inflammatory capacity of a cell therapy product for macrophage-driven diseases: overcoming the challenges of assay development and validation. Cytotherapy 2024; 26:512-523. [PMID: 38441512 PMCID: PMC11065629 DOI: 10.1016/j.jcyt.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Given the high level of product complexity and limited regulatory guidance, designing and implementing appropriate potency assays is often the most challenging part of establishing a quality control testing matrix for a cell-based medicinal product. Among the most elusive tasks are the selection of suitable read-out parameters, the development of assay designs that most closely model the pathophysiological conditions, and the validation of the methods. Here we describe these challenges and how they were addressed in developing an assay that measures the anti-inflammatory potency of mesenchymal stromal cells (MSCs) in an M1 macrophage-dominated inflammatory environment. METHODS An in vitro inflammation model was established by coculturing skin-derived ABCB5+ MSCs with THP-1 monocyte-derived M1-polarized macrophages. Readout was the amount of interleukin 1 receptor antagonist (IL-1RA) secreted by the MSCs in the coculture, measured by an enzyme-linked immunosorbent assay. RESULTS IL-1RA was quantified with guideline-concordant selectivity, accuracy and precision over a relevant concentration range. Consistent induction of the macrophage markers CD36 and CD80 indicated successful macrophage differentiation and M1 polarization of THP-1 cells, which was functionally confirmed by release of proinflammatory tumor necrosis factor α. Testing a wide range of MSC/macrophage ratios revealed the optimal ratio for near-maximal stimulation of MSCs to secrete IL-1RA, providing absolute maximum levels per individual MSC that can be used for future comparison with clinical efficacy. Batch release testing of 71 consecutively manufactured MSC batches showed a low overall failure rate and a high comparability between donors. CONCLUSIONS We describe the systematic development and validation of a therapeutically relevant, straightforward, robust and reproducible potency assay to measure the immunomodulatory capacity of MSCs in M1 macrophage-driven inflammation. The insights into the challenges and how they were addressed may also be helpful to developers of potency assays related to other cellular functions and clinical indications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Markus H Frank
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA; Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | | | | | | |
Collapse
|
4
|
He F, Wang L, Umrath F, Naros A, Reinert S, Alexander D. Three-Dimensionally Cultured Jaw Periosteal Cells Attenuate Macrophage Activation of CD4 + T Cells and Inhibit Osteoclastogenesis. Int J Mol Sci 2024; 25:2355. [PMID: 38397031 PMCID: PMC10889513 DOI: 10.3390/ijms25042355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
The implementation of a successful therapeutic approach that includes tissue-engineered grafts requires detailed analyses of graft-immune cell interactions in order to predict possible immune reactions after implantation. The phenotypic plasticity of macrophages plays a central role in immune cell chemotaxis, inflammatory regulation and bone regeneration. The present study addresses effects emanating from JPC-seeded β-TCP constructs (3DJPCs) co-cultivated with THP-1 derived M1/M2 macrophages within a horizontal co-culture system. After five days of co-culture, macrophage phenotype and chemokine secretion were analyzed by flow cytometry, quantitative PCR and proteome arrays. The results showed that pro-inflammatory factors in M1 macrophages were inhibited by 3DJPCs, while anti-inflammatory factors were activated, possibly affected by the multiple chemokines secreted by 3D-cultured JPCs. In addition, osteoclast markers of polarized macrophages were inhibited by osteogenically induced 3DJPCs. Functional assays revealed a significantly lower percentage of proliferating CD4+ T cells in the groups treated with secretomes from M1/M2 macrophages previously co-cultured with 3DJPCs compared to controls without secretomes. Quantifications of pit area resorption assays showed evidence that supernatants from 3DJPCs co-cultured with M1/M2 macrophages were able to completely suppress osteoclast maturation, compared to the control group without secretomes. These findings demonstrate the ability of 3D cultured JPCs to modulate macrophage plasticity.
Collapse
Affiliation(s)
- Fang He
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.H.); (L.W.); (F.U.); (A.N.); (S.R.)
| | - Liuran Wang
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.H.); (L.W.); (F.U.); (A.N.); (S.R.)
| | - Felix Umrath
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.H.); (L.W.); (F.U.); (A.N.); (S.R.)
