1
|
Rafi A, Deiana L, Alimohammadzadeh R, Engstrand P, Granfeldt T, Nyström SK, Cordova A. Birch-Bark-Inspired Synergistic Fabrication of High-Performance Cellulosic Materials. ACS SUSTAINABLE RESOURCE MANAGEMENT 2024; 1:2554-2563. [PMID: 39741584 PMCID: PMC11684174 DOI: 10.1021/acssusresmgt.4c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/12/2024] [Accepted: 11/06/2024] [Indexed: 01/03/2025]
Abstract
There is a growing demand for the utilization of sustainable materials, such as cellulose-based alternatives, over fossil-based materials. However, the inherent drawbacks of cellulosic materials, such as extremely low wet strength and resistance to moisture, need significant improvements. Moreover, several of the commercially available wet-strength chemicals and hydrophobic agents for cellulosic material treatment are toxic or fossil-based (e.g., epichlorohydrin and fluorocarbons). Herein, we present an eco-friendly, high-yield, industrially relevant, and scalable method inspired by birch bark for fabricating hydrophobic and strong cellulosic materials. This was accomplished by combining simple surface modification of cellulosic fibers in water using colloidal particles of betulin, an abundant triterpene extracted from birch bark, with sustainable chemical engineering (e.g., lignin modification and hot-pressing). This led to a transformative process that not only altered the morphology of the cellulosic materials into a more dense and compact structure but also made them hydrophobic (contact angles of up to >130°) with the betulin particles undergoing polymorphic transformations from prismatic crystals (betulin III) to orthorhombic whiskers (betulin I). Significant synergistic effects are observed, resulting in a remarkable increase in wet strength (>1400%) of the produced hydrophobic cellulosic materials.
Collapse
Affiliation(s)
- Abdolrahim
A. Rafi
- FSCN
Research Center, Organic Chemistry, Mid
Sweden University, Holmgatan 10, 851 70 Sundsvall, Sweden
| | - Luca Deiana
- FSCN
Research Center, Organic Chemistry, Mid
Sweden University, Holmgatan 10, 851 70 Sundsvall, Sweden
| | - Rana Alimohammadzadeh
- FSCN
Research Center, Organic Chemistry, Mid
Sweden University, Holmgatan 10, 851 70 Sundsvall, Sweden
| | - Per Engstrand
- FSCN
Research Center, High Yield Pulp Technology, Mid Sweden University, Holmgatan 10, 851 70 Sundsvall, Sweden
| | - Thomas Granfeldt
- FSCN
Research Center, High Yield Pulp Technology, Mid Sweden University, Holmgatan 10, 851 70 Sundsvall, Sweden
| | - Staffan K. Nyström
- FSCN
Research Center, High Yield Pulp Technology, Mid Sweden University, Holmgatan 10, 851 70 Sundsvall, Sweden
| | - Armando Cordova
- FSCN
Research Center, Organic Chemistry, Mid
Sweden University, Holmgatan 10, 851 70 Sundsvall, Sweden
| |
Collapse
|
2
|
Mirhadi E, Kesharwani P, Jha SK, Karav S, Sahebkar A. Utilizing ionic liquids as eco-friendly and sustainable carriers for delivering nucleic acids: A review on the revolutionary advancement in nano delivery systems. Int J Biol Macromol 2024; 283:137582. [PMID: 39542300 DOI: 10.1016/j.ijbiomac.2024.137582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Ionic liquids (ILs) are an extremely versatile class of chemicals. It has been shown that they can effectively pass through many biological barriers in the human body to deliver medications. ILs are solvents noted for their ecological friendliness; they contain equal amounts of cations and anions and remain liquid at temperatures below 100 °C. Hence, these are ideal for biomedical applications owing to their advantageous properties such as biocompatibility, solubility, and adaptability. ILs are widely reported to improve the solubility and stability of nucleic acids (DNA and RNA) in aqueous conditions, allowing for more effective delivery. Certain ILs have shown the ability to enhance the absorption of nucleic acids into cells. In addition, ILs can also be used to create vectors for gene delivery, such as liposomes and nanoparticles, thereby improving the transfection efficiency of plasmid DNA and siRNA. Subsequently, the application of ILs for nucleic acid delivery has increased significantly in recent years. In this context, we believe that using ILs to enhance the transport of nucleic acids will have a considerable effect as a novel and crucial therapeutic method in the upcoming decades. The use of ILs as solvents to preserve the natural structure of DNA and RNA shows promise for a variety of biotechnological and medical applications. Notably, ILs may be utilized for a variety of functions, including extracting, concentrating, stabilizing, and spreading nucleic acids inside cells. Our review emphasizes the key findings of research works published in this domain, wherein outstanding effectiveness of delivering RNA to the desired areas was achieved, and was made possible through the utilization of ILs.
Collapse
Affiliation(s)
- Elaheh Mirhadi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Eades W, Abdolmohammadpourbonab S, Dinh L, Yan B. Ionic liquids and their potential use in development and improvement of drug delivery systems: evidence of their tendency to promote drug accumulation in the brain. Pharm Dev Technol 2024; 29:1065-1074. [PMID: 39403783 DOI: 10.1080/10837450.2024.2417004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Ionic liquids (ILs) are considered salt in liquid state, which is composed of organic cations and anions with low melting points (<100 °C). ILs have become a major scientific area with an extensive range of applications including chemistry, electrochemistry, and pharmaceutics. ILs have received great research interest in the pharmaceutical field as solvents, anti-solvents, co-solvents, and reagents in synthesis and formulation. While therapeutic ILs have been investigated for oral and trans-dermal drug delivery systems showing promising compatibility with a wide range of therapeutics, enhanced drug permeation through the skin, and cell membrane solvation to open channels to facilitate molecular passage, their potential to cross the challenging blood-brain barrier (BBB) remains an unanswered question. IL-based therapies could potentially be a game changer for improving drug delivery to cellular targets both at and across the BBB. In this review, we discuss (1) the tunable physicochemical properties of ILs; (2) the vast and various applications of ILs in the development and improvement of drug delivery systems; and (3) ILs as a potential approach for increasing drug accumulation in the brain tissue.
