1
|
Zhang F, Jiang Q, Cai J, Meng F, Tang W, Liu Z, Lin X, Liu W, Zhou Y, Shen X, Xue R, Dong L, Zhang S. Activation of NOD1 on tumor-associated macrophages augments CD8 + T cell-mediated antitumor immunity in hepatocellular carcinoma. SCIENCE ADVANCES 2024; 10:eadp8266. [PMID: 39356756 PMCID: PMC11446285 DOI: 10.1126/sciadv.adp8266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024]
Abstract
The efficacy of immunotherapy targeting the PD-1/PD-L1 pathway in hepatocellular carcinoma (HCC) is limited. NOD-like receptors (NLRs) comprise a highly evolutionarily conserved family of cytosolic bacterial sensors, yet their impact on antitumor immunity against HCC remains unclear. In this study, we uncovered that NOD1, a well-studied member of NLR family, exhibits predominant expression in tumor-associated macrophages (TAMs) and correlates positively with improved prognosis and responses to anti-PD-1 treatments in patients with HCC. Activation of NOD1 in vivo augments antitumor immunity and enhances the effectiveness of anti-PD-1 therapy. Mechanistically, NOD1 activation resulted in diminished expression of perilipin 5, thereby hindering fatty acid oxidation and inducing free fatty acid accumulation in TAMs. This metabolic alteration promoted membrane localization of the costimulatory molecule OX40L in a lipid modification-dependent manner, thereby activating CD8+ T cells. These findings unveil a previously unrecognized role for NOD1 in fortifying antitumor T cell immunity in HCC, potentially advancing cancer immunotherapy.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Qiuyu Jiang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Jialiang Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Fansheng Meng
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Wenqing Tang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Zhiyong Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Xiahui Lin
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Wenfeng Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Yi Zhou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dongan Road, Shanghai, 200030, P.R. China
| |
Collapse
|
2
|
Yin T, Chen Y, Li W, Tang T, Li T, Xie B, Xiao D, He H. Antioxidative Potential and Ameliorative Effects of Rice Bran Fermented with Lactobacillus against High-Fat Diet-Induced Oxidative Stress in Mice. Antioxidants (Basel) 2024; 13:639. [PMID: 38929078 PMCID: PMC11201030 DOI: 10.3390/antiox13060639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Rice bran is an important byproduct of the rice polishing process, rich in nutrients, but it is underutilized and often used as feed or discarded, resulting in a huge amount of waste. In this study, rice bran was fermented by Lactobacillus fermentum MF423 to obtain a product with high antioxidant activity. First, a reliable and efficient method for assessing the antioxidant capacity of the fermentation products was established using high-performance liquid chromatography (HPLC), which ensured the consistency of the batch fermentation. The fermented rice bran product (FLRB) exhibited significant antioxidant activity in cells, C. elegans, and hyperlipidemic mice. Transcriptome analysis of mouse livers showed that the expression of plin5 was upregulated in diabetic mice administered FLRB, thereby preventing the excessive production of free fatty acids (FFAs) and the subsequent generation of large amounts of reactive oxygen species (ROS). These studies lay the foundation for the application of rice bran fermentation products.
Collapse
Affiliation(s)
- Tingting Yin
- School of Life Sciences, Central South University, Changsha 410083, China; (T.Y.); (Y.C.); (W.L.); (T.T.); (T.L.)
| | - Yidan Chen
- School of Life Sciences, Central South University, Changsha 410083, China; (T.Y.); (Y.C.); (W.L.); (T.T.); (T.L.)
| | - Wenzhao Li
- School of Life Sciences, Central South University, Changsha 410083, China; (T.Y.); (Y.C.); (W.L.); (T.T.); (T.L.)
| | - Tingting Tang
- School of Life Sciences, Central South University, Changsha 410083, China; (T.Y.); (Y.C.); (W.L.); (T.T.); (T.L.)
| | - Tong Li
- School of Life Sciences, Central South University, Changsha 410083, China; (T.Y.); (Y.C.); (W.L.); (T.T.); (T.L.)
