1
|
Nath R, Manna S, Panda S, Maity A, Bandyopadhyay K, Das A, Khan SA, Debnath B, Akhtar MJ. Flavonoid Based Development of Synthetic Drugs: Chemistry and Biological Activities. Chem Biodivers 2024:e202401899. [PMID: 39462980 DOI: 10.1002/cbdv.202401899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/29/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
The toxicity associated with synthetic drugs used for treating various diseases is common. This led to a growing interest in searching and incorporating natural functional core structures such as flavonoid and their derivatives via chemical modifications to overcome the toxicity problems and enhance their biological spectrum. Natural core structures such as flavonoids are accepted due to their safety to the environment and owing to their varieties of biological activities such as anti-Alzheimer, antimicrobial, anticancer, anti-inflammatory, antidiabetics, and antiviral properties. Based on their chemical structure, flavonoids are classified into various classes such as flavone, flavanol, flavanone, isoflavone, and Anthocyanin, etc. The present review focuses on the potential role of the flavonoid ring-containing derivatives, highlighting their ability to prevent and treat non-communicable diseases such as diabetes, Alzheimer's, and cancer. The pharmacological activities of the flavonoid's derivatives are mainly attributed to their antioxidant effects against free radicals, and reactive oxygen species as well as their ability to act as enzymes inhibitors. The review covers the synthetic strategies of flavonoid derivatives, structure activity relationship (SAR), and in silico studies to improve the efficacy of these compounds. The SAR, molecular docking analysis will enable medicinal chemists to search further, develop potent and newer therapeutic agents.
Collapse
Affiliation(s)
- Rajarshi Nath
- Department of Pharmacy, Bharat Technology, Howrah, West Bengal, Uluberia, 711316, India
- Department of Pharmaceutical Technology, JIS University, Agarpara Campus, Nilgunj Road, Kolkata-109, Agarpara, KOL-81, India
| | - Swarup Manna
- Department of Pharmacy, Bharat Technology, Howrah, West Bengal, Uluberia, 711316, India
| | - Shambo Panda
- Department of Pharmacy, Bharat Technology, Howrah, West Bengal, Uluberia, 711316, India
| | - Arindam Maity
- Department of Pharmaceutical Technology, JIS University, Agarpara Campus, Nilgunj Road, Kolkata-109, Agarpara, KOL-81, India
| | - Krishnalekha Bandyopadhyay
- Department of Pharmacology, JSS College of Pharmacy, Mysuru, Bangalore-Mysore Road, Bannimantap, Mysuru, Karnataka, 570015, India
| | - Arijit Das
- Department of Pharmacy, Bharat Technology, Howrah, West Bengal, Uluberia, 711316, India
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PC-130, Azaiba, Bousher, Muscat, PO-620, Sultanate of Oman
| | - Biplab Debnath
- Department of Pharmacy, Bharat Technology, Howrah, West Bengal, Uluberia, 711316, India
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PC-130, Azaiba, Bousher, Muscat, PO-620, Sultanate of Oman
| |
Collapse
|
2
|
Salih E, Mgbeahuruike EE, Prévost-Monteiro S, Sipari N, Väre H, Novak B, Julkunen-Tiitto R, Fyhrqvist P. Polyphenols and Phenolic Glucosides in Antibacterial Twig Extracts of Naturally Occurring Salix myrsinifolia (Salisb.), S. phylicifolia (L.) and S. starkeana (Willd.) and the Cultivated Hybrid S. x pendulina (Wender.). Pharmaceutics 2024; 16:916. [PMID: 39065613 PMCID: PMC11280161 DOI: 10.3390/pharmaceutics16070916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Salix species occurring in Finland have not been well studied for their antimicrobial potential, despite their frequent use for lung and stomach problems in traditional medicine. Thus, twig extracts of three species of Salix that are found naturally in Finland and one cultivated species were screened for their antimicrobial properties against human pathogenic bacteria. S. starkeana and S. x pendulina were screened for antibacterial effects for the first time. (2) Methods: