1
|
Kim SG, Hwang JS, George NP, Jang YE, Kwon M, Lee SS, Lee G. Integrative Metabolome and Proteome Analysis of Cerebrospinal Fluid in Parkinson's Disease. Int J Mol Sci 2024; 25:11406. [PMID: 39518959 PMCID: PMC11547079 DOI: 10.3390/ijms252111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Recent studies have highlighted the significant role of cerebrospinal fluid (CSF) in reflecting pathophysiological PD brain conditions by analyzing the components of CSF. Based on the published literature, we created a single network with altered metabolites in the CSF of patients with PD. We analyzed biological functions related to the transmembrane of mitochondria, respiration of mitochondria, neurodegeneration, and PD using a bioinformatics tool. As the proteome reflects phenotypes, we collected proteome data based on published papers, and the biological function of the single network showed similarities with that of the metabolomic network. Then, we analyzed the single network of integrated metabolome and proteome. In silico predictions based on the single network with integrated metabolomics and proteomics showed that neurodegeneration and PD were predicted to be activated. In contrast, mitochondrial transmembrane activity and respiration were predicted to be suppressed in the CSF of patients with PD. This review underscores the importance of integrated omics analyses in deciphering PD's complex biochemical networks underlying neurodegeneration.
Collapse
Affiliation(s)
- Seok Gi Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Ji Su Hwang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Nimisha Pradeep George
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yong Eun Jang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Minjun Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Sang Seop Lee
- Department of Pharmacology, Inje University College of Medicine, Busan 50834, Republic of Korea
| | - Gwang Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
2
|
Maffioli E, Nonnis S, Negri A, Fontana M, Frabetti F, Rossi AR, Tedeschi G, Toni M. Environmental Temperature Variation Affects Brain Lipid Composition in Adult Zebrafish ( Danio rerio). Int J Mol Sci 2024; 25:9629. [PMID: 39273578 PMCID: PMC11394874 DOI: 10.3390/ijms25179629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
This study delves deeper into the impact of environmental temperature variations on the nervous system in teleost fish. Previous research has demonstrated that exposing adult zebrafish (Danio rerio) to 18 °C and 34 °C for 4 or 21 days induces behavioural changes compared to fish kept at a control temperature of 26 °C, suggesting alterations in the nervous system. Subsequent studies revealed that these temperature conditions also modify brain protein expression, indicating potential neurotoxic effects. The primary aim of this work was to investigate the effects of prolonged exposure (21 days) to 18 °C or 34 °C on the brain lipidomes of adult zebrafish compared to a control temperature. Analysis of the brain lipidome highlighted significant alteration in the relative abundances of specific lipid molecules at 18 °C and 34 °C, confirming distinct effects induced by both tested temperatures. Exposure to 18 °C resulted in an increase in levels of phospholipids, such as phosphatidylethanolamine, alongside a general reduction in levels of sphingolipids, including sphingomyelin. Conversely, exposure to 34 °C produced more pronounced effects, with increases in levels of phosphatidylethanolamine and those of various sphingolipids such as ceramide, gangliosides, and sphingomyelin, alongside a reduction in levels of ether phospholipids, including lysophosphatidylethanolamine ether, phosphatidylethanolamine ether, and phosphatidylglycerol ether, as well as levels of glycolipids like monogalactosyldiacylglycerol. These results, when integrated with existing proteomic and behavioural data, offer new insights into the effects of thermal variations on the nervous system in teleost fish. Specifically, our proteomic and lipidomic findings suggest that elevated temperatures may disrupt mitochondrial function, increase neuronal susceptibility to oxidative stress and cytotoxicity, alter axonal myelination, impair nerve impulse transmission, hinder synapse function and neurotransmitter release, and potentially lead to increased neuronal death. These findings are particularly relevant in the fields of cell biology, neurobiology, and ecotoxicology, especially in the context of global warming.