| | - Binbin Xie
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China;
| | - Dong Xiao
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China;
| | - Hailun He
- School of Life Sciences, Central South University, Changsha 410083, China; (T.Y.); (Y.C.); (W.L.); (T.T.); (T.L.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China;
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China;
| |
Collapse
|
3
|
Yin X, Dong L, Wang X, Qin Z, Ma Y, Ke X, Li Y, Wang Q, Mi Y, Lyu Q, Xu X, Zheng P, Tang Y. Perilipin 5 regulates hepatic stellate cell activation and high-fat diet-induced non-alcoholic fatty liver disease. Animal Model Exp Med 2024; 7:166-178. [PMID: 37202925 PMCID: PMC11079159 DOI: 10.1002/ame2.12327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/21/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases globally. Hepatic stellate cells (HSCs) are the major effector cells of liver fibrosis. HSCs contain abundant lipid droplets (LDs) in their cytoplasm during quiescence. Perilipin 5 (PLIN 5) is a LD surface-associated protein that plays a crucial role in lipid homeostasis. However, little is known about the role of PLIN 5 in HSC activation. METHODS PLIN 5 was overexpressed in HSCs of Sprague-Dawley rats by lentivirus transfection. At the same time, PLIN 5 gene knockout mice were constructed and fed with a high-fat diet (HFD) for 20 weeks to study the role of PLIN 5 in NAFLD. The corresponding reagent kits were used to measure TG, GSH, Caspase 3 activity, ATP level, and mitochondrial DNA copy number. Metabolomic analysis of mice liver tissue metabolism was performed based on UPLC-MS/MS. AMPK, mitochondrial function, cell proliferation, and apoptosis-related genes and proteins were detected by western blotting and qPCR. RESULTS Overexpression of PLIN 5 in activated HSCs led to a decrease in ATP levels in mitochondria, inhibition of cell proliferation, and a significant increase in cell apoptosis through AMPK activation. In addition, compared with the HFD-fed C57BL/6J mice, PLIN 5 knockout mice fed with HFD showed reduced liver fat deposition, decreased LD abundance and size, and reduced liver fibrosis. CONCLUSION These findings highlight the unique regulatory role of PLIN 5 in HSCs and the role of PLIN 5 in the fibrosis process of NAFLD.
Collapse
Affiliation(s)
- Xuecui Yin
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Lin Dong
- Department of Pediatricsthe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiaohan Wang
- Department of Pediatricsthe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhenzhen Qin
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuying Ma
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiaofei Ke
- Department of Pediatricsthe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ya Li
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Qingde Wang
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yang Mi
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Quanjun Lyu
- Department of Clinical Nutritionthe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xia Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co‐innovation Center of Henan Province for New drug R & D and Preclinical Safety, School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Pengyuan Zheng
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Youcai Tang
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of Pediatrics, Gastroenterology, Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury and Henan Provincial Outstanding Overseas Scientists Chronic Liver Injury Studiothe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
4
|
McCall KD, Walter D, Patton A, Thuma JR, Courreges MC, Palczewski G, Goetz DJ, Bergmeier S, Schwartz FL. Anti-Inflammatory and Therapeutic Effects of a Novel Small-Molecule Inhibitor of Inflammation in a Male C57BL/6J Mouse Model of Obesity-Induced NAFLD/MAFLD. J Inflamm Res 2023; 16:5339-5366. [PMID: 38026235 PMCID: PMC10658948 DOI: 10.2147/jir.s413565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Non-alcoholic fatty liver disease (NAFLD), recently renamed metabolic (dysfunction) associated fatty liver disease (MAFLD), is the most common chronic liver disease in the United States. Presently, there is an intense and ongoing effort to identify and develop novel therapeutics for this disease. In this study, we explored the anti-inflammatory activity of a new compound, termed IOI-214, and its therapeutic potential to ameliorate NAFLD/MAFLD in male C57BL/6J mice fed a high fat (HF) diet. Methods Murine macrophages and hepatocytes in culture were treated with lipopolysaccharide (LPS) ± IOI-214 or DMSO (vehicle), and RT-qPCR analyses of inflammatory cytokine gene expression were used to assess IOI-214's anti-inflammatory properties in vitro. Male C57BL/6J mice were also placed on a HF diet and treated once daily with IOI-214 or DMSO for 16 weeks. Tissues were collected and analyzed to determine the effects of IOI-214 on HF diet-induced NAFL D/MAFLD. Measurements such as weight, blood glucose, serum cholesterol, liver/serum triglyceride, insulin, and glucose tolerance tests, ELISAs, metabolomics, Western blots, histology, gut microbiome, and serum LPS binding protein analyses were conducted. Results IOI-214 inhibited LPS-induced inflammation in macrophages and hepatocytes in culture and abrogated HF diet-induced mesenteric fat accumulation, hepatic inflammation and steatosis/hepatocellular ballooning, as well as fasting hyperglycemia without affecting insulin resistance or fasting insulin, cholesterol or TG levels despite overall obesity in vivo in male C57BL/6J mice. IOI-214 also decreased systemic inflammation in vivo and improved gut microbiota dysbiosis and leaky gut. Conclusion Combined, these data indicate that IOI-214 works at multiple levels in parallel to inhibit the inflammation that drives HF diet-induced NAFLD/MAFLD, suggesting that it may have therapeutic potential for NAFLD/MAFLD.