Collapse
Affiliation(s)
- William Eades
- Division of Pharmaceutical Sciences, University of Cincinnati, Cincinnati, OH, USA
| | | | - Linh Dinh
- Division of Pharmaceutical Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Bingfang Yan
- Division of Pharmaceutical Sciences, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
4
|
Dorosh T, Mangin T, Engler E, Schurhammer R, Chaumont A. On the Solvation Properties of Menthol-Thymol Mixtures. A Molecular Dynamics Investigation. Chemphyschem 2024:e202400768. [PMID: 39329322 DOI: 10.1002/cphc.202400768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Using classical molecular dynamics, we have investigated the solvation of catechol, resorcinol, hydroquinone and 1,4-benzoquinone at infinite dilution, in a series of menthol - thymol mixtures in which the molar fraction of thymol (xTHY) has been increased by steps of 0.1, from 0 (pure menthol) to 1 (pure thymol). The evolution of the solvation shell around the solutes reveals that when xTHY is increased, the average number of hydrogen bonds (HB) where the solute acts as HB acceptor (HBA) and the solvent as HB donor (HBD) increases, while the amount of HB, in which the solute acts as HBD and the solvent as HBA, decreases. Overall, the total number of HBs between the different benzenediols and the solvent decreases with an increase of xTHY, while for benzoquinone the total number of HB increases. This points to the fact that "acidic" or HBD molecules are better solvated in mixtures with high menthol proportion, while "basic" or HBA molecules, are better solvated in thymol rich mixtures. The results reported herein follow the same trends as experimentally reported Kamlet-Taft parameters and present insights on how the composition of these "deep eutectic" mixtures maybe tweaked in order to optimize their solvation properties.
Collapse
Affiliation(s)
- T Dorosh
- Université de Strasbourg, CNRS, CMC UMR 7140, Laboratoire MSM, 4 rue B. Pascal, F-67000, Strasbourg, France
| | - T Mangin
- Université de Strasbourg, CNRS, CMC UMR 7140, Laboratoire MSM, 4 rue B. Pascal, F-67000, Strasbourg, France
| | - E Engler
- Université de Strasbourg, CNRS, CMC UMR 7140, Laboratoire MSM, 4 rue B. Pascal, F-67000, Strasbourg, France
| | - R Schurhammer
- Université de Strasbourg, CNRS, CMC UMR 7140, Laboratoire MSM, 4 rue B. Pascal, F-67000, Strasbourg, France
| | - A Chaumont
- Université de Strasbourg, CNRS, CMC UMR 7140, Laboratoire MSM, 4 rue B. Pascal, F-67000, Strasbourg, France
| |
Collapse
|
5
|
Dzhemileva LU, D'yakonov VA, Egorova KS, Ananikov VP. Mechanisms of cytotoxicity in six classes of ionic liquids: Evaluating cell cycle impact and genotoxic and apoptotic effects. CHEMOSPHERE 2024; 364:142964. [PMID: 39074667 DOI: 10.1016/j.chemosphere.2024.142964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Ionic liquids (ILs), earlier praised for their eco-friendliness, have emerged as key chemicals in advancing green chemistry, catalysis, solvent development, and more. However, the discovery of their notable toxicity has led to a controversial reputation of ILs and has shifted the research landscape towards understanding their biological impacts. The present study examines the mechanism of cytotoxicity of 32 ILs across six classes, highlighting their effects on the cell cycle of the Jurkat cell line. Focusing on five ILs with pronounced cytotoxicity, we uncover their genotoxic effects and their role in inducing apoptosis. Our findings suggest intricate interplay between the extrinsic and intrinsic apoptotic pathways at different time points after exposure to ILs. Moreover, the ILs studied displayed marked genotoxicity, likely stemming from the accumulation of double-strand DNA breaks in the Jurkat cells. This investigation offers a comprehensive view on interactions of ILs with eukaryotic cells, thereby providing new guidelines for developing safer pharmaceutical and industrial applications of these chemicals. The results not only broaden and enhance the previous perceptions but also open new avenues in research, emphasizing the dual potential of ILs in innovation and safety, and marking a significant step towards integrating chemical innovations with biological safety.
Collapse
Affiliation(s)
- Lilya U Dzhemileva
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Vladimir A D'yakonov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ksenia S Egorova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
6
|
Garg M, Sharma D, Kaur G, Rawat J, Goyal B, Kumar S, Kumar R. Factor defining the effects of tetraalkylammonium chloride on stability, folding, and dynamics of horse cytochrome c. Int J Biol Macromol 2024; 276:133713. [PMID: 38986993 DOI: 10.1016/j.ijbiomac.2024.133713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
This article describes the molecular mechanism by which tetraalkylammonium chloride ([R4N]Cl: R- = methyl (Me), ethyl (Et), propyl (Pr),butyl (Bu)) modulates the stability, folding, and dynamics of cytochrome c (Cyt c). Analysis of [R4N]Cl effects on thermal/chemical denaturations, millisecond refolding/unfolding kinetics, and slow CO-association kinetics of Cyt c without and with denaturant providing some significant results: (i) [R4N]Cl decreasing the unfolding free energy estimated by thermodynamic and kinetic analysis of thermal/chemical denaturation curves and kinetic chevrons (Log kobs-[GdmCl]) of Cyt c, respectively (ii) hydrophobicity of R-group of [R4N]Cl, preferential inclusion of [R4N]Cl at the protein surface, and destabilizing enthalpic attractive interactions of [Me4N]Cl and steric entropic interactions of [Et4N]Cl,[Pr4N]Cl and [Bu4N]Cl with protein contribute to [R4N]Cl-induced decrease thermodynamic stability of Cyt c (iii) [R4N]Cl exhibits an additive effect with denaturant to decrease thermodynamic stability and refolding rates of Cyt c (iv) low concentrations of [R4N]Cl (≤ 0.5 M) constrain the motional dynamics while the higher concentrations (>0.75 M [R4N]Cl) enhance the structural-fluctuations that denture protein (v) hydrophobicity of R-group of [R4N]Cl alters the [denaturant]-dependent conformational stability, refolding-unfolding kinetics, and CO-association kinetics of Cyt c. Furthermore, the MD simulations depicted that the addition of 1.0 M of [R4N]Cl increased the conformational fluctuations in Cyt c leading to decreased structural stability in the order [Me4N]Cl < [Et4N]Cl < [Pr4N]Cl < [Bu4N]Cl consistent with the experimental results.