Collapse
Affiliation(s)
- Elisa Maffioli
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Simona Nonnis
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
- CRC "Innovation for Well-Being and Environment" (I-WE), Università degli Studi di Milano, 20126 Milano, Italy
| | - Armando Negri
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Manuela Fontana
- Unitech OMICs, Università degli Studi di Milano, 20139 Milan, Italy
| | - Flavia Frabetti
- Department of Medical and Surgical Sciences-DIMEC, University of Bologna, 40126 Bologna, Italy
| | - Anna Rita Rossi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, 00185 Rome, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
- CRC "Innovation for Well-Being and Environment" (I-WE), Università degli Studi di Milano, 20126 Milano, Italy
| | - Mattia Toni
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, 00185 Rome, Italy
| |
Collapse
|
3
|
La Cognata V, Morello G, Guarnaccia M, Cavallaro S. The multifaceted role of the CXC chemokines and receptors signaling axes in ALS pathophysiology. Prog Neurobiol 2024; 235:102587. [PMID: 38367748 DOI: 10.1016/j.pneurobio.2024.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/17/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset motor neuron disease with complex genetic basis and still no clear etiology. Multiple intertwined layers of immune system-related dysfunctions and neuroinflammatory mechanisms are emerging as substantial determinants in ALS onset and progression. In this review, we collect the increasingly arising evidence implicating four main CXC chemokines/cognate receptors signaling axes (CXCR1/2-CXCL1/2/8; CXCR3-CXCL9/10/11; CXCR4/7-CXCL12; CXCR5-CXCL13) in the pathophysiology of ALS. Findings in preclinical models implicate these signaling pathways in motor neuron toxicity and neuroprotection, while in ALS patients dysregulation of CXCLs/CXCRs has been shown at both central and peripheral levels. Immunological monitoring of CXC-ligands in ALS may allow tracking of disease progression, while pharmacological modulation of CXC-receptors provides a novel therapeutic strategy. A deeper understanding of the interplay between CXC-mediated neuroinflammation and ALS is crucial to advance research into treatments for this debilitating uncurable disorder.
Collapse
Affiliation(s)
- Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, Catania 95126, Italy
| | - Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, Catania 95126, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, Catania 95126, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, Catania 95126, Italy.
| |
Collapse
|
4
|
Brandão-Teles C, Zuccoli GS, de Moraes Vrechi TA, Ramos-da-Silva L, Santos AVS, Crunfli F, Martins-de-Souza D. Induced-pluripotent stem cells and neuroproteomics as tools for studying neurodegeneration. Biochem Soc Trans 2024; 52:163-176. [PMID: 38288874 DOI: 10.1042/bst20230341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
The investigation of neurodegenerative diseases advanced significantly with the advent of cell-reprogramming technology, leading to the creation of new models of human illness. These models, derived from induced pluripotent stem cells (iPSCs), facilitate the study of sporadic as well as hereditary diseases and provide a comprehensive understanding of the molecular mechanisms involved with neurodegeneration. Through proteomics, a quantitative tool capable of identifying thousands of proteins from small sample volumes, researchers have attempted to identify disease mechanisms by detecting differentially expressed proteins and proteoforms in disease models, biofluids, and postmortem brain tissue. The integration of these two technologies allows for the identification of novel pathological targets within the realm of neurodegenerative diseases. Here, we highlight studies from the past 5 years on the contributions of iPSCs within neuroproteomic investigations, which uncover the molecular mechanisms behind these illnesses.