Collapse
Affiliation(s)
- Kelly D McCall
- Molecular and Cellular Biology Program, Ohio University College of Arts & Sciences, Athens, OH, USA
- Department of Biological Sciences, Ohio University College of Arts & Sciences, Athens, OH, USA
- Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Biomedical Engineering Program, Ohio University Russ College of Engineering and Technology, Athens, OH, USA
| | - Debra Walter
- Molecular and Cellular Biology Program, Ohio University College of Arts & Sciences, Athens, OH, USA
- Department of Biological Sciences, Ohio University College of Arts & Sciences, Athens, OH, USA
| | - Ashley Patton
- Molecular and Cellular Biology Program, Ohio University College of Arts & Sciences, Athens, OH, USA
- Department of Biological Sciences, Ohio University College of Arts & Sciences, Athens, OH, USA
| | - Jean R Thuma
- Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
| | - Maria C Courreges
- Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
| | | | - Douglas J Goetz
- Molecular and Cellular Biology Program, Ohio University College of Arts & Sciences, Athens, OH, USA
- Biomedical Engineering Program, Ohio University Russ College of Engineering and Technology, Athens, OH, USA
- Department of Chemical & Biomolecular Engineering, Ohio University Russ College of Engineering and Technology, Athens, OH, USA
| | - Stephen Bergmeier
- Molecular and Cellular Biology Program, Ohio University College of Arts & Sciences, Athens, OH, USA
- Biomedical Engineering Program, Ohio University Russ College of Engineering and Technology, Athens, OH, USA
- Department of Chemistry & Biochemistry, Ohio University College of Arts & Sciences, Athens, OH, USA
| | - Frank L Schwartz
- Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Biomedical Engineering Program, Ohio University Russ College of Engineering and Technology, Athens, OH, USA
| |
Collapse
|
5
|
Mastoridou EM, Goussia AC, Kanavaros P, Charchanti AV. Involvement of Lipophagy and Chaperone-Mediated Autophagy in the Pathogenesis of Non-Alcoholic Fatty Liver Disease by Regulation of Lipid Droplets. Int J Mol Sci 2023; 24:15891. [PMID: 37958873 PMCID: PMC10649352 DOI: 10.3390/ijms242115891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is defined as the accumulation of lipids in the form of lipid droplets in more than 5% of hepatocytes. It is regarded as a range of diverse pathologies, including simple steatosis and steatohepatitis. The structural characteristics of lipid droplets, along with their protein composition, mainly including perilipins, have been implicated in the etiology of the disease. These proteins have garnered increasing attention as a pivotal regulator since their levels and distinct expression appear to be associated with the progression from simple steatosis to steatohepatitis. Perilipins are target proteins of chaperone-mediated autophagy, and their degradation is a prerequisite for lipolysis and lipophagy to access the lipid core. Both lipophagy and chaperone-mediated autophagy have significant implications on the development of the disease, as evidenced by their upregulation during the initial phases of simple steatosis and their subsequent downregulation once steatosis is established. On the contrary, during steatohepatitis, the process of chaperone-mediated autophagy is enhanced, although lipophagy remains suppressed. Evidently, the reduced levels of autophagic pathways observed in simple steatosis serve as a defensive mechanism against lipotoxicity. Conversely, in steatohepatitis, chaperone-mediated autophagy fails to compensate for the continuous generation of small lipid droplets and thus cannot protect hepatocytes from lipotoxicity.