- Clinic for Orthopaedic Surgery, University Hospital Tübingen, 72072 Tübingen, Germany
| | - Andreas Naros
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.H.); (L.W.); (F.U.); (A.N.); (S.R.)
| | - Siegmar Reinert
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.H.); (L.W.); (F.U.); (A.N.); (S.R.)
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.H.); (L.W.); (F.U.); (A.N.); (S.R.)
| |
Collapse
|
5
|
Cen W, Umrath F, Salgado AJ, Reinert S, Alexander D. Secretomes derived from osteogenically differentiated jaw periosteal cells inhibit phenotypic and functional maturation of CD14 + monocyte-derived dendritic cells. Front Immunol 2023; 13:1024509. [PMID: 36700194 PMCID: PMC9868599 DOI: 10.3389/fimmu.2022.1024509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
The jaw periosteal tissue is generally recognized as a suitable source for the isolation of mesenchymal stem cells (MSCs). In previous studies we showed evidence that two- and three-dimensionally cultured jaw periosteum-derived MSCs (JPCs) are able to induce a more immature phenotype of dendritic cells (DCs). To further expand our knowledge of JPCs' immunoregulative function, we investigated the effects of JPC secretomes derived from undifferentiated (CO) or osteogenically differentiated cells (treated with or without dexamethasone: OB+/-D) on CD14+ monocyte-derived DCs (MoDCs). We detected a remarkably reduced formation of MoDC homotypic clusters under the influence of secretomes from osteogenically induced JPCs. Further, significantly decreased numbers of CD83+ cells, up-regulated CD209 and down-regulated CD80, CD86 and CD197 expression levels were detected on the surface of MoDCs. Whereas secretomes from JPCs osteogenically stimulated with dexamethasone significantly enhanced FITC-dextran uptake capacity of MoDCs, the increase by secretomes of JPCs treated without dexamethasone did not reach significance. The analysis of mixed lymphocyte reactions revealed that OB+/-D secretomes were able to significantly reduce the numbers of proliferating CD14- peripheral blood mononuclear cells (PBMCs) and of proliferating CD4+ T cells. The OB-D secretome significantly promoted the expansion of regulatory CD25+ T cells. Regarding gene expression of MoDCs, remarkably up-regulated mRNA expression of CD209, HLA-DRA, CSF3, IL10 and IL8 was detected when DCs were cultured in the presence of OB+/-D secretomes. At the same time, secretomes seemed to have an impact in the down-regulation of IFNγ and IL12B gene expression. At protein level, OB+/-D secretomes significantly up-regulated IL-10 and IDO (indoleamine-pyrrole 2,3-dioxygenase) levels whereas IL-12/IL-23p40 levels were down-regulated in supernatants of MoDCs when cultured under the presence of OB+/-D secretomes. Taken together, while secretomes from untreated JPCs had only little effects on the process of maturation of MoDCs, secretomes derived from osteogenically induced JPCs were able to inhibit the phenotypic and functional maturation of MoDCs.