Collapse
Affiliation(s)
- Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Talita Aparecida de Moraes Vrechi
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Lívia Ramos-da-Silva
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Aline Valéria Sousa Santos
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas 13083-862, SP, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
- INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D)
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| |
Collapse
|
5
|
La Cognata V, D’Amico AG, Maugeri G, Morello G, Guarnaccia M, Magrì B, Aronica E, Alkon DL, D’Agata V, Cavallaro S. The ε-Isozyme of Protein Kinase C (PKCε) Is Impaired in ALS Motor Cortex and Its Pulse Activation by Bryostatin-1 Produces Long Term Survival in Degenerating SOD1-G93A Motor Neuron-like Cells. Int J Mol Sci 2023; 24:12825. [PMID: 37629005 PMCID: PMC10454105 DOI: 10.3390/ijms241612825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and ultimately fatal neurodegenerative disease, characterized by a progressive depletion of upper and lower motor neurons (MNs) in the brain and spinal cord. The aberrant regulation of several PKC-mediated signal transduction pathways in ALS has been characterized so far, describing either impaired expression or altered activity of single PKC isozymes (α, β, ζ and δ). Here, we detailed the distribution and cellular localization of the ε-isozyme of protein kinase C (PKCε) in human postmortem motor cortex specimens and reported a significant decrease in both PKCε mRNA (PRKCE) and protein immunoreactivity in a subset of sporadic ALS patients. We furthermore investigated the steady-state levels of both pan and phosphorylated PKCε in doxycycline-activated NSC-34 cell lines carrying the human wild-type (WT) or mutant G93A SOD1 and the biological long-term effect of its transient agonism by Bryostatin-1. The G93A-SOD1 cells showed a significant reduction of the phosphoPKCε/panPKCε ratio compared to the WT. Moreover, a brief pulse activation of PKCε by Bryostatin-1 produced long-term survival in activated G93A-SOD1 degenerating cells in two different cell death paradigms (serum starvation and chemokines-induced toxicity). Altogether, the data support the implication of PKCε in ALS pathophysiology and suggests its pharmacological modulation as a potential neuroprotective strategy, at least in a subgroup of sporadic ALS patients.
Collapse
Affiliation(s)
- Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council, 95126 Catania, Italy
| | - Agata Grazia D’Amico
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Grazia Maugeri
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council, 95126 Catania, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council, 95126 Catania, Italy
| | - Benedetta Magrì
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 Amsterdam, The Netherlands
| | | | - Velia D’Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, 95126 Catania, Italy
| |
Collapse
|
6
|
Morello G, La Cognata V, Guarnaccia M, La Bella V, Conforti FL, Cavallaro S. A Diagnostic Gene-Expression Signature in Fibroblasts of Amyotrophic Lateral Sclerosis. Cells 2023; 12:1884. [PMID: 37508548 PMCID: PMC10378077 DOI: 10.3390/cells12141884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disease with limited treatment options. Diagnosis can be difficult due to the heterogeneity and non-specific nature of the initial symptoms, resulting in delays that compromise prompt access to effective therapeutic strategies. Transcriptome profiling of patient-derived peripheral cells represents a valuable benchmark in overcoming such challenges, providing the opportunity to identify molecular diagnostic signatures. In this study, we characterized transcriptome changes in skin fibroblasts of sporadic ALS patients (sALS) and controls and evaluated their utility as a molecular classifier for ALS diagnosis. Our analysis identified 277 differentially expressed transcripts predominantly involved in transcriptional regulation, synaptic transmission, and the inflammatory response. A support vector machine classifier based on this 277-gene signature was developed to discriminate patients with sALS from controls, showing significant predictive power in both the discovery dataset and in six independent publicly available gene expression datasets obtained from different sALS tissue/cell samples. Taken together, our findings support the utility of transcriptional signatures in peripheral cells as valuable biomarkers for the diagnosis of ALS.