Collapse
Affiliation(s)
- Eleftheria M. Mastoridou
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.M.M.); (P.K.)
| | - Anna C. Goussia
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.M.M.); (P.K.)
| | - Antonia V. Charchanti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.M.M.); (P.K.)
| |
Collapse
|
6
|
Krizanac M, Mass Sanchez PB, Schröder SK, Weiskirchen R, Asimakopoulos A. Lipid-Independent Regulation of PLIN5 via IL-6 through the JAK/STAT3 Axis in Hep3B Cells. Int J Mol Sci 2023; 24:ijms24087219. [PMID: 37108378 PMCID: PMC10138877 DOI: 10.3390/ijms24087219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Perilipin 5 (PLIN5) is a lipid droplet coat protein that is highly expressed in oxidative tissues such as those of muscles, the heart and the liver. PLIN5 expression is regulated by a family of peroxisome proliferator-activated receptors (PPARs) and modulated by the cellular lipid status. So far, research has focused on the role of PLIN5 in the context of non-alcoholic fatty liver disease (NAFLD) and specifically in lipid droplet formation and lipolysis, where PLIN5 serves as a regulator of lipid metabolism. In addition, there are only limited studies connecting PLIN5 to hepatocellular carcinoma (HCC), where PLIN5 expression is proven to be upregulated in hepatic tissue. Considering that HCC development is highly driven by cytokines present throughout NAFLD development and in the tumor microenvironment, we here explore the possible regulation of PLIN5 by cytokines known to be involved in HCC and NAFLD progression. We demonstrate that PLIN5 expression is strongly induced by interleukin-6 (IL-6) in a dose- and time-dependent manner in Hep3B cells. Moreover, IL-6-dependent PLIN5 upregulation is mediated by the JAK/STAT3 signaling pathway, which can be blocked by transforming growth factor-β (TGF-β) and tumor necrosis factor-α (TNF-α). Furthermore, IL-6-mediated PLIN5 upregulation changes when IL-6 trans-signaling is stimulated through the addition of soluble IL-6R. In sum, this study sheds light on lipid-independent regulation of PLIN5 expression in the liver, making PLIN5 a crucial target for NAFLD-induced HCC.
Collapse
Affiliation(s)
- Marinela Krizanac
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Paola Berenice Mass Sanchez
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Sarah K Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Anastasia Asimakopoulos
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
7
|
Chu DT, Nguyen TL. Frizzled receptors and SFRP5 in lipid metabolism: Current findings and potential applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:377-393. [PMID: 36631199 DOI: 10.1016/bs.pmbts.2022.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lipid metabolism plays a very important role as the central metabolic process of the body. Lipid metabolism interruptions may cause many chronic diseases, for example, non-alcoholic fatty liver disease (NAFLD), diabetes, and obesity. Secreted Frizzled Related Protein 5 (SFRP5) and Frizzled receptors (FZD) are two newly discovered adipokines that are involved in lipid metabolism as well as lipogenesis. Both of these adipokines affect lipid metabolism and adipogenesis through three WNT signaling pathways (WNTSP): WNT/β-catenin, WNT/Ca2+, and WNT/JNK. FZD consists of 10 species, which have a cysteine-rich domain (CRD) to bind to the WNT protein for signal transduction. Depending on the type of ligand or co-receptor, they can stimulate or inhibit adipogenesis. In lipid metabolism, they play a role in recognizing fatty acids. In obesity, gene expression of the WNT/FZD receptors is significantly increased. In contrast, SFPR5 serves as an antagonist that can compete with FZD for inhibition of WNTSP. It is believed to have anti-inflammatory potential in obesity and diseases related to abnormal lipid metabolism. In these cases, the expression of SFRP5 is found to be very low leading to the promoted production of proinflammatory cytokines (PICS). Some methods that include using recombinant SFRP5 to improve non-alcoholic steatohepatitis (NASH), using secreted Ly-6/uPAR-related protein 1 (Slurp1) to regulate fat accumulation in the liver through SFRP5, and dietary and lifestyle interventions to improve overweight/obesity have been studied. However, understandings of the molecular mechanisms of these two adipokines and their interactions are very limited. Therefore, more in-depth studies are needed in the future.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| | - Thanh-Lam Nguyen
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| |
Collapse
|
8
|
Huo K, Ma KG, Guo QY, Duan P, Xu J. Perilipin 5 protects against oxygen-glucose deprivation/reoxygenation-elicited neuronal damage by inhibiting oxidative stress and inflammatory injury via the Akt-GSK-3β-Nrf2 pathway. Int Immunopharmacol 2022; 108:108718. [DOI: 10.1016/j.intimp.2022.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 11/05/2022]