Collapse
Affiliation(s)
- Wanjing Cen
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Felix Umrath
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Tübingen, Germany,Clinic for Orthopaedic Surgery, University Hospital Tübingen, Tübingen, Germany
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B’s-PT Government Associate Laboratory, University of Minho, Braga, Portugal
| | - Siegmar Reinert
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Tübingen, Germany,*Correspondence: Dorothea Alexander,
| |
Collapse
|
6
|
Ren J, Geng N, Xia Y, Zhou Y, Tan J, Peng W, Chen S. A comparative study of the morphology and molecular biology between the Schneiderian membrane and palatine mucoperiosteum. Tissue Cell 2022; 79:101948. [DOI: 10.1016/j.tice.2022.101948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022]
|
7
|
YAN X, Shi JH, Xue JF, Guo WZ, Li B, Zhang SJ. PD-1/PD-L1 inhibition promotes hepatic regeneration in small-for-size liver following extended hepatectomy. Cytokine 2022; 159:156017. [DOI: 10.1016/j.cyto.2022.156017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022]
|
8
|
Umrath F, Pfeifer A, Cen W, Danalache M, Reinert S, Alexander D, Naros A. How osteogenic is dexamethasone?—effect of the corticosteroid on the osteogenesis, extracellular matrix, and secretion of osteoclastogenic factors of jaw periosteum-derived mesenchymal stem/stromal cells. Front Cell Dev Biol 2022; 10:953516. [DOI: 10.3389/fcell.2022.953516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Dexamethasone (dexa) is commonly used to stimulate osteogenic differentiation of mesenchymal stem/stromal cells (MSCs) in vitro. However, it is paradoxical that glucocorticoids (GCs) such as dexa lead to bone loss and increased fracture risk in patients undergoing glucocorticoid therapy, causing glucocorticoid-induced osteoporosis (GIOP). In a recent publication, we demonstrated that osteogenic differentiation of progenitor cells isolated from jaw periosteal tissue (JPCs) does not depend on dexa, if the medium is supplemented with human platelet lysate (hPL) instead of fetal bovine serum (FBS). This allows the in vitro conditions to be much closer to the natural situation in vivo and enables us to compare osteogenic differentiation with and without dexa. In the present study, we demonstrate that the absence of dexa did not reduce mineralization capacity, but instead slightly improved the osteogenic differentiation of jaw periosteal cells. On the other hand, we show that dexa supplementation strongly alters the gene expression, extracellular matrix (ECM), and cellular communication of jaw periosteal cells. The secretome of periosteal cells previously treated with an osteogenic medium with and without dexa was used to investigate the changes in paracrine secretion caused by dexa. Dexa altered the secretion of several cytokines by jaw periosteal cells and strongly induced osteoclast differentiation of peripheral blood mononuclear cells (PBMCs). This study demonstrates how dexa supplementation can influence the outcome of in vitro studies and highlights a possible role of periosteal cells in the pathogenesis of glucocorticoid-induced osteoporosis. The methods used here can serve as a model for studying bone formation, fracture healing, and various pathological conditions such as (glucocorticoid-induced) osteoporosis, osteoarthritis, bone cancer, and others, in which the interactions of osteoblasts with surrounding cells play a key role.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW The periosteum, the outer layer of bone, is a major source of skeletal stem/progenitor cells (SSPCs) for bone repair. Here, we discuss recent findings on the characterization, role, and regulation of periosteal SSPCs (pSSPCs) during bone regeneration. RECENT FINDINGS Several markers have been described for pSSPCs but lack tissue specificity. In vivo lineage tracing and transcriptomic analyses have improved our understanding of pSSPC functions during bone regeneration. Bone injury activates pSSPCs that migrate, proliferate, and have the unique potential to form both bone and cartilage. The injury response of pSSPCs is controlled by many signaling pathways including BMP, FGF, Notch, and Wnt, their metabolic state, and their interactions with the blood clot, nerve fibers, blood vessels, and macrophages in the fracture environment. Periosteal SSPCs are essential for bone regeneration. Despite recent advances, further studies are required to elucidate pSSPC heterogeneity and plasticity that make them a central component of the fracture healing process and a prime target for clinical applications.
Collapse
Affiliation(s)
- Simon Perrin
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France
| | - Céline Colnot
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France.
| |
Collapse
|
10
|
He F, Umrath F, von Ohle C, Reinert S, Alexander D. Analysis of the Influence of Jaw Periosteal Cells on Macrophages Phenotype Using an Innovative Horizontal Coculture System. Biomedicines 2021; 9:biomedicines9121753. [PMID: 34944569 PMCID: PMC8698728 DOI: 10.3390/biomedicines9121753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/21/2021] [Indexed: 12/15/2022] Open
Abstract
Jaw periosteum-derived mesenchymal stem cells (JPCs) represent a promising cell source for bone tissue engineering in oral and maxillofacial surgery due to their high osteogenic potential and good accessibility. Our previous work demonstrated that JPCs are able to regulate THP-1-derived macrophage polarization in a direct coculture model. In the present study, we used an innovative horizontal coculture system in order to understand the underlying paracrine effects of JPCs on macrophage phenotype polarization. Therefore, JPCs and THP-1-derived M1/M2 macrophages were cocultured in parallel chambers under the same conditions. After five days of horizontal coculture, flow cytometric, gene and protein expression analyses revealed inhibitory effects on costimulatory and proinflammatory molecules/factors as well as activating effects on anti-inflammatory factors in M1 macrophages, originating from multiple cytokines/chemokines released by untreated and osteogenically induced JPCs. A flow cytometric assessment of DNA synthesis reflected significantly decreased numbers of proliferating M1/M2 cells when cocultured with JPCs. In this study, we demonstrated that untreated and osteogenically induced JPCs are able to switch macrophage polarization from a classical M1 to an alternative M2-specific phenotype by paracrine secretion, and by inhibition of THP-1-derived M1/M2 macrophage proliferation.