Collapse
Affiliation(s)
- Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Vincenzo La Bella
- ALS Clinical Research Center and Neurochemistry Laboratory, BiND, University of Palermo, 90133 Palermo, Italy
| | - Francesca Luisa Conforti
- Medical Genetics Laboratory, Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| |
Collapse
|
7
|
La Cognata V, D’Amico AG, Maugeri G, Morello G, Guarnaccia M, Magrì B, Aronica E, D’Agata V, Cavallaro S. CXCR2 Is Deregulated in ALS Spinal Cord and Its Activation Triggers Apoptosis in Motor Neuron-Like Cells Overexpressing hSOD1-G93A. Cells 2023; 12:1813. [PMID: 37508478 PMCID: PMC10377984 DOI: 10.3390/cells12141813] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative disease characterized by progressive depletion of motor neurons (MNs). Recent evidence suggests a role in ALS pathology for the C-X-C motif chemokine receptor 2 (CXCR2), whose expression was found increased at both mRNA and protein level in cortical neurons of sporadic ALS patients. Previous findings also showed that the receptor inhibition is able to prevent iPSC-derived MNs degeneration in vitro and improve neuromuscular function in SOD1-G93A mice. Here, by performing transcriptional analysis and immunofluorescence studies, we detailed the increased expression and localization of CXCR2 and its main ligand CXCL8 in the human lumbar spinal cord of sporadic ALS patients. We further investigated the functional role of CXCR2/ligands axis in NSC-34 motor neuron-like cells expressing human wild-type (WT) or mutant (G93A) SOD1. A significant expression of CXCR2 was found in doxycycline-induced G93A-SOD1-expressing cells, but not in WT cells. In vitro assays showed CXCR2 activation by GROα and MIP2α, two murine endogenous ligands and functional homologs of CXCL8, reduces cellular viability and triggers apoptosis in a dose dependent manner, while treatment with reparixin, a non-competitive allosteric CXCR2 inhibitor, effectively counteracts GROα and MIP2α toxicity, significantly inhibiting the chemokine-induced cell death. Altogether, data further support a role of CXCR2 axis in ALS etiopathogenesis and confirm its pharmacological modulation as a candidate therapeutic strategy.
Collapse
Affiliation(s)
- Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council, 95126 Catania, Italy
| | - Agata Grazia D’Amico
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Grazia Maugeri
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council, 95126 Catania, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council, 95126 Catania, Italy
| | - Benedetta Magrì
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105 Amsterdam, The Netherlands
| | - Velia D’Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, 95126 Catania, Italy
| |
Collapse
|
8
|
Rey F, Messa L, Maghraby E, Casili G, Ottolenghi S, Barzaghini B, Raimondi MT, Cereda C, Cuzzocrea S, Zuccotti G, Esposito E, Paterniti I, Carelli S. Oxygen Sensing in Neurodegenerative Diseases: Current Mechanisms, Implication of Transcriptional Response, and Pharmacological Modulation. Antioxid Redox Signal 2023; 38:160-182. [PMID: 35793106 DOI: 10.1089/ars.2022.0046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Significance: Oxygen (O2) sensing is the fundamental process through which organisms respond to changes in O2 levels. Complex networks exist allowing the maintenance of O2 levels through the perception, capture, binding, transport, and delivery of molecular O2. The brain extreme sensitivity to O2 balance makes the dysregulation of related processes crucial players in the pathogenesis of neurodegenerative diseases (NDs). In this study, we wish to review the most relevant advances in O2 sensing in relation to Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Recent Advances: Over the years, it has been clarified that most NDs share common pathways, a great number of which are in relation to O2 imbalance. These include hypoxia, hyperoxia, reactive oxygen species production, metabolism of metals, protein misfolding, and neuroinflammation. Critical Issues: There is still a gap in knowledge concerning how O2 sensing plays a role in the above indicated neurodegenerations. Specifically, O2 concentrations are perceived in body sites that are not limited to the brain, but primarily reside in other organs. Moreover, the mechanisms of O2 sensing, gene expression, and signal transduction seem to correlate with neurodegeneration, but many aspects are mechanistically still unexplained. Future Directions: Future studies should focus on the precise characterization of O2 level disruption and O2 sensing mechanisms in NDs. Moreover, advances need to be made also concerning the techniques used to assess O2 sensing dysfunctions in these diseases. There is also the need to develop innovative therapies targeting this precise mechanism rather than its secondary effects, as early intervention is necessary. Antioxid. Redox Signal. 38, 160-182.