Collapse
Affiliation(s)
- Mansi Garg
- Department of Chemistry, Central University of Punjab, Bathinda 151001, India
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Academy of Scientific & Innovative Research, Chandigarh, India
| | - Gurmeet Kaur
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Jayanti Rawat
- Department of Chemistry, Central University of Punjab, Bathinda 151001, India
| | - Bhupesh Goyal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Sumit Kumar
- Department of Chemistry, Central University of Punjab, Bathinda 151001, India
| | - Rajesh Kumar
- Department of Chemistry, Central University of Punjab, Bathinda 151001, India.
| |
Collapse
|
7
|
Arunphacharawit A, Poonsawat T, Meechai T, Chaicharoenwimolkul Chuaitammakit L, Somsook E. DFT study on the depolymerization of PET by Ca-catalyzed glycolysis reaction model. Heliyon 2024; 10:e34666. [PMID: 39145025 PMCID: PMC11320157 DOI: 10.1016/j.heliyon.2024.e34666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Poly(ethylene terephthalate) (PET) is the most common plastics produced for applications in food and drinking containers. It is degraded to valuable product by several methods. Glycolysis of PET gains bis(2-hydroxyethylene) terephthalate (BHET) as the main product utilized as plasticizer. Calcium catalysts, Ca2+ and Ca(OH)2∙2H2O were explored to study the mechanism of PET cleavage by DFT calculations at B3LYP/6-311++G** level. Two possible pathways, coordination, and non-coordination of ethylene glycol on the calcium in glycolysis reaction, have been investigated. In addition, poly(ethylene furanoate) (PEF), considered as a sustainable polymer with the similar functional properties, was chose for the comparison of conformational structures with PET. The understanding of the relationship between PET (and PEF) structures and calcium catalysts is useful for the future development of linear sustainable polyesters.
Collapse
Affiliation(s)
- Anyarin Arunphacharawit
- NANOCAST Laboratory, Center for Catalysis Science and Technology (CAST), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, 272 Rama VI Road., Ratchathewi, Bangkok, 10400, Thailand
| | - Thinnaphat Poonsawat
- NANOCAST Laboratory, Center for Catalysis Science and Technology (CAST), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, 272 Rama VI Road., Ratchathewi, Bangkok, 10400, Thailand
| | - Titiya Meechai
- Department of Premedical Science, Faculty of Medicine, Bangkokthonburi University, Thawi Watthana, Bangkok, 10170, Thailand
| | - Laksamee Chaicharoenwimolkul Chuaitammakit
- Chemistry and Applied Chemistry, Faculty of Science and Technology, Suratthani Rajabhat University, 272 Moo 9, Surat-Nasan Road, Khuntale, Muang, Surat Thani, 84100, Thailand
| | - Ekasith Somsook
- NANOCAST Laboratory, Center for Catalysis Science and Technology (CAST), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, 272 Rama VI Road., Ratchathewi, Bangkok, 10400, Thailand
| |
Collapse
|
8
|
Cakó Bagány N, Čapelja E, Kovačević S, Karaman M, Podunavac-Kuzmanović S, Gadžurić S, Belić S. Experimental and In Silico Comparative Study of Physicochemical Properties and Antimicrobial Activity of Carboxylate Ionic Liquids. Molecules 2024; 29:3668. [PMID: 39125070 PMCID: PMC11314197 DOI: 10.3390/molecules29153668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
The COVID-19 pandemic highlighted the need to create and study new substances with improved lipophilicity and antimicrobial properties, such as ionic liquids (ILs), with easily tunable physicochemical properties. Most ILs possess strong antibacterial effects, but ILs containing the imidazolium cation are even more effective than the positive control. Thus, in this study, three ionic liquids with 1-butyl-3-methylimidazolium cation and various carboxylate anions (phenylacetate, benzoate, and 4-methoxyphenylacetate) were synthesized and fully characterized. The interactions between the cations and anions were discussed based on the experimental density, viscosity, and electrical conductivity. From the measured electrical conductivity and viscosity, the Walden plot is constructed and ionicity of the studied ILs is discussed. The similarities and dissimilarities among the studied ILs and their physicochemical properties are analyzed by applying the hierarchical cluster analysis and in silico calculated properties. The antimicrobial activity of the studied ionic liquids is tested on two bacterial (E. coli and P. aeruginosa) and three fungi (P. verrucosum, A. flavus, and A. parasiticus) strains, finding that they showed improved antimicrobial activity compared to the individual components.
Collapse
Affiliation(s)
- Nikolett Cakó Bagány
- Faculty of Science, University of Novi Sad, Trg D. Obradovića 3, 21000 Novi Sad, Serbia; (N.C.B.); (E.Č.); (M.K.); (S.B.)
| | - Eleonora Čapelja
- Faculty of Science, University of Novi Sad, Trg D. Obradovića 3, 21000 Novi Sad, Serbia; (N.C.B.); (E.Č.); (M.K.); (S.B.)
| | - Strahinja Kovačević
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (S.K.); (S.P.-K.)
| | - Maja Karaman
- Faculty of Science, University of Novi Sad, Trg D. Obradovića 3, 21000 Novi Sad, Serbia; (N.C.B.); (E.Č.); (M.K.); (S.B.)
| | - Sanja Podunavac-Kuzmanović
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (S.K.); (S.P.-K.)
| | - Slobodan Gadžurić
- Faculty of Science, University of Novi Sad, Trg D. Obradovića 3, 21000 Novi Sad, Serbia; (N.C.B.); (E.Č.); (M.K.); (S.B.)
| | - Sanja Belić
- Faculty of Science, University of Novi Sad, Trg D. Obradovića 3, 21000 Novi Sad, Serbia; (N.C.B.); (E.Č.); (M.K.); (S.B.)
| |
Collapse
|
9
|
Wang S, Xu Q, Furuishi T, Fukuzawa K, Yonemochi E. Characterization and drug solubilization of arginine-based ionic liquids - Impact of counterions and stoichiometry. Int J Pharm 2024; 659:124228. [PMID: 38744415 DOI: 10.1016/j.ijpharm.2024.124228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/28/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Ionic liquids (ILs) exhibit very diverse physicochemical properties, such as non-volatility, stability, and miscibility, which render them excellent candidate excipients for multi-purpose use. Six novel arginine (Arg)-based ILs were obtained using a one-step ultrasound method. Salt formation was confirmed by Fourier-transform infrared (FTIR), Raman, and nuclear magnetic resonance (NMR) spectroscopies. Moreover, the effects of anions and molar ratio on the molecular states and thermal properties of Arg-ILs were investigated. In addition, the solubilization of drugs with different pKa and LogP values was attempted using Arg-ILs consisting of asparagine, proline, octanoic acid, and malic acid, respectively, and a comparative study was performed. Furthermore, the interaction mode between the drugs and ILs was determined by FTIR and Raman spectroscopy. Presumably, partial interaction between the component of ILs and drugs such as ofloxacin and valsartan occurred, whereas flurbiprofen and isosorbide mononitrate were dispersed in the viscous IL. The development of strategies for the application of ILs as solubilizers or carriers of active pharmaceutical ingredients is an extremely promising and wide avenue of research.