An agar diffusion and a microplate method were used for the screenings. Time-kill effects were measured using a plate-count and a microplate method. A DPPH-method using a qualitative TLC-analysis was used to detect antioxidant compounds in antimicrobial extracts. Metabolites from a S. myrsinifolia extract showing good antibacterial effects were identified using UPLC/QTOF-MS. (3) Results: A methanol extract of S. starkeana was particularly active against B. cereus (MIC 625 µg/mL), and a methanol extract of S. myrsinifolia showed good activity against S. aureus and B. cereus (MIC 1250 µg/mL) and showed bactericidal effects during a 24 h incubation of B. cereus. Moreover, a decoction of S. myrsinifolia resulted in good growth inhibition against P. aeruginosa. Our UPLC/QTOF-MS results indicated that proanthocyanidins (PAs), and especially the dimer procyanidin B1 (m/z 577) and other procyanidin derivatives, including highly polymerized proanthocyanidins, were abundant in S. myrsinifolia methanol extracts. Procyanidin B1 and its monomer catechin, as well as taxifolin and p-hydroxycinnamic acid, all present in S. myrsinifolia twigs, effectively inhibited B. cereus (MIC 250 µg/mL). (4) Conclusions: This study indicates that Finnish Salix species contain an abundance of antibacterial condensed tannins, phenolic acids and other polyphenols that deserve further research for the antibacterial mechanisms of action.
Collapse
Affiliation(s)
- Enass Salih
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland; (E.E.M.); (P.F.)
| | - Eunice Ego Mgbeahuruike
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland; (E.E.M.); (P.F.)
| | | | - Nina Sipari
- Viikki Metabolomics Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00100 Helsinki, Finland;
| | - Henry Väre
- Botanical Museum, Finnish Museum of Natural History, University of Helsinki, 00100 Helsinki, Finland;
| | - Brigita Novak
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia;
| | - Riitta Julkunen-Tiitto
- Department of Environmental and Biological Sciences, Faculty of Science and Forestry, University of Eastern Finland, 80100 Joensuu, Finland;
| | - Pia Fyhrqvist
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland; (E.E.M.); (P.F.)
| |
Collapse
|
3
|
Osorio-Olivares ME, Vásquez-Martínez Y, Díaz K, Canelo J, Taborga L, Espinoza-Catalán L. Antibacterial and Antioxidant Activity of Synthetic Polyoxygenated Flavonoids. Int J Mol Sci 2024; 25:5999. [PMID: 38892186 PMCID: PMC11172986 DOI: 10.3390/ijms25115999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Flavonoids are an abundant class of naturally occurring compounds with broad biological activities, but their limited abundance in nature restricts their use in medicines and food additives. Here we present the synthesis and determination of the antibacterial and antioxidant activities of twenty-two structurally related flavonoids (five of which are new) by scientifically validated methods. Flavanones (FV1-FV11) had low inhibitory activity against the bacterial growth of MRSA 97-7. However, FV2 (C5,7,3',4' = OH) and FV6 (C5,7 = OH; C4' = SCH3) had excellent bacterial growth inhibitory activity against Gram-negative E. coli (MIC = 25 µg/mL for both), while Chloramphenicol (MIC = 25 µg/mL) and FV1 (C5,7,3' = OCH3; 4' = OH) showed inhibitory activity against Gram-positive L. monocytogenes (MIC = 25 µg/mL). From the flavone series (FO1-FO11), FO2 (C5,7,3',4' = OH), FO3 (C5,7,4' = OH; 3' = OCH3), and FO5 (C5,7,4' = OH) showed good inhibitory activity against Gram-positive MRSA 97-7 (MIC = 50, 12, and 50 µg/mL, respectively), with FO3 being more active than the positive control Vancomycin (MIC = 25 µg/mL). FO10 (C5,7= OH; 4' = OCH3) showed high inhibitory activity against E. coli and L. monocytogenes (MIC = 25 and 15 µg/mL, respectively). These data add significantly to our knowledge of the structural requirements to combat these human pathogens. The positions and number of hydroxyl groups were key to the antibacterial and antioxidant activities.