Collapse
Affiliation(s)
- Federica Rey
- Department of Biomedical and Clinical Sciences, University of Milano, Milano, Italy.,Department of Biomedical and Clinical Sciences, Pediatric Research Center "Romeo ed Enrica Invernizzi," University of Milano, Milano, Italy
| | - Letizia Messa
- Department of Biomedical and Clinical Sciences, University of Milano, Milano, Italy.,Department of Biomedical and Clinical Sciences, Pediatric Research Center "Romeo ed Enrica Invernizzi," University of Milano, Milano, Italy
| | - Erika Maghraby
- Department of Biomedical and Clinical Sciences, University of Milano, Milano, Italy.,Department of Biomedical and Clinical Sciences, Pediatric Research Center "Romeo ed Enrica Invernizzi," University of Milano, Milano, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sara Ottolenghi
- Department of Medicine and Surgery, University of Milano Bicocca, Milano, Italy
| | - Bianca Barzaghini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milano, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta," Politecnico di Milano, Milano, Italy
| | - Cristina Cereda
- Department of Women, Mothers and Neonatal Care, Children's Hospital "V. Buzzi," Milano, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Gianvincenzo Zuccotti
- Department of Biomedical and Clinical Sciences, University of Milano, Milano, Italy.,Department of Biomedical and Clinical Sciences, Pediatric Research Center "Romeo ed Enrica Invernizzi," University of Milano, Milano, Italy.,Department of Pediatrics, Children's Hospital "V. Buzzi," Milano, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences, University of Milano, Milano, Italy.,Department of Biomedical and Clinical Sciences, Pediatric Research Center "Romeo ed Enrica Invernizzi," University of Milano, Milano, Italy
| |
Collapse
|
9
|
Yoon JH, Seo Y, Jo YS, Lee S, Cho E, Cazenave-Gassiot A, Shin YS, Moon MH, An HJ, Wenk MR, Suh PG. Brain lipidomics: From functional landscape to clinical significance. SCIENCE ADVANCES 2022; 8:eadc9317. [PMID: 36112688 PMCID: PMC9481132 DOI: 10.1126/sciadv.adc9317] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/01/2022] [Indexed: 05/23/2023]
Abstract
Lipids are crucial components of cellular function owing to their role in membrane formation, intercellular signaling, energy storage, and homeostasis maintenance. In the brain, lipid dysregulations have been associated with the etiology and progression of neurodegeneration and other neurological pathologies. Hence, brain lipids are emerging as important potential targets for the early diagnosis and prognosis of neurological diseases. This review aims to highlight the significance and usefulness of lipidomics in diagnosing and treating brain diseases. We explored lipid alterations associated with brain diseases, paying attention to organ-specific characteristics and the functions of brain lipids. As the recent advances in brain lipidomics would have been impossible without advances in analytical techniques, we provide up-to-date information on mass spectrometric approaches and integrative analysis with other omic approaches. Last, we present the potential applications of lipidomics combined with artificial intelligence techniques and interdisciplinary collaborative research for treating brain diseases with clinical heterogeneities.
Collapse
Affiliation(s)
- Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Youngsuk Seo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Yeon Suk Jo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
- Department of Brain Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Seulah Lee
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Eunji Cho
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Yong-Seung Shin
- Laboratory Solutions Sales, Agilent Technologies Korea Ltd., Seoul, 06621, Republic of Korea
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Markus R. Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu 41062, Republic of Korea
| |
Collapse
|
10
|
Wingo TS, Liu Y, Gerasimov ES, Vattathil SM, Wynne ME, Liu J, Lori A, Faundez V, Bennett DA, Seyfried NT, Levey AI, Wingo AP. Shared mechanisms across the major psychiatric and neurodegenerative diseases. Nat Commun 2022; 13:4314. [PMID: 35882878 PMCID: PMC9325708 DOI: 10.1038/s41467-022-31873-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 07/07/2022] [Indexed: 12/14/2022] Open
Abstract
Several common psychiatric and neurodegenerative diseases share epidemiologic risk; however, whether they share pathophysiology is unclear and is the focus of our investigation. Using 25 GWAS results and LD score regression, we find eight significant genetic correlations between psychiatric and neurodegenerative diseases. We integrate the GWAS results with human brain transcriptomes (n = 888) and proteomes (n = 722) to identify cis- and trans- transcripts and proteins that are consistent with a pleiotropic or causal role in each disease, referred to as causal proteins for brevity. Within each disease group, we find many distinct and shared causal proteins. Remarkably, 30% (13 of 42) of the neurodegenerative disease causal proteins are shared with psychiatric disorders. Furthermore, we find 2.6-fold more protein-protein interactions among the psychiatric and neurodegenerative causal proteins than expected by chance. Together, our findings suggest these psychiatric and neurodegenerative diseases have shared genetic and molecular pathophysiology, which has important ramifications for early treatment and therapeutic development.