Collapse
Affiliation(s)
- Siran Wang
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Qihui Xu
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Takayuki Furuishi
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Kaori Fukuzawa
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Japan
| | - Etsuo Yonemochi
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| |
Collapse
|
10
|
Kayukova L, Vologzhanina A. A New 2-Aminospiropyrazolylammonium Cation with Possible Uses in the Topical Areas of Ionic Liquids. Molecules 2024; 29:2326. [PMID: 38792187 PMCID: PMC11124009 DOI: 10.3390/molecules29102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Based on the fact that 2-aminospiropyrazolinium compounds and structurally related azoniaspiro compounds belong, in a broad sense, to the class of ionic liquids, we have reviewed them and studied their practical applications. To search for possible uses of a new 2-aminospiropyrazolinium compounds, it is necessary to undertake a comparison with the related class of azoniaspiro compounds based on available information. The structures of the well-studied class of azoniaspiro compounds and the related but little-studied class of 2-aminospiropyrazolinium have rigid frameworks, limited conformational freedom, and a salt nature. These properties give them the ability to organize the nearby molecular space and enable the structure-forming ability of azoniaspiro compounds in the synthesis of zeolites, as well as the ability to act as phase-transfer catalysts and have selective biological effects. Additionally, these characteristics enable their ability to act as electrolytes and serve as materials for anion exchange membranes in fuel cells and water electrolyzers. Thus, the well-studied properties of azoniaspiro compounds as phase-transfer catalysts, structure-directing agents, electrolytes, and materials for membranes in power sources would encourage the study of the similar properties of 2-aminospiropyrazolinium compounds, which we have studied in relation to in vitro antitubercular, antidiabetic, and antimicrobial activities.
Collapse
Affiliation(s)
- Lyudmila Kayukova
- Laboratory of Chemistry of Synthetic and Natural Drug Substances, JSC A.B. Bekturov Institute of Chemical Sciences, 106 Shokan Ualikhanov Str., 050010 Almaty, Kazakhstan
| | - Anna Vologzhanina
- X-ray Diffraction Laboratory, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., B-334, 119334 Moscow, Russia;
| |
Collapse
|
11
|
Riley K, Dutta S. Experiences with an Inquiry-Based Ionic Liquid Module in an Undergraduate Physical Chemistry Laboratory. JOURNAL OF CHEMICAL EDUCATION 2024; 101:2022-2029. [PMID: 38764937 PMCID: PMC11097389 DOI: 10.1021/acs.jchemed.3c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 05/21/2024]
Abstract
The topic of ionic liquids is typically not taught at the undergraduate level. Many properties, such as conductivity, vapor pressure, and viscosity, of these so-called "green solvents" are unique compared to traditional molecular solvents. Using active learning techniques, we introduced an ionic liquid module in the physical chemistry laboratory where their structures and physical properties, namely, viscosity, conductivity, and vapor pressure, were explored in relation to molecular solvents. Summative and formative assessments show that a majority of the participants were able to grasp the key concepts of ionic liquids. We envision that our methods and strategies can be one of the building blocks of introducing ionic liquids into the undergraduate chemistry curriculum.
Collapse
Affiliation(s)
- Kevin
E. Riley
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 78125, United States
| | - Samrat Dutta
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 78125, United States
| |
Collapse
|
12
|
Novello E, Scalzo G, D’Agata G, Raucci MG, Ambrosio L, Soriente A, Tomasello B, Restuccia C, Parafati L, Consoli GML, Ferreri L, Rescifina A, Zagni C, Zampino DC. Synthesis, Characterisation, and In Vitro Evaluation of Biocompatibility, Antibacterial and Antitumor Activity of Imidazolium Ionic Liquids. Pharmaceutics 2024; 16:642. [PMID: 38794304 PMCID: PMC11125126 DOI: 10.3390/pharmaceutics16050642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
In recent decades, ionic liquids (ILs) have garnered research interest for their noteworthy properties, such as thermal stability, low or no flammability, and negligible vapour pressure. Moreover, their tunability offers limitless opportunities to design ILs with properties suitable for applications in many industrial fields. This study aims to synthetise two series of methylimidazolium ILs bearing long alkyl chain in their cations (C9, C10, C12, C14, C16, C18, C20) and with tetrafluoroborate (BF4) and the 1,3-dimethyl-5-sulfoisophthalate (DMSIP) as counter ions. The ILs were characterised using 1H-NMR and MALDI-TOF, and their thermal behaviour was investigated through DSC and TGA. Additionally, the antimicrobial, anticancer, and cytotoxic activities of the ILs were analysed. Moreover, the most promising ILs were incorporated at different concentrations (0.5, 1, 5 wt%) into polyvinyl chloride (PVC) by solvent casting to obtain antimicrobial blend films. The thermal properties and stability of the resulting PVC/IL films, along with their hydrophobicity/hydrophilicity, IL surface distribution, and release, were studied using DSC and TGA, contact angle (CA), SEM, and UV-vis spectrometry, respectively. Furthermore, the antimicrobial and cytotoxic properties of blends were analysed. The in vitro results demonstrated that the antimicrobial and antitumor activities of pure ILs against t Listeria monocytogenes, Escherichia coli, Pseudomonas fluorescens strains, and the breast cancer cell line (MCF7), respectively, were mainly dependent on their structure. These activities were higher in the series containing the BF4 anion and increased with the increase in the methylimidazolium cation alkyl chain length. However, the elongation of the alkyl chain beyond C16 induced a decrease in antimicrobial activity, indicating a cut-off effect. A similar trend was also observed in terms of in vitro biocompatibility. The loading of both the series of ILs into the PVC matrix did not affect the thermal stability of PVC blend films. However, their Tonset decreased with increased IL concentration and alkyl chain length. Similarly, both the series of PVC/IL films became more hydrophilic with increasing IL concentration and alkyl chain. The loading of ILs at 5% concentration led to considerable IL accumulation on the blend film surfaces (as observed in SEM images) and, subsequently, their higher release. The biocompatibility assessment with healthy human dermal fibroblast (HDF) cells and the investigation of antitumoral properties unveiled promising pharmacological characteristics. These findings provide strong support for the potential utilisation of ILs in biomedical applications, especially in the context of cancer therapy and as antibacterial agents to address the challenge of antibiotic resistance. Furthermore, the unique properties of the PVC/IL films make them versatile materials for advancing healthcare technologies, from drug delivery to tissue engineering and antimicrobial coatings to diagnostic devices.
Collapse
Affiliation(s)
- Elisabetta Novello
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy; (E.N.); (G.S.); (G.D.); (D.C.Z.)
| | - Giuseppina Scalzo
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy; (E.N.); (G.S.); (G.D.); (D.C.Z.)
| | - Giovanni D’Agata
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy; (E.N.); (G.S.); (G.D.); (D.C.Z.)
| | - Maria G. Raucci
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Napoli, Viale J.F. Kennedy n.54, Pad.20, 80125 Napoli, Italy; (L.A.); (A.S.)