Collapse
Affiliation(s)
| | - Yesseny Vásquez-Martínez
- Escuela de Medicina, Facultad de Ciencias Médicas, Laboratorio de Virología Molecular y Control de Patógenos, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile; (Y.V.-M.); (J.C.)
| | - Katy Díaz
- Laboratorio de Pruebas Biológicas, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
| | - Javiera Canelo
- Escuela de Medicina, Facultad de Ciencias Médicas, Laboratorio de Virología Molecular y Control de Patógenos, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile; (Y.V.-M.); (J.C.)
| | - Lautaro Taborga
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
| | - Luis Espinoza-Catalán
- Laboratorio de Síntesis Orgánica, Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
| |
Collapse
|
4
|
Lee JH, Kim HW, Kim SA, Ju WT, Kim SR, Kim HB, Cha IS, Kim SW, Park JW, Kang SK. Modulatory Effects of the Kuwanon-Rich Fraction from Mulberry Root Bark on the Renin-Angiotensin System. Foods 2024; 13:1547. [PMID: 38790847 PMCID: PMC11121332 DOI: 10.3390/foods13101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, we investigated the anti-hypertensive properties of mulberry products by modulating the renin-angiotensin system (RAS). Comparative analysis showed that the ethyl acetate fractions, particularly from the Cheongil and Daeshim cultivars, contained the highest levels of polyphenols and flavonoids, with concentrations reaching 110 mg gallic acid equivalent (GE)/g and 471 mg catechin equivalent (CE)/g of extract, respectively. The ethyl acetate fraction showed superior angiotensin-converting enzyme (ACE) inhibitory activity, mainly because of the presence of the prenylated flavonoids kuwanon G and H. UPLC/Q-TOF-MS analysis identified kuwanon G and H as the primary active components, which significantly contributed to the pharmacological efficacy of the extract. In vivo testing of mice fed a high-salt diet showed that the ethyl acetate fraction substantially reduced the heart weight and lowered the serum renin and angiotensinogen levels by 34% and 25%, respectively, highlighting its potential to modulate the RAS. These results suggested that the ethyl acetate fraction of mulberry root bark is a promising candidate for the development of natural ACE inhibitors. This finding has significant implications for the management of hypertension through RAS regulation and the promotion of cardiovascular health in the functional food industry.
Collapse
Affiliation(s)
- Ji-Hae Lee
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (I.-S.C.)
| | - Heon-Woong Kim
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - So-Ah Kim
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Wan-Taek Ju
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (I.-S.C.)
| | - Seong-Ryul Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (I.-S.C.)
| | - Hyun-Bok Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (I.-S.C.)
| | - Ik-Seob Cha
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (I.-S.C.)
| | - Seong-Wan Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (I.-S.C.)
| | - Jong-Woo Park
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (I.-S.C.)
| | - Sang-Kuk Kang
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (I.-S.C.)