Collapse
Affiliation(s)
- Thomas S Wingo
- Goizueta Alzheimer's Disease Center, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Yue Liu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Selina M Vattathil
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Meghan E Wynne
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jiaqi Liu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Adriana Lori
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
| | - Victor Faundez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I Levey
- Goizueta Alzheimer's Disease Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Aliza P Wingo
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA.
- Veterans Affairs Atlanta Health Care System, Decatur, GA, USA.
| |
Collapse
|
11
|
Biomarkers of Neurodegenerative Diseases: Biology, Taxonomy, Clinical Relevance, and Current Research Status. Biomedicines 2022; 10:biomedicines10071760. [PMID: 35885064 PMCID: PMC9313182 DOI: 10.3390/biomedicines10071760] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 01/02/2023] Open
Abstract
The understanding of neurodegenerative diseases, traditionally considered to be well-defined entities with distinguishable clinical phenotypes, has undergone a major shift over the last 20 years. The diagnosis of neurodegenerative diseases primarily requires functional brain imaging techniques or invasive tests such as lumbar puncture to assess cerebrospinal fluid. A new biological approach and research efforts, especially in vivo, have focused on biomarkers indicating underlying proteinopathy in cerebrospinal fluid and blood serum. However, due to the complexity and heterogeneity of neurodegenerative processes within the central nervous system and the large number of overlapping clinical diagnoses, identifying individual proteinopathies is relatively difficult and often not entirely accurate. For this reason, there is an urgent need to develop laboratory methods for identifying specific biomarkers, understand the molecular basis of neurodegenerative disorders and classify the quantifiable and readily available tools that can accelerate efforts to translate the knowledge into disease-modifying therapies that can improve and simplify the areas of differential diagnosis, as well as monitor the disease course with the aim of estimating the prognosis or evaluating the effects of treatment. The aim of this review is to summarize the current knowledge about clinically relevant biomarkers in different neurodegenerative diseases.
Collapse
|
12
|
Dar MA, Arafah A, Bhat KA, Khan A, Khan MS, Ali A, Ahmad SM, Rashid SM, Rehman MU. Multiomics technologies: role in disease biomarker discoveries and therapeutics. Brief Funct Genomics 2022; 22:76-96. [PMID: 35809340 DOI: 10.1093/bfgp/elac017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/21/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Medical research has been revolutionized after the publication of the full human genome. This was the major landmark that paved the way for understanding the biological functions of different macro and micro molecules. With the advent of different high-throughput technologies, biomedical research was further revolutionized. These technologies constitute genomics, transcriptomics, proteomics, metabolomics, etc. Collectively, these high-throughputs are referred to as multi-omics technologies. In the biomedical field, these omics technologies act as efficient and effective tools for disease diagnosis, management, monitoring, treatment and discovery of certain novel disease biomarkers. Genotyping arrays and other transcriptomic studies have helped us to elucidate the gene expression patterns in different biological states, i.e. healthy and diseased states. Further omics technologies such as proteomics and metabolomics have an important role in predicting the role of different biological molecules in an organism. It is because of these high throughput omics technologies that we have been able to fully understand the role of different genes, proteins, metabolites and biological pathways in a diseased condition. To understand a complex biological process, it is important to apply an integrative approach that analyses the multi-omics data in order to highlight the possible interrelationships of the involved biomolecules and their functions. Furthermore, these omics technologies offer an important opportunity to understand the information that underlies disease. In the current review, we will discuss the importance of omics technologies as promising tools to understand the role of different biomolecules in diseases such as cancer, cardiovascular diseases, neurodegenerative diseases and diabetes. SUMMARY POINTS
Collapse
|
13
|
Dysregulated miRNAs as Biomarkers and Therapeutical Targets in Neurodegenerative Diseases. J Pers Med 2022; 12:jpm12050770. [PMID: 35629192 PMCID: PMC9143965 DOI: 10.3390/jpm12050770] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are representative neurodegenerative diseases (NDs) characterized by degeneration of selective neurons, as well as the lack of effective biomarkers and therapeutic treatments. In the last decade, microRNAs (miRNAs) have gained considerable interest in diagnostics and therapy of NDs, owing to their aberrant expression and their ability to target multiple molecules and pathways. Here, we provide an overview of dysregulated miRNAs in fluids (blood or cerebrospinal fluid) and nervous tissue of AD, PD, and ALS patients. By emphasizing those that are commonly dysregulated in these NDs, we highlight their potential role as biomarkers or therapeutical targets and describe the use of antisense oligonucleotides as miRNA therapies.