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Napoli, Viale J.F. Kennedy n.54, Pad.20, 80125 Napoli, Italy; (L.A.); (A.S.)
| | - Alessandra Soriente
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Napoli, Viale J.F. Kennedy n.54, Pad.20, 80125 Napoli, Italy; (L.A.); (A.S.)
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.R.)
| | - Cristina Restuccia
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (C.R.); (L.P.)
| | - Lucia Parafati
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (C.R.); (L.P.)
| | - Grazia M. L. Consoli
- Institute of Biomolecular Chemistry (ICB)-CNR, via Paolo Gaifami 18, 95126 Catania, Italy; (G.M.L.C.); (L.F.)
| | - Loredana Ferreri
- Institute of Biomolecular Chemistry (ICB)-CNR, via Paolo Gaifami 18, 95126 Catania, Italy; (G.M.L.C.); (L.F.)
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.R.)
| | - Chiara Zagni
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.R.)
| | - Daniela C. Zampino
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy; (E.N.); (G.S.); (G.D.); (D.C.Z.)
| |
Collapse
|
13
|
Egorova KS, Kibardin AV, Posvyatenko AV, Ananikov VP. Mechanisms of Biological Effects of Ionic Liquids: From Single Cells to Multicellular Organisms. Chem Rev 2024; 124:4679-4733. [PMID: 38621413 DOI: 10.1021/acs.chemrev.3c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The review presents a detailed discussion of the evolving field studying interactions between ionic liquids (ILs) and biological systems. Originating from molten salt electrolytes to present multiapplication substances, ILs have found usage across various fields due to their exceptional physicochemical properties, including excellent tunability. However, their interactions with biological systems and potential influence on living organisms remain largely unexplored. This review examines the cytotoxic effects of ILs on cell cultures, biomolecules, and vertebrate and invertebrate organisms. Our understanding of IL toxicity, while growing in recent years, is yet nascent. The established findings include correlations between harmful effects of ILs and their ability to disturb cellular membranes, their potential to trigger oxidative stress in cells, and their ability to cause cell death via apoptosis. Future research directions proposed in the review include studying the distribution of various ILs within cellular compartments and organelles, investigating metabolic transformations of ILs in cells and organisms, detailed analysis of IL effects on proteins involved in oxidative stress and apoptosis, correlation studies between IL doses, exposure times and resulting adverse effects, and examination of effects of subtoxic concentrations of ILs on various biological objects. This review aims to serve as a critical analysis of the current body of knowledge on IL-related toxicity mechanisms. Furthermore, it can guide researchers toward the design of less toxic ILs and the informed use of ILs in drug development and medicine.
Collapse
Affiliation(s)
- Ksenia S Egorova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey V Kibardin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russian Federation, Moscow 117198, Russia
| | - Alexandra V Posvyatenko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russian Federation, Moscow 117198, Russia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
14
|
Ražić S, Gadžurić S, Trtić-Petrović T. Ionic liquids in green analytical chemistry-are they that good and green enough? Anal Bioanal Chem 2024; 416:2023-2029. [PMID: 37989846 DOI: 10.1007/s00216-023-05045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/16/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
The widespread use of ionic liquids (ILs) as greener solvents in analytical sciences, especially in sample pretreatment, has focused attention on exploiting their enormous potential, not only on eliminating and improving the drawbacks faced by scientists. These ionic compounds with unique physicochemical properties can be tuned through smart synthesis, combining cations and anions, so that the compound exhibits excellent properties for its intended purpose. Ionic liquids are rightly referred to as designer solvents. Validation of a newly proposed analytical methods using ionic liquids, either in sample preparation or in further analysis, is a critical process to demonstrate that a particular analytical method is fit for purpose and provides reliable and accurate results. In addition, this article specially addressed the potential toxicity of ionic liquids with the modest goal of assisting researchers in this field by expanding their target areas.
Collapse
Affiliation(s)
- Slavica Ražić
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia.
| | - Slobodan Gadžurić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, Serbia
| | - Tatjana Trtić-Petrović
- Laboratory of Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrović Alasa 12-14, Belgrade, Serbia
| |
Collapse
|
15
|
Chen X, Li Z, Yang C, Yang D. Ionic liquids as the effective technology for enhancing transdermal drug delivery: Design principles, roles, mechanisms, and future challenges. Asian J Pharm Sci 2024; 19:100900. [PMID: 38590797 PMCID: PMC10999516 DOI: 10.1016/j.ajps.2024.100900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 04/10/2024] Open
Abstract
Ionic liquids (ILs) have been proven to be an effective technology for enhancing drug transdermal absorption. However, due to the unique structural components of ILs, the design of efficient ILs and elucidation of action mechanisms remain to be explored. In this review, basic design principles of ideal ILs for transdermal drug delivery system (TDDS) are discussed considering melting point, skin permeability, and toxicity, which depend on the molar ratios, types, functional groups of ions and inter-ionic interactions. Secondly, the contributions of ILs to the development of TDDS through different roles are described: as novel skin penetration enhancers for enhancing transdermal absorption of drugs; as novel solvents for improving the solubility of drugs in carriers; as novel active pharmaceutical ingredients (API-ILs) for regulating skin permeability, solubility, release, and pharmacokinetic behaviors of drugs; and as novel polymers for the development of smart medical materials. Moreover, diverse action mechanisms, mainly including the interactions among ILs, drugs, polymers, and skin components, are summarized. Finally, future challenges related to ILs are discussed, including underlying quantitative structure-activity relationships, complex interaction forces between anions, drugs, polymers and skin microenvironment, long-term stability, and in vivo safety issues. In summary, this article will promote the development of TDDS based on ILs.
Collapse
Affiliation(s)
- Xuejun Chen
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Ziqing Li
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Chunrong Yang
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Degong Yang
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
16
|
Bin T, Venturoli G, Ghelli AM, Francia F. Use of bacterial photosynthetic vesicles to evaluate the effect of ionic liquids on the permeability of biological membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184291. [PMID: 38296218 DOI: 10.1016/j.bbamem.2024.184291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
Ionic liquids (ILs) are salts composed of a combination of organic or inorganic cations and anions characterized by a low melting point, often below 100 °C. This property, together with an extremely low vapor pressure, low flammability and high thermal stability, makes them suitable for replacing canonical organic solvents, with a reduction of industrial activities impact on the environment. Although in the last decades the eco-compatibility of ILs has been extensively verified through toxicological tests performed on model organisms, a detailed understanding of the interaction of these compounds with biological membranes is far from being exhaustive. In this context, we have chosen to evaluate the effect of some ILs on native membranes by using chromatophores, photosynthetic vesicles that can be isolated from Rhodobacter capsulatus, a member of the purple non‑sulfur bacteria. Here, carotenoids associated with the light-harvesting complex II, act as endogenous spectral probes of the transmembrane electrical potential (ΔΨ). By measuring through time-resolved absorption spectroscopy the evolution of the carotenoid band shift induced by a single excitation of the photosynthetic reaction center, information on the ΔΨ dissipation due to ionic currents across the membrane can be obtained. We found that some ILs cause a rather fast dissipation of the transmembrane ΔΨ even at low concentrations, and that this behavior is dose-dependent. By using two different models to analyze the decay of the carotenoid signals, we attempted to interpret at a mechanistic level the marked increase of ionic permeability caused by specific ILs.