| |
Collapse
|
5
|
Joshi JR, Paudel D, Eddy E, Charkowski AO, Heuberger AL. Plant necrotrophic bacterial disease resistance phenotypes, QTL, and metabolites identified through integrated genetic mapping and metabolomics in Solanum species. FRONTIERS IN PLANT SCIENCE 2024; 15:1336513. [PMID: 38504885 PMCID: PMC10949924 DOI: 10.3389/fpls.2024.1336513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024]
Abstract
Most food crops are susceptible to necrotrophic bacteria that cause rotting and wilting diseases in fleshy organs and foods. All varieties of cultivated potato (Solanum tuberosum L.) are susceptible to diseases caused by Pectobacterium species, but resistance has been demonstrated in wild potato relatives including S. chacoense. Previous studies demonstrated that resistance is in part mediated by antivirulence activity of phytochemicals in stems and tubers. Little is known about the genetic basis of antivirulence traits, and the potential for inheritance and introgression into cultivated potato is unclear. Here, the metabolites and genetic loci associated with antivirulence traits in S. chacoense were elucidated by screening a sequenced S. tuberosum x S. chacoense recombinant inbred line (RIL) population for antivirulence traits of its metabolite extracts. Metabolite extracts from the RILs exhibited a quantitative distribution for two antivirulence traits that were positively correlated: quorum sensing inhibition and exo-protease inhibition, with some evidence of transgressive segregation, supporting the role of multiple loci and metabolites regulating these resistance-associated systems. Metabolomics was performed on the highly resistant and susceptible RILs that revealed 30 metabolites associated with resistance, including several alkaloids and terpenes. Specifically, several prenylated metabolites were more abundant in resistant RILs. We constructed a high-density linkage map with 795 SNPs mapped to 12 linkage groups, spanning a length of 1,507 cM and a density of 1 marker per 1.89 cM. Genetic mapping of the antivirulence and metabolite data identified five quantitative trait loci (QTLs) related to quorum sensing inhibition that explained 8-28% of the phenotypic variation and two QTLs for protease activity inhibition that explained 14-19% of the phenotypic variation. Several candidate genes including alkaloid, and secondary metabolite biosynthesis that are related to disease resistance were identified within these QTLs. Taken together, these data support that quorum sensing inhibition and exo-protease inhibition assays may serve as breeding targets to improve resistance to nectrotrophic bacterial pathogens in potato and other plants. The identified candidate genes and metabolites can be utilized in marker assisted selection and genomic selection to improve soft- rot and blackleg disease resistance.
Collapse
Affiliation(s)
- Janak R. Joshi
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT, United States
- Department of Horticulture & Landscape Architecture, Colorado State University, Fort Collins, CO, United States
| | - Dev Paudel
- Department of Environmental Horticulture, University of Florida Gulf Coast Research and Education Center, Wimauma, FL, United States
| | - Ethan Eddy
- Department of Horticulture & Landscape Architecture, Colorado State University, Fort Collins, CO, United States
| | - Amy O. Charkowski
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Adam L. Heuberger
- Department of Horticulture & Landscape Architecture, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
6
|
Guo X, Wang L, Zhang J, Liu Q, Wang B, Liu D, Gao F, Lanzi G, Zhao Y, Shi Y. Thwarting resistance: MgrA inhibition with methylophiopogonanone a unveils a new battlefront against S. aureus. NPJ Biofilms Microbiomes 2024; 10:15. [PMID: 38413623 PMCID: PMC10899606 DOI: 10.1038/s41522-024-00485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Limitations in the clinical treatment of Staphylococcus aureus (S. aureus) infections have arisen due to the advent of antibiotic-resistant strains. Given the immense potential of therapeutic strategies targeting bacterial virulence, the role of MgrA as a pivotal virulence determinant in S. aureus-orchestrating resistance, adherence, and hundreds of virulence targets-becomes indispensable. In this investigation, leveraging advanced virtual screening and fluorescence anisotropy assays, we discerned methylophiopogonanone A (Mo-A), a flavonoid derivative, as a potent disruptor of the MgrA-DNA interaction nexus. Subsequent analysis revealed that Mo-A effectively inhibits the expression of virulence factors such as Hla and Pvl in S. aureus and markedly reduces its adhesion capability to fibrinogen. On a cellular landscape, Mo-A exerts a mitigating influence on the deleterious effects inflicted by S. aureus USA300 on A549 cells. Furthermore, our data indicate that Mo-A downregulates the transcription of genes associated with immune evasion, such as nucleases (nuc), Staphylococcal Chemotaxis Inhibitory Protein (chips), and Staphylococcal Complement Inhibitor (scin), thereby undermining immune escape and amplifying neutrophil chemotaxis. Upon application in an in vivo setting, Mo-A assumes a protective persona in a murine model of S. aureus USA300-induced pneumonia and demonstrates efficacy in the Galleria mellonella infection model. Of note, S. aureus displayed no swift acquisition of resistance to Mo-A, and the effect was synergistically enhanced when used in combination with vancomycin. Our findings add substantive weight to the expanding field of virulence-targeted therapeutic strategies and set the stage for more comprehensive exploration of Mo-A potential in combating antibiotic-resistant S. aureus.