|
9
|
Lyschik S, Lauer AA, Roth T, Janitschke D, Hollander M, Will T, Hartmann T, Kopito RR, Helms V, Grimm MOW, Schrul B. PEX19 Coordinates Neutral Lipid Storage in Cells in a Peroxisome-Independent Fashion. Front Cell Dev Biol 2022; 10:859052. [PMID: 35557938 PMCID: PMC9086359 DOI: 10.3389/fcell.2022.859052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Cellular lipid metabolism is tightly regulated and requires a sophisticated interplay of multiple subcellular organelles to adapt to changing nutrient supply. PEX19 was originally described as an essential peroxisome biogenesis factor that selectively targets membrane proteins to peroxisomes. Metabolic aberrations that were associated with compromised PEX19 functions, were solely attributed to the absence of peroxisomes, which is also considered the underlying cause for Zellweger Spectrum Disorders. More recently, however, it was shown that PEX19 also mediates the targeting of the VCP/P97-recuitment factor UBXD8 to the ER from where it partitions to lipid droplets (LDs) but the physiological consequences remained elusive. Here, we addressed the intriguing possibility that PEX19 coordinates the functions of the major cellular sites of lipid metabolism. We exploited the farnesylation of PEX19 and deciphered the organelle-specific functions of PEX19 using systems level approaches. Non-farnesylated PEX19 is sufficient to fully restore the metabolic activity of peroxisomes, while farnesylated PEX19 controls lipid metabolism by a peroxisome-independent mechanism that can be attributed to sorting a specific protein subset to LDs. In the absence of this PEX19-dependent LD proteome, cells accumulate excess triacylglycerols and fail to fully deplete their neutral lipid stores under catabolic conditions, highlighting a hitherto unrecognized function of PEX19 in controlling neutral lipid storage and LD dynamics.
Collapse
Affiliation(s)
- Sven Lyschik
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Faculty of Medicine, Saarland University, Homburg, Germany
| | - Anna A. Lauer
- Experimental Neurology, Saarland University, Homburg, Germany
| | - Tanja Roth
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Faculty of Medicine, Saarland University, Homburg, Germany
| | | | - Markus Hollander
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Thorsten Will
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Tobias Hartmann
- Experimental Neurology, Saarland University, Homburg, Germany
- Deutsches Institut für Demenzprävention, Saarland University, Homburg, Germany
| | - Ron R. Kopito
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Marcus O. W. Grimm
- Experimental Neurology, Saarland University, Homburg, Germany
- Deutsches Institut für Demenzprävention, Saarland University, Homburg, Germany
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, Leverkusen, Germany
| | - Bianca Schrul
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Faculty of Medicine, Saarland University, Homburg, Germany
- *Correspondence: Bianca Schrul,
| |
Collapse
|
10
|
Li Y, Yang M, Lou A, Yun J, Ren C, Li X, Xia G, Nam K, Yoon D, Jin H, Seo K, Jin X. Integrated analysis of expression profiles with meat quality traits in cattle. Sci Rep 2022; 12:5926. [PMID: 35396568 PMCID: PMC8993808 DOI: 10.1038/s41598-022-09998-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs) play a vital role in improving meat quality by binding to messenger RNAs (mRNAs). We performed an integrated analysis of miRNA and mRNA expression profiling between bulls and steers based on the differences in meat quality traits. Fat and fatty acids are the major phenotypic indices of meat quality traits to estimate between-group variance. In the present study, 90 differentially expressed mRNAs (DEGs) and 18 differentially expressed miRNAs (DEMs) were identified. Eighty-three potential DEG targets and 18 DEMs were used to structure a negative interaction network, and 75 matching target genes were shown in this network. Twenty-six target genes were designated as intersection genes, screened from 18 DEMs, and overlapped with the DEGs. Seventeen of these genes enriched to 19 terms involved in lipid metabolism. Subsequently, 13 DEGs and nine DEMs were validated using quantitative real-time PCR, and seven critical genes were selected to explore the influence of fat and fatty acids through hub genes and predict functional association. A dual-luciferase reporter and Western blot assays confirmed a predicted miRNA target (bta-miR-409a and PLIN5). These findings provide substantial evidence for molecular genetic controls and interaction among genes in cattle.