Collapse
Affiliation(s)
- Tancredi Bin
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Giovanni Venturoli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), c/o Dipartimento di Fisica e Astronomia (DIFA), via Irnerio 46, Università di Bologna, I-40126 Bologna, Italy
| | - Anna Maria Ghelli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Francesco Francia
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| |
Collapse
|
17
|
Sokolov SS, Smirnova EA, Rokitskaya TI, Severin FF. The Imidazolium Ionic Liquids Toxicity is Due to Their Effect on the Plasma Membrane. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:451-461. [PMID: 38648765 DOI: 10.1134/s0006297924030064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 04/25/2024]
Abstract
Ionic liquids (ILs) are organic salts with a low melting point. This is due to the fact that their alkyl side chains, which are covalently connected to the ion, hinder the crystallization of ILs. The low melting point of ILs has led to their widespread use as relatively harmless solvents. However, ILs do have toxic properties, the mechanism of which is largely unknown, so identifying the cellular targets of ILs is of practical importance. In our work, we showed that imidazolium ILs are not able to penetrate model membranes without damaging them. We also found that inactivation of multidrug resistance (MDR) pumps in yeast cells does not increase their sensitivity to imidazolium ILs. The latter indicates that the target of toxicity of imidazolium ILs is not in the cytoplasm. Thus, it can be assumed that the disruption of the barrier properties of the plasma membrane is the main reason for the toxicity of low concentrations of imidazolium ILs. We also showed that supplementation with imidazolium ILs restores the growth of cells with kinetically blocked glycolysis. Apparently, a slight disruption of the plasma membrane caused by ILs can, in some cases, be beneficial for the cell.
Collapse
Affiliation(s)
- Svyatoslav S Sokolov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ekaterina A Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Fedor F Severin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
18
|
Veríssimo NVP, Mussagy CU, Bento HBS, Pereira JFB, Santos-Ebinuma VDC. Ionic liquids and deep eutectic solvents for the stabilization of biopharmaceuticals: A review. Biotechnol Adv 2024; 71:108316. [PMID: 38199490 DOI: 10.1016/j.biotechadv.2024.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Biopharmaceuticals have allowed the control of previously untreatable diseases. However, their low solubility and stability still hinder their application, transport, and storage. Hence, researchers have applied different compounds to preserve and enhance the delivery of biopharmaceuticals, such as ionic liquids (ILs) and deep eutectic solvents (DESs). Although the biopharmaceutical industry can employ various substances for enhancing formulations, their effect will change depending on the properties of the target biomolecule and environmental conditions. Hence, this review organized the current state-of-the-art on the application of ILs and DESs to stabilize biopharmaceuticals, considering the properties of the biomolecules, ILs, and DESs classes, concentration range, types of stability, and effect. We also provided a critical discussion regarding the potential utilization of ILs and DESs in pharmaceutical formulations, considering the restrictions in this field, as well as the advantages and drawbacks of these substances for medical applications. Overall, the most applied IL and DES classes for stabilizing biopharmaceuticals were cholinium-, imidazolium-, and ammonium-based, with cholinium ILs also employed to improve their delivery. Interestingly, dilute and concentrated ILs and DESs solutions presented similar results regarding the stabilization of biopharmaceuticals. With additional investigation, ILs and DESs have the potential to overcome current challenges in biopharmaceutical formulation.
Collapse
Affiliation(s)
- Nathalia Vieira Porphirio Veríssimo
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, CEP: 14801-902 Araraquara, SP, Brazil; Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, São Paulo University, CEP: 14040-020 Ribeirão Preto, SP, Brazil.
| | - Cassamo Usemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile.
| | - Heitor Buzetti Simões Bento
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, CEP: 14801-902 Araraquara, SP, Brazil.
| | | | - Valéria de Carvalho Santos-Ebinuma
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, CEP: 14801-902 Araraquara, SP, Brazil.
| |
Collapse
|
19
|
Zarski A, Kapusniak K, Ptak S, Rudlicka M, Coseri S, Kapusniak J. Functionalization Methods of Starch and Its Derivatives: From Old Limitations to New Possibilities. Polymers (Basel) 2024; 16:597. [PMID: 38475281 DOI: 10.3390/polym16050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
It has long been known that starch as a raw material is of strategic importance for meeting primarily the nutritional needs of people around the world. Year by year, the demand not only for traditional but also for functional food based on starch and its derivatives is growing. Problems with the availability of petrochemical raw materials, as well as environmental problems with the recycling of post-production waste, make non-food industries also increasingly interested in this biopolymer. Its supporters will point out countless advantages such as wide availability, renewability, and biodegradability. Opponents, in turn, will argue that they will not balance the problems with its processing and storage and poor functional properties. Hence, the race to find new methods to improve starch properties towards multifunctionality is still ongoing. For these reasons, in the presented review, referring to the structure and physicochemical properties of starch, attempts were made to highlight not only the current limitations in its processing but also new possibilities. Attention was paid to progress in the non-selective and selective functionalization of starch to obtain materials with the greatest application potential in the food (resistant starch, dextrins, and maltodextrins) and/or in the non-food industries (hydrophobic and oxidized starch).
Collapse
Affiliation(s)
- Arkadiusz Zarski
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Kamila Kapusniak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Sylwia Ptak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Magdalena Rudlicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Sergiu Coseri
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, 41 A, Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Janusz Kapusniak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| |
Collapse
|
20
|
Yoon J, Lee J, Hong SP, Park HJ, Kim J, Lee J, Lee C, Oh SG. Fabrication of biodegradable cellulose acetate nanofibers containing Rose Bengal dye by electrospinning technique and their antiviral efficacy under visible light irradiation. CHEMOSPHERE 2024; 349:140897. [PMID: 38070613 DOI: 10.1016/j.chemosphere.2023.140897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/23/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Biodegradable cellulose acetate (CA) nanofibers containing Rose Bengal (RB) dye were fabricated by electrospinning technique. RB dye, an anionic photosensitizer, has been used in photodynamic therapy due to its excellent biocompatibility and ability to absorb light to generate reactive oxygen species (ROS), but has a decisive disadvantage of water solubility on infection prevention. Firstly, water-insoluble RB dye was synthesized through complexation with cationic ionic liquid (IL) for antiviral agents. The synthesized water-insoluble RB dyes were embedded into biodegradable CA nanofibers by electrospinning. The electrospun nanofibers passed both antiviral test for φx174 virus under visible light irradiation and biodegradability-test using enzymes. The fabricated RB nanofibers absorbed light and generated ROS to inactivate the virus. As a result, the log reduction (-Log10(N/N0)) of φx174 titer under visible light reached a detection limit of 5.00 within 30 min. Also, the fabricated nanofibers were degraded up to 34 wt % in 9 weeks by lipase and cellulase enzymes compared with non-biodegradable nanofibers.