Collapse
Affiliation(s)
- Xuerui Guo
- School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Jinlong Zhang
- School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Quan Liu
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Bingmei Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Fei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | | | - Yicheng Zhao
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China.
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Yan Shi
- School of Pharmaceutical Science, Jilin University, Changchun, China.
| |
Collapse
|
7
|
Zhao Y, Zhao X, Guo M, Varier KM, Gajendran B, Liu S, Tao L, Shen X, Zhang N. Stilbenoids and Flavonoids from Cajanus cajan (L.) Millsp. and Their α-Glucosidase Inhibitory Activities. Molecules 2023; 28:molecules28093779. [PMID: 37175187 PMCID: PMC10180137 DOI: 10.3390/molecules28093779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Two new stilbenoids, cajanstilbenoid C (1) and cajanstilbenoid D (2), together with eight other known stilbenoids (3-10) and seventeen known flavonoids (11-27), were isolated from the petroleum ether and ethyl acetate portions of the 95% ethanol extract of leaves of Cajanus cajan (L.) Millsp. The planar structures of the new compounds were elucidated by NMR and high-resolution mass spectrometry, and their absolute configurations were determined by comparison of their experimental and calculated electronic circular dichroism (ECD) values. All the compounds were assayed for their inhibitory activities against yeast α-glucosidase. The results demonstrated that compounds 3, 8-9, 11, 13, 19-21, and 24-26 had strong inhibitory activities against α-glucosidase, with compound 11 (IC50 = 0.87 ± 0.05 μM) exhibiting the strongest activity. The structure-activity relationships were preliminarily summarized. Moreover, enzyme kinetics showed that compound 8 was a noncompetitive inhibitor, compounds 11, 24-26 were anticompetitive, and compounds 9 and 13 were mixed-competitive.
Collapse
Affiliation(s)
- Yaxian Zhao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Xinman Zhao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Mengjia Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Krishnapriya M Varier
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Babu Gajendran
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Shaohuan Liu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Nenling Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
8
|
Lobiuc A, Pavăl NE, Mangalagiu II, Gheorghiță R, Teliban GC, Amăriucăi-Mantu D, Stoleru V. Future Antimicrobials: Natural and Functionalized Phenolics. Molecules 2023; 28:molecules28031114. [PMID: 36770780 PMCID: PMC9920704 DOI: 10.3390/molecules28031114] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
With incidence of antimicrobial resistance rising globally, there is a continuous need for development of new antimicrobial molecules. Phenolic compounds having a versatile scaffold that allows for a broad range of chemical additions; they also exhibit potent antimicrobial activities which can be enhanced significantly through functionalization. Synthetic routes such as esterification, phosphorylation, hydroxylation or enzymatic conjugation may increase the antimicrobial activity of compounds and reduce minimal concentrations needed. With potent action mechanisms interfering with bacterial cell wall synthesis, DNA replication or enzyme production, phenolics can target multiple sites in bacteria, leading to a much higher sensitivity of cells towards these natural compounds. The current review summarizes some of the most important knowledge on functionalization of natural phenolic compounds and the effects on their antimicrobial activity.