Collapse
Affiliation(s)
- Fang He
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.H.); (F.U.); (S.R.)
| | - Felix Umrath
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.H.); (F.U.); (S.R.)
| | - Christiane von Ohle
- Department of Conservative Dentistry and Periodontology, University Hospital Tübingen, 72076 Tübingen, Germany;
| | - Siegmar Reinert
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.H.); (F.U.); (S.R.)
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.H.); (F.U.); (S.R.)
- Correspondence: ; Tel.: +49-7071-298-2418
| |
Collapse
|
11
|
Barhoumi T, Alghanem B, Shaibah H, Mansour FA, Alamri HS, Akiel MA, Alroqi F, Boudjelal M. SARS-CoV-2 Coronavirus Spike Protein-Induced Apoptosis, Inflammatory, and Oxidative Stress Responses in THP-1-Like-Macrophages: Potential Role of Angiotensin-Converting Enzyme Inhibitor (Perindopril). Front Immunol 2021; 12:728896. [PMID: 34616396 PMCID: PMC8488399 DOI: 10.3389/fimmu.2021.728896] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022] Open
Abstract
A purified spike (S) glycoprotein of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) coronavirus was used to study its effects on THP-1 macrophages, peripheral blood mononuclear cells (PBMCs), and HUVEC cells. The S protein mediates the entry of SARS-CoV-2 into cells through binding to the angiotensin-converting enzyme 2 (ACE2) receptors. We measured the viability, intracellular cytokine release, oxidative stress, proinflammatory markers, and THP-1-like macrophage polarization. We observed an increase in apoptosis, ROS generation, MCP-1, and intracellular calcium expression in the THP-1 macrophages. Stimulation with the S protein polarizes the THP-1 macrophages towards proinflammatory futures with an increase in the TNFα and MHC-II M1-like phenotype markers. Treating the cells with an ACE inhibitor, perindopril, at 100 µM reduced apoptosis, ROS, and MHC-II expression induced by S protein. We analyzed the sensitivity of the HUVEC cells after the exposure to a conditioned media (CM) of THP-1 macrophages stimulated with the S protein. The CM induced endothelial cell apoptosis and MCP-1 expression. Treatment with perindopril reduced these effects. However, the direct stimulation of the HUVEC cells with the S protein, slightly increased HIF1α and MCP-1 expression, which was significantly increased by the ACE inhibitor treatment. The S protein stimulation induced ROS generation and changed the mitogenic responses of the PBMCs through the upregulation of TNFα and interleukin (IL)-17 cytokine expression. These effects were reduced by the perindopril (100 µM) treatment. Proteomic analysis of the S protein stimulated THP-1 macrophages with or without perindopril (100 µM) exposed more than 400 differentially regulated proteins. Our results provide a mechanistic analysis suggesting that the blood and vascular components could be activated directly through S protein systemically present in the circulation and that the activation of the local renin angiotensin system may be partially involved in this process. Graphical Suggested pathways that might be involved at least in part in S protein inducing activation of inflammatory markers (red narrow) and angiotensin-converting enzyme inhibitor (ACEi) modulation of this process (green narrow).
Collapse
Affiliation(s)
- Tlili Barhoumi
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Bandar Alghanem
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hayat Shaibah
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Fatmah A Mansour
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hassan S Alamri
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Maaged A Akiel
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Fayhan Alroqi
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Department of Pediatrics, King Abdulaziz Medical City, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia
| | - Mohammad Boudjelal
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|