Collapse
Affiliation(s)
- Jinsoo Yoon
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Juri Lee
- School of Chemical Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Pil Hong
- Samsung Research, Samsung Electronics Co., Ltd., Seoul, 06756, Republic of Korea
| | - Hee-Jin Park
- Samsung Research, Samsung Electronics Co., Ltd., Seoul, 06756, Republic of Korea
| | - Joohyun Kim
- School of Chemical Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaeseon Lee
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Changha Lee
- School of Chemical Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seong-Geun Oh
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
21
|
Campodónico PR, Calderón C, Alcázar JJ, Olivares B, Jaldin L, Suárez-Rozas C. Exploring the behavior of Candida antarctica lipase B in aqueous mixtures of an imidazolium ionic liquid and its surfactant analogue. Front Chem 2024; 11:1289398. [PMID: 38268763 PMCID: PMC10806215 DOI: 10.3389/fchem.2023.1289398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
The performance of Candida antarctica lipase B (CALB) has been evaluated in 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4)/water mixtures in a wide range of molar fractions (χ B M I M B F 4 ) with and without 1-dodecyl-3-methylimidazolium tetrafluoroborate (C12-MIMBF4), a surfactant derived from BMIMBF4. The main aim of this work is to evaluate the influence of χ B M I M B F 4 over micellar aggregates to assess the activity of enzymatic reactions. The investigated reaction corresponds to the hydrolysis of the substrate p-nitrophenyl laureate in each χ B M I M B F 4 . The kinetic study for χ B M I M B F 4 at around 0.2 proved to be a border point in enzymatic activity. At χ B M I M B F 4 = 0.1, the lipase activity increases in the presence of C12-MIMBF4. However, at higher concentrations, BMIMBF4 has a negligible effect over the lipase activity. These results suggest specific interactions between water and BMIMBF4 molecules in relation to CALB. This research highlights the superactivity phenomenon driven by the reaction media and the micelle interface. In this interfacial interaction, BMIMBF4 acts directly on the changes induced on the enzyme upon its interaction with the micellar interface. This study opens a green perspective toward the biocatalysis field.
Collapse
Affiliation(s)
- Paola R. Campodónico
- Centro de Química Médica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Cristian Calderón
- Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Jackson J. Alcázar
- Centro de Química Médica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Belén Olivares
- Centro de Química Médica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Limberg Jaldin
- Centro de Química Médica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Cristian Suárez-Rozas
- Centro de Química Médica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
22
|
Nunes B, Cagide F, Fernandes C, Borges A, Borges F, Simões M. Efficacy of Novel Quaternary Ammonium and Phosphonium Salts Differing in Cation Type and Alkyl Chain Length against Antibiotic-Resistant Staphylococcus aureus. Int J Mol Sci 2023; 25:504. [PMID: 38203676 PMCID: PMC10778626 DOI: 10.3390/ijms25010504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Antibacterial resistance poses a critical public health threat, challenging the prevention and treatment of bacterial infections. The search for innovative antibacterial agents has spurred significant interest in quaternary heteronium salts (QHSs), such as quaternary ammonium and phosphonium compounds as potential candidates. In this study, a library of 49 structurally related QHSs was synthesized, varying the cation type and alkyl chain length. Their antibacterial activities against Staphylococcus aureus, including antibiotic-resistant strains, were evaluated by determining minimum inhibitory/bactericidal concentrations (MIC/MBC) ≤ 64 µg/mL. Structure-activity relationship analyses highlighted alkyl-triphenylphosphonium and alkyl-methylimidazolium salts as the most effective against S. aureus CECT 976. The length of the alkyl side chain significantly influenced the antibacterial activity, with optimal chain lengths observed between C10 and C14. Dose-response relationships were assessed for selected QHSs, showing dose-dependent antibacterial activity following a non-linear pattern. Survival curves indicated effective eradication of S. aureus CECT 976 by QHSs at low concentrations, particularly compounds 1e, 3e, and 5e. Moreover, in vitro human cellular data indicated that compounds 2e, 4e, and 5e showed favourable safety profiles at concentrations ≤ 2 µg/mL. These findings highlight the potential of these QHSs as effective agents against susceptible and resistant bacterial strains, providing valuable insights for the rational design of bioactive QHSs.
Collapse
Affiliation(s)
- Bárbara Nunes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; (B.N.); (A.B.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal (C.F.); (F.B.)
| | - Fernando Cagide
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal (C.F.); (F.B.)
| | - Carlos Fernandes
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal (C.F.); (F.B.)
| | - Anabela Borges
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; (B.N.); (A.B.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal (C.F.); (F.B.)
| | - Manuel Simões
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; (B.N.); (A.B.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
23
|
Wang L, Du YQ, Deng XQ, Cai JY, Liang WW, Hu XL. Intergenerational toxic effects of 1-methyl-3-octylimidazolium chloride and 1-dodecylpyridinium chloride on the water flea, Moina macrocopa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121501-121512. [PMID: 37953428 DOI: 10.1007/s11356-023-30928-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Ionic liquids (ILs) are generally considered eco-friendly alternatives to conventional industrial solvents, but they are hard to degrade and easily accumulate in the environment. Therefore, their long-term toxicities are especially vital to estimate their potential risk. However, the chronic toxicities of ILs over generations lacked intensive investigation. In the present work, acute toxicity and chronic toxicity of 1-methyl-3-octylimidazolium chloride ([Omim]Cl) and 1-dodecylpyridinium chloride ([DPy]Cl) were studied on Moina macrocopa with the first exposed generation (F0) and two successive recovery generation (F1 to F2). The acute results showed that both [Omim]Cl and [DPy]Cl exhibited high toxicity to M. macrocopa. The chronic results indicated that the exposure of [Omim]Cl and [DPy]Cl could inhibit the survivorship, body length, and reproduction of M. macrocopa and exhibited a significant dose-related decrease. Furthermore, these two types of ILs presented intergenerational toxicity in the water flea. And the toxic effects of [Omim]Cl disappeared in the recovery tests of F2 generation, while the [DPy]Cl toxic effects continued. Our research suggested a potential risk for the aquatic ecosystem induced by ILs. And the damage done by these chemicals to the aquatic environment is worthy of attention.