Collapse
Affiliation(s)
- Andrei Lobiuc
- Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University, 720229 Suceava, Romania
| | - Naomi-Eunicia Pavăl
- Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University, 720229 Suceava, Romania
- Correspondence: (N.-E.P.); (I.I.M.)
| | - Ionel I. Mangalagiu
- Faculty of Chemistry, “Alexandru Ioan Cuza” University, 700506 Iasi, Romania
- Correspondence: (N.-E.P.); (I.I.M.)
| | - Roxana Gheorghiță
- Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University, 720229 Suceava, Romania
| | - Gabriel-Ciprian Teliban
- Department of Horticulture Technologies, “Ion Ionescu de la Brad” University of Life Sciences, 700490 Iasi, Romania
| | | | - Vasile Stoleru
- Department of Horticulture Technologies, “Ion Ionescu de la Brad” University of Life Sciences, 700490 Iasi, Romania
| |
Collapse
|
9
|
Chemical Constituents of Macaranga occidentalis, Antimicrobial and Chemophenetic Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248820. [PMID: 36557952 PMCID: PMC9782370 DOI: 10.3390/molecules27248820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Medicinal plants are known as sources of potential antimicrobial compounds belonging to different classes. The aim of the present work was to evaluate the antimicrobial potential of the crude extract, fractions, and some isolated secondary metabolites from the leaves of Macaranga occidentalis, a Cameroonian medicinal plant traditionally used for the treatment of microbial infections. Repeated column chromatography of the ethyl acetate and n-butanol fractions led to the isolation of seventeen previously known compounds (1-17), among which three steroids (1-3), one triterpene (4), four flavonoids (5-8), two stilbenoids (9 and 10) four ellagic acid derivatives (11-14), one geraniinic acid derivative (15), one coumarine (16), and one glyceride (17). Their structures were elucidated mainly by means of extensive spectroscopic and spectrometric (1D and 2D NMR and, MS) analysis and comparison with the published data. The crude extract, fractions, and isolated compounds were all screened for their antimicrobial activity. None of the natural compounds was active against Candida strains. However, the crude extract, fractions, and compounds showed varying levels of antibacterial properties against at least one of the tested bacterial strains, with minimal inhibitory concentrations (MICs) ranging from 250 to 1000 μg/mL. The n-butanol (n-BuOH) fraction was the most active against Escherichia coli ATCC 25922, with an MIC value of 250 μg/mL. Among the isolated compounds, schweinfurthin B (10) exhibited the best activity against Staphylococcus aureus NR 46003 with a MIC value of 62.5 μg/mL. In addition, schweinfurthin O (9) and isomacarangin (6) also exhibited moderate activity against the same strain with a MIC value of 125 μg/mL. Therefore, pharmacomodulation was performed on compound 6 and three new semisynthetic derivatives (6a-c) were prepared by allylation and acetylation reactions and screened for their in vitro antimicrobial activity. None of the semisynthetic derivatives showed antimicrobial activity against the same tested strains. The chemophenetic significance of the isolated compounds is also discussed in this paper.
Collapse
|
10
|
Valeeva LR, Dzhabrailova SM, Sharipova MR. cis-Prenyltransferases of Marchantia polymorpha: Phylogenetic Analysis and Perspectives for Use as Regulators of Antimicrobial Agent Synthesis. Mol Biol 2022. [DOI: 10.1134/s002689332206019x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Uddin S, Brooks PR, Tran TD. Chemical Characterization, α-Glucosidase, α-Amylase and Lipase Inhibitory Properties of the Australian Honey Bee Propolis. Foods 2022; 11:1964. [PMID: 35804780 PMCID: PMC9266216 DOI: 10.3390/foods11131964] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023] Open
Abstract
The use of functional foods and nutraceuticals as a complementary therapy for the prevention and management of type 2 diabetes and obesity has steadily increased over the past few decades. With the aim of exploring the therapeutic potentials of Australian propolis, this study reports the chemical and biological investigation of a propolis sample collected in the Queensland state of Australia which exhibited a potent activity in an in vitro α-glucosidase inhibitory screening. The chemical investigation of the propolis resulted in the identification of six known prenylated flavonoids including propolins C, D, F, G, H, and solophenol D. These compounds potently inhibited the α-glucosidase and two other enzymes associated with diabetes and obesity, α-amylase, and lipase on in vitro and in silico assays. These findings suggest that this propolis is a potential source for the development of a functional food to prevent type 2 diabetes and obesity. The chemical analysis revealed that this propolis possessed a chemical fingerprint relatively similar to the Pacific propolis found in Okinawa (South of Japan), Taiwan, and the Solomon Islands. This is the first time the Pacific propolis has been identified in Australia.