Collapse
Affiliation(s)
- Yunxiao Li
- College of Life Science, Shandong University, Qingdao, China
| | - Miaosen Yang
- Department of Chemistry, Northeast Electric Power University, Jilin, China
| | - Angang Lou
- Department of Veterinary Medicine, College of Agriculture, Yanbian University, Yanji, China
| | - Jinyan Yun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Chunyu Ren
- Animal Husbandry Bureau of Yanbian Autonomous Prefecture, Yanji, China
| | - Xiangchun Li
- Department of Veterinary Medicine, College of Agriculture, Yanbian University, Yanji, China
| | - Guangjun Xia
- Department of Veterinary Medicine, College of Agriculture, Yanbian University, Yanji, China
| | - Kichang Nam
- Department of Animal Science and Technology, College of Life Science and Natural Resources, Sunchon National University, Sunchon, South Korea
| | - Duhak Yoon
- Department of Animal Science, Kyungpook National University, Taegu, South Korea
| | - Haiguo Jin
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Kangseok Seo
- Department of Animal Science and Technology, College of Life Science and Natural Resources, Sunchon National University, Sunchon, South Korea.
| | - Xin Jin
- Engineering Research Center of North-East Cold Region Beef Cattle Science and Technology Innovation, Ministry of Education, Yanbian University, Yanji, China.
| |
Collapse
|
11
|
Lipid Droplets, Phospholipase A 2, Arachidonic Acid, and Atherosclerosis. Biomedicines 2021; 9:biomedicines9121891. [PMID: 34944707 PMCID: PMC8699036 DOI: 10.3390/biomedicines9121891] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Lipid droplets, classically regarded as static storage organelles, are currently considered as dynamic structures involved in key processes of lipid metabolism, cellular homeostasis and signaling. Studies on the inflammatory state of atherosclerotic plaques suggest that circulating monocytes interact with products released by endothelial cells and may acquire a foamy phenotype before crossing the endothelial barrier and differentiating into macrophages. One such compound released in significant amounts into the bloodstream is arachidonic acid, the common precursor of eicosanoids, and a potent inducer of neutral lipid synthesis and lipid droplet formation in circulating monocytes. Members of the family of phospholipase A2, which hydrolyze the fatty acid present at the sn-2 position of phospholipids, have recently emerged as key controllers of lipid droplet homeostasis, regulating their formation and the availability of fatty acids for lipid mediator production. In this paper we discuss recent findings related to lipid droplet dynamics in immune cells and the ways these organelles are involved in regulating arachidonic acid availability and metabolism in the context of atherosclerosis.
Collapse
|
12
|
Hello from the other side: Membrane contact of lipid droplets with other organelles and subsequent functional implications. Prog Lipid Res 2021; 85:101141. [PMID: 34793861 DOI: 10.1016/j.plipres.2021.101141] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
Lipid droplets (LDs) are ubiquitous organelles that play crucial roles in response to physiological and environmental cues. The identification of several neutral lipid synthesizing and regulatory protein complexes have propelled significant advance on the mechanisms of LD biogenesis in the endoplasmic reticulum (ER). Increasing evidence suggests that distinct proteins and regulatory factors, which localize to membrane contact sites (MCS), are involved not only in interorganellar lipid exchange and transport, but also function in other important cellular processes, including autophagy, mitochondrial dynamics and inheritance, ion signaling and inter-regulation of these MCS. More and more tethers and molecular determinants are associated to MCS and to a diversity of cellular and pathophysiological processes, demonstrating the dynamics and importance of these junctions in health and disease. The conjugation of lipids with proteins in supramolecular complexes is known to be paramount for many biological processes, namely membrane biosynthesis, cell homeostasis, regulation of organelle division and biogenesis, and cell growth. Ultimately, this physical organization allows the contact sites to function as crucial metabolic hubs that control the occurrence of chemical reactions. This leads to biochemical and metabolite compartmentalization for the purposes of energetic efficiency and cellular homeostasis. In this review, we will focus on the structural and functional aspects of LD-organelle interactions and how they ensure signaling exchange and metabolites transfer between organelles.