Collapse
|
14
|
Pomilio AB, Vitale AA, Lazarowski AJ. Uncommon Noninvasive Biomarkers for the Evaluation and Monitoring of the Etiopathogenesis of Alzheimer's Disease. Curr Pharm Des 2022; 28:1152-1169. [DOI: 10.2174/1381612828666220413101929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
Background:
Alzheimer´s disease (AD) is the most widespread dementia in the world, followed by vascular dementia. Since AD is a heterogeneous disease that shows several varied phenotypes, it is not easy to make an accurate diagnosis, so it arises when the symptoms are clear and the disease is already very advanced. Therefore, it is important to find out biomarkers for AD early diagnosis that facilitate treatment or slow down the disease. Classic biomarkers are obtained from cerebrospinal fluid and plasma, along with brain imaging by positron emission tomography. Attempts have been made to discover uncommon biomarkers from other body fluids, which are addressed in this update.
Objective:
This update aims to describe recent biomarkers from minimally invasive body fluids for the patients, such as saliva, urine, eye fluid or tears.
Methods:
Biomarkers were determined in patients versus controls by single tandem mass spectrometry, and immunoassays. Metabolites were identified by nuclear magnetic resonance, and microRNAs with genome-wide high-throughput real-time polymerase chain reaction-based platforms.
Results:
Biomarkers from urine, saliva, and eye fluid were described, including peptides/proteins, metabolites, and some microRNAs. The association with AD neuroinflammation and neurodegeneration was analyzed, highlighting the contribution of matrix metalloproteinases, the immune system and microglia, as well as the vascular system.
Conclusion:
Unusual biomarkers have been developed, which distinguish each stage and progression of the disease, and are suitable for the early AD diagnosis. An outstanding relationship of biomarkers with neuroinflammation and neurodegeneration was assessed, clearing up concerns of the etiopathogenesis of AD.
Collapse
Affiliation(s)
- Alicia B. Pomilio
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Arturo A. Vitale
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Alberto J. Lazarowski
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Córdoba 2351, C1120AAF Buenos Aires, Argentina
| |
Collapse
|
15
|
Noble AJ, Purcell RV, Adams AT, Lam YK, Ring PM, Anderson JR, Osborne AJ. A Final Frontier in Environment-Genome Interactions? Integrated, Multi-Omic Approaches to Predictions of Non-Communicable Disease Risk. Front Genet 2022; 13:831866. [PMID: 35211161 PMCID: PMC8861380 DOI: 10.3389/fgene.2022.831866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/19/2022] [Indexed: 12/26/2022] Open
Abstract
Epidemiological and associative research from humans and animals identifies correlations between the environment and health impacts. The environment-health inter-relationship is effected through an individual's underlying genetic variation and mediated by mechanisms that include the changes to gene regulation that are associated with the diversity of phenotypes we exhibit. However, the causal relationships have yet to be established, in part because the associations are reduced to individual interactions and the combinatorial effects are rarely studied. This problem is exacerbated by the fact that our genomes are highly dynamic; they integrate information across multiple levels (from linear sequence, to structural organisation, to temporal variation) each of which is open to and responds to environmental influence. To unravel the complexities of the genomic basis of human disease, and in particular non-communicable diseases that are also influenced by the environment (e.g., obesity, type II diabetes, cancer, multiple sclerosis, some neurodegenerative diseases, inflammatory bowel disease, rheumatoid arthritis) it is imperative that we fully integrate multiple layers of genomic data. Here we review current progress in integrated genomic data analysis, and discuss cases where data integration would lead to significant advances in our ability to predict how the environment may impact on our health. We also outline limitations which should form the basis of future research questions. In so doing, this review will lay the foundations for future research into the impact of the environment on our health.