Collapse
Affiliation(s)
- Sabah Uddin
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (S.U.); (P.R.B.)
| | - Peter R. Brooks
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (S.U.); (P.R.B.)
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| | - Trong D. Tran
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (S.U.); (P.R.B.)
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| |
Collapse
|
12
|
Recent Advancements in Enhancing Antimicrobial Activity of Plant-Derived Polyphenols by Biochemical Means. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050401] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plants are a reservoir of phytochemicals, which are known to possess several beneficial health properties. Along with all the secondary metabolites, polyphenols have emerged as potential replacements for synthetic additives due to their lower toxicity and fewer side effects. However, controlling microbial growth using these preservatives requires very high doses of plant-derived compounds, which limits their use to only specific conditions. Their use at high concentrations leads to unavoidable changes in the organoleptic properties of foods. Therefore, the biochemical modification of natural preservatives can be a promising alternative to enhance the antimicrobial efficacy of plant-derived compounds/polyphenols. Amongst these modifications, low concentration of ascorbic acid (AA)–Cu (II), degradation products of ascorbic acid (DPAA), Maillard reaction products (MRPs), laccase–mediator (Lac–Med) and horse radish peroxidase (HRP)–H2O2 systems standout. This review reveals the importance of plant polyphenols, their role as antimicrobial agents, the mechanism of the biochemical methods and the ways these methods may be used in enhancing the antimicrobial potency of the plant polyphenols. Ultimately, this study may act as a base for the development of potent antimicrobial agents that may find their use in food applications.
Collapse
|
13
|
Deng Y, Huang H, Lei F, Fu S, Zou K, Zhang S, Liu X, Jiang L, Liu H, Miao B, Liang Y. Endophytic Bacterial Communities of Ginkgo biloba Leaves During Leaf Developmental Period. Front Microbiol 2021; 12:698703. [PMID: 34671323 PMCID: PMC8521191 DOI: 10.3389/fmicb.2021.698703] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/06/2021] [Indexed: 11/23/2022] Open
Abstract
Plant-specialized secondary metabolites have ecological functions in mediating interactions between plants and their entophytes. In this study, high-throughput gene sequencing was used to analyze the composition and abundance of bacteria from Ginkgo leaves at five different sampling times. The results indicated that the bacterial community structure varied during leaf developmental stage. Bacterial diversity was observed to be the highest at T2 stage and the lowest at T1 stage. Proteobacteria, Firmicutes, Actinobacteria, Chloroflexi, Cyanobacteria, and Bacteroidetes were found as the dominant phyla. The major genera also showed consistency across sampling times, but there was a significant variation in their abundance, such as Bacillus, Lysinibacillus, and Staphylococcus. Significant correlations were observed between endophytic bacteria and flavonoids. Especially, Staphylococcus showed a significant positive correlation with quercetin, and changes in the abundance of Staphylococcus also showed a strong correlation with flavonoid content. In order to determine the effect of flavonoids on endophytic bacteria of Ginkgo leaves, an extracorporeal culture of related strains (a strain of Staphylococcus and a strain of Deinococcus) was performed, and it was found that the effect of flavonoids on them remained consistent. The predicted result of Tax4Fun2 revealed that flavonoids might lead to a lower abundance of endophytic microorganisms, which further proved the correlation between bacterial communities and flavonoids. This study provided the first insight into the bacterial community composition during the development of Ginkgo leaves and the correlation between the endophytic bacteria and flavonoids.
Collapse
Affiliation(s)
- Yan Deng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Haonan Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Fangying Lei
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Shaodong Fu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Kai Zou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Shuangfei Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Bo Miao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| |
Collapse
|