Collapse
|
13
|
Nisticò C, Pagliari F, Chiarella E, Fernandes Guerreiro J, Marafioti MG, Aversa I, Genard G, Hanley R, Garcia-Calderón D, Bond HM, Mesuraca M, Tirinato L, Spadea MF, Seco JC. Lipid Droplet Biosynthesis Impairment through DGAT2 Inhibition Sensitizes MCF7 Breast Cancer Cells to Radiation. Int J Mol Sci 2021; 22:10102. [PMID: 34576263 PMCID: PMC8466244 DOI: 10.3390/ijms221810102] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most frequent cancer in women worldwide and late diagnosis often adversely affects the prognosis of the disease. Radiotherapy is commonly used to treat breast cancer, reducing the risk of recurrence after surgery. However, the eradication of radioresistant cancer cells, including cancer stem cells, remains the main challenge of radiotherapy. Recently, lipid droplets (LDs) have been proposed as functional markers of cancer stem cells, also being involved in increased cell tumorigenicity. LD biogenesis is a multistep process requiring various enzymes, including Diacylglycerol acyltransferase 2 (DGAT2). In this context, we evaluated the effect of PF-06424439, a selective DGAT2 inhibitor, on MCF7 breast cancer cells exposed to X-rays. Our results demonstrated that 72 h of PF-06424439 treatment reduced LD content and inhibited cell migration, without affecting cell proliferation. Interestingly, PF-06424439 pre-treatment followed by radiation was able to enhance radiosensitivity of MCF7 cells. In addition, the combined treatment negatively interfered with lipid metabolism-related genes, as well as with EMT gene expression, and modulated the expression of typical markers associated with the CSC-like phenotype. These findings suggest that PF-06424439 pre-treatment coupled to X-ray exposure might potentiate breast cancer cell radiosensitivity and potentially improve the radiotherapy effectiveness.
Collapse
Affiliation(s)
- Clelia Nisticò
- Department of Clinical and Experimental Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.N.); (E.C.); (M.G.M.); (I.A.); (H.M.B.); (M.M.)
- Division of BioMedical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany; (F.P.); (J.F.G.); (G.G.); (R.H.); (D.G.-C.)
| | - Francesca Pagliari
- Division of BioMedical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany; (F.P.); (J.F.G.); (G.G.); (R.H.); (D.G.-C.)
| | - Emanuela Chiarella
- Department of Clinical and Experimental Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.N.); (E.C.); (M.G.M.); (I.A.); (H.M.B.); (M.M.)
| | - Joana Fernandes Guerreiro
- Division of BioMedical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany; (F.P.); (J.F.G.); (G.G.); (R.H.); (D.G.-C.)
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 1397), 2695-066 Bobadela LRS, Portugal
| | - Maria Grazia Marafioti
- Department of Clinical and Experimental Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.N.); (E.C.); (M.G.M.); (I.A.); (H.M.B.); (M.M.)
- Division of BioMedical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany; (F.P.); (J.F.G.); (G.G.); (R.H.); (D.G.-C.)
| | - Ilenia Aversa
- Department of Clinical and Experimental Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.N.); (E.C.); (M.G.M.); (I.A.); (H.M.B.); (M.M.)
- Division of BioMedical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany; (F.P.); (J.F.G.); (G.G.); (R.H.); (D.G.-C.)
| | - Geraldine Genard
- Division of BioMedical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany; (F.P.); (J.F.G.); (G.G.); (R.H.); (D.G.-C.)
| | - Rachel Hanley
- Division of BioMedical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany; (F.P.); (J.F.G.); (G.G.); (R.H.); (D.G.-C.)
- Department of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Daniel Garcia-Calderón
- Division of BioMedical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany; (F.P.); (J.F.G.); (G.G.); (R.H.); (D.G.-C.)