Collapse
Affiliation(s)
- Alexandra J. Noble
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Rachel V. Purcell
- Department of Surgery, University of Otago Christchurch, Christchurch, New Zealand
| | - Alex T. Adams
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Ying K. Lam
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Paulina M. Ring
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jessica R. Anderson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Amy J. Osborne
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
16
|
Prabahar A. Integration of Transcriptomics Data and Metabolomic Data Using Biomedical Literature Mining and Pathway Analysis. Methods Mol Biol 2022; 2496:301-316. [PMID: 35713871 DOI: 10.1007/978-1-0716-2305-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent progress in omics technologies such as transcriptomics and metabolomics offers an unprecedented opportunity to understand the disease mechanisms and determines the associated biomedical entities using biomedical literature mining. Tremendous data available in the biomedical literature helps in addressing complex biomedical problems. Advancements in genomics and transcriptomics helps in decoding the genetic information obtained from various high throughput techniques for its use in personalized medicine and therapeutics. Integration of data from biomedical literature and data from large-scale genomic studies aids in the determination of the etiology of a disease and drug targets. This chapter addresses the perspectives of transcriptomics and metabolomics in biomedical literature mining and gives an overview of state-of-the-art techniques in this field.
Collapse
Affiliation(s)
- Archana Prabahar
- R&D Division, Eriks-Precision Components India Pvt Ltd, Mohali, Punjab, India.
| |
Collapse
|
17
|
Ruffo P, Strafella C, Cascella R, Caputo V, Conforti FL, Andò S, Giardina E. Deregulation of ncRNA in Neurodegenerative Disease: Focus on circRNA, lncRNA and miRNA in Amyotrophic Lateral Sclerosis. Front Genet 2021; 12:784996. [PMID: 34925464 PMCID: PMC8674781 DOI: 10.3389/fgene.2021.784996] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/16/2021] [Indexed: 01/17/2023] Open
Abstract
Parallel and massive sequencing of total RNA samples derived from different samples are possible thanks to the use of NGS (Next Generation Sequencing) technologies. This allowed characterizing the transcriptomic profile of both cell and tissue populations, increasing the knowledge of the molecular pathological processes of complex diseases, such as neurodegenerative diseases (NDs). Among the NDs, Amyotrophic Lateral Sclerosis (ALS) is caused by the progressive loss of motor neurons (MNs), and, to date, the diagnosis is often made by exclusion because there is no specific symptomatologic picture. For this reason, it is important to search for biomarkers that are clinically useful for carrying out a fast and accurate diagnosis of ALS. Thanks to various studies, it has been possible to propose several molecular mechanisms associated with the disease, some of which include the action of non-coding RNA, including circRNAs, miRNAs, and lncRNAs which will be discussed in the present review. The evidence analyzed in this review highlights the importance of conducting studies to better characterize the different ncRNAs in the disease to use them as possible diagnostic, prognostic, and/or predictive biomarkers of ALS and other NDs.
Collapse
Affiliation(s)
- Paola Ruffo
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Raffaella Cascella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Valerio Caputo
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Francesca Luisa Conforti
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Sebastiano Andò
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- Centro Sanitario, University of Calabria, Arcavacata di Rende, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| |
Collapse
|
18
|
Villa C, Yoon JH. Multi-Omics for the Understanding of Brain Diseases. Life (Basel) 2021; 11:life11111202. [PMID: 34833078 PMCID: PMC8618909 DOI: 10.3390/life11111202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 12/26/2022] Open
Abstract
Brain diseases, including both neurodegenerative diseases and mental disorders, represent the third largest healthcare problem in developed countries, after cardiovascular disorders and cancer [...].
Collapse
Affiliation(s)
- Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Correspondence: (C.V.); (J.H.Y.)
| | - Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Korea
- Correspondence: (C.V.); (J.H.Y.)
| |
Collapse
|