- Department of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Heather Mandy Bond
- Department of Clinical and Experimental Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.N.); (E.C.); (M.G.M.); (I.A.); (H.M.B.); (M.M.)
| | - Maria Mesuraca
- Department of Clinical and Experimental Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.N.); (E.C.); (M.G.M.); (I.A.); (H.M.B.); (M.M.)
| | - Luca Tirinato
- Department of Clinical and Experimental Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.N.); (E.C.); (M.G.M.); (I.A.); (H.M.B.); (M.M.)
- Division of BioMedical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany; (F.P.); (J.F.G.); (G.G.); (R.H.); (D.G.-C.)
| | - Maria Francesca Spadea
- Department of Clinical and Experimental Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.N.); (E.C.); (M.G.M.); (I.A.); (H.M.B.); (M.M.)
| | - Joao Carlos Seco
- Division of BioMedical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany; (F.P.); (J.F.G.); (G.G.); (R.H.); (D.G.-C.)
- Department of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| |
Collapse
|
14
|
Perilipin 5 Ameliorates Hepatic Stellate Cell Activation via SMAD2/3 and SNAIL Signaling Pathways and Suppresses STAT3 Activation. Cells 2021; 10:cells10092184. [PMID: 34571833 PMCID: PMC8467115 DOI: 10.3390/cells10092184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022] Open
Abstract
Comprehending the molecular mechanisms underlying hepatic fibrogenesis is essential to the development of treatment. The hallmark of hepatic fibrosis is the development and deposition of excess fibrous connective tissue forcing tissue remodeling. Hepatic stellate cells (HSC) play a major role in the pathogenesis of liver fibrosis. Their activation via the transforming growth factor-β1 (TGF-β1) as a key mediator is considered the crucial event in the pathophysiology of hepatic fibrogenesis. It has been shown that Perilipin 5 (PLIN5), known as a lipid droplet structural protein that is highly expressed in oxidative tissue, can inhibit such activation through various mechanisms associated with lipid metabolism. This study aimed to investigate the possible influence of PLIN5 on TGF-β1 signaling. Our findings confirm the importance of PLIN5 in maintaining HSC quiescence in vivo and in vitro. PLIN5 overexpression suppresses the TGF-β1-SMAD2/3 and SNAIL signaling pathways as well as the activation of the signal transducers and activators of transcription 3 (STAT3). These findings derived from experiments in hepatic cell lines LX-2 and Col-GFP, in which overexpression of PLIN5 was able to downregulate the signaling pathways SMAD2/3 and SNAIL activated previously by TGF-β1 treatment. Furthermore, TGF-β1-mediatedinduction of extracellular matrix proteins, such as collagen type I (COL1), Fibronectin, and α-smooth muscle actin (α-SMA), was suppressed by PLIN5. Moreover, STAT3, which is interrelated with TGF-β1 was already basally activated in the cell lines and inhibited by PLIN5 overexpression, leading to a further reduction in HSC activity shown by lowered α-SMA expression. This extension of the intervening mechanisms presents PLIN5 as a potent and pleiotropic target in HSC activation.
Collapse
|
15
|
Mitochondrial Lipid Homeostasis at the Crossroads of Liver and Heart Diseases. Int J Mol Sci 2021; 22:ijms22136949. [PMID: 34203309 PMCID: PMC8268967 DOI: 10.3390/ijms22136949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 12/16/2022] Open
Abstract
The prevalence of NAFLD (non-alcoholic fatty liver disease) is a rapidly increasing problem, affecting a huge population around the globe. However, CVDs (cardiovascular diseases) are the most common cause of mortality in NAFLD patients. Atherogenic dyslipidemia, characterized by plasma hypertriglyceridemia, increased small dense LDL (low-density lipoprotein) particles, and decreased HDL-C (high-density lipoprotein cholesterol) levels, is often observed in NAFLD patients. In this review, we summarize recent genetic evidence, proving the diverse nature of metabolic pathways involved in NAFLD pathogenesis. Analysis of available genetic data suggests that the altered operation of fatty-acid β-oxidation in liver mitochondria is the key process, connecting NAFLD-mediated dyslipidemia and elevated CVD risk. In addition, we discuss several NAFLD-associated genes with documented anti-atherosclerotic or cardioprotective effects, and current pharmaceutical strategies focused on both NAFLD treatment and reduction of CVD risk.
Collapse
|