Collapse
Affiliation(s)
- Lu Wang
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Ying Qi Du
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Xiao Quan Deng
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Jin Yu Cai
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Wen Wang Liang
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Xue Lei Hu
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China.
| |
Collapse
|
24
|
Habibi A, Bayat M, Omidi B, Ezabadi A, Mortazavi P. Synthesis of new imidazole-based ionic liquids with antifungal activity against Candida albicans. IRANIAN JOURNAL OF MICROBIOLOGY 2023; 15:811-820. [PMID: 38156299 PMCID: PMC10751616 DOI: 10.18502/ijm.v15i6.14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Background and Objectives Candida albicans cause a problematic condition in immunocompromised patients that could not be treated quickly due to the resistant behavior of microorganisms. This study aimed to investigate the effect of a novel ionic liquid (IL) as a new drug on C. albicans strains. Materials and Methods Seven newly binary ionic liquids mixtures were synthesized, and among them, ([prollinium chloride] [1-methylimidazolium 3-sulfonate] ([pro-HCl][MImS]) was selected and characterized by 1HNMR, 13C NMR, and FT-IR methods. Samples from patients (n=50) with candidiasis were collected and identified through culture media. ERG11 gene overexpression was related to resistance against azole-bearing drugs. The antibiogram, well diffusion assay, MICs, and MFCs tests were operated. PCR and Real-time evaluated the expression of the ERG11 gene, and the rate of cell death was detected using Flow Cytometry. Results Our data manifested that this novel IL (Ionic Liquid) can inhibit C. albican's growth, reduce the expression of ERG11 and increase dead cells. Conclusion The newly synthesized IL had an inhibiting effect on the growth of the C. albicans strains and may be used as an alternative candidate for novel drug design.
Collapse
Affiliation(s)
- Amira Habibi
- Department of Pathobiology, Faculty of Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mansoura Bayat
- Department of Pathobiology, Faculty of Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Behinb Omidi
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Ezabadi
- Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Pejmana Mortazavi
- Department of Pathobiology, Faculty of Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
25
|
Sharma L, Kudłak B, Siedlewicz G, Pazdro K. The effects of the IM1-12Br ionic liquid and the oxytetracycline mixture on selected marine and brackish microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165898. [PMID: 37527710 DOI: 10.1016/j.scitotenv.2023.165898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/03/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
The number of applications and commercialized processes utilizing ionic liquids has been increasing, and it is anticipated that this trend will persist and even intensify in the future. Ionic liquids possess desirable characteristics, such as low vapor pressure, good water solubility, amphiphilicity, and stability. Nevertheless, these properties can influence their environmental behavior, resulting in resistance to biotic and abiotic degradation and subsequent water contamination with more harmful derivatives. However, there is a notable scarcity of data regarding the impact of mixtures comprising ionic liquids and other micropollutants. Identifying potential potentiation of ionic liquids (Ils) toxicity in the presence of other xenobiotics is a proactive risk assessment measure. Therefore, the study aims to fill an important knowledge gap and identify possible interactions between imidazolium-based ionic liquid (IM1-12Br) and the common antibiotic oxytetracycline (OXTC). During 11-day experiments, selected marine, brackish and freshwater microorganisms (diatom Phaeodactylum tricornutum, cyanobacterium Microcystis aeruginosa and green algae Chlorella vulgaris) were exposed to binary mixtures of target substances. The assessed responses encompassed chlorophyll a kinetic parameters related to photosynthesis efficiency, as well as pigment concentrations, specifically phycobilin content. Additionally, the impact on the luminescent marine bacterium Aliivibrio fischeri has been evaluated. Significant effects on the growth, photosynthetic processes, and pigment content were observed in all the targeted microorganisms. The concentration addition (CA) and independent action (IA) mathematical models followed by the Model Deviation Ratio (MDR) evaluation enabled the identification of mainly synergistic interactions in the studied mixtures. The findings of present study offer valuable insights into the impacts of ionic liquids and other organic micropollutants.
Collapse
Affiliation(s)
- Lilianna Sharma
- Department of Marine Chemistry and Biochemistry, Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland.
| | - Błażej Kudłak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Grzegorz Siedlewicz
- Department of Marine Chemistry and Biochemistry, Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland
| | - Ksenia Pazdro
- Department of Marine Chemistry and Biochemistry, Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland
| |
Collapse
|
26
|
Hu Y, Xing Y, Yue H, Chen T, Diao Y, Wei W, Zhang S. Ionic liquids revolutionizing biomedicine: recent advances and emerging opportunities. Chem Soc Rev 2023; 52:7262-7293. [PMID: 37751298 DOI: 10.1039/d3cs00510k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Ionic liquids (ILs), due to their inherent structural tunability, outstanding miscibility behavior, and excellent electrochemical properties, have attracted significant research attention in the biomedical field. As the application of ILs in biomedicine is a rapidly emerging field, there is still a need for systematic analyses and summaries to further advance their development. This review presents a comprehensive survey on the utilization of ILs in the biomedical field. It specifically emphasizes the diverse structures and properties of ILs with their relevance in various biomedical applications. Subsequently, we summarize the mechanisms of ILs as potential drug candidates, exploring their effects on various organisms ranging from cell membranes to organelles, proteins, and nucleic acids. Furthermore, the application of ILs as extractants and catalysts in pharmaceutical engineering is introduced. In addition, we thoroughly review and analyze the applications of ILs in disease diagnosis and delivery systems. By offering an extensive analysis of recent research, our objective is to inspire new ideas and pathways for the design of innovative biomedical technologies based on ILs.
Collapse
Affiliation(s)
- Yanhui Hu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuyuan Xing
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Yue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yanyan Diao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wei
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Aredes RS, Lima IDP, Faillace AP, Madriaga VGC, Lima TDM, Vaz FAS, Marques FFDC, Duarte LM. From capillaries to microchips, green electrophoretic features for enantiomeric separations: A decade review (2013-2022). Electrophoresis 2023; 44:1471-1518. [PMID: 37667860 DOI: 10.1002/elps.202200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 09/06/2023]
Abstract
Enantioseparation by the electromigration-based method is well-established and widely discussed in the literature. Electrophoretic strategies have been used to baseline resolve complex enantiomeric mixtures, typically using a selector substance into the background electrolyte (BGE) from capillaries to microchips. Along with developing new materials/substances for enantioseparations, it is the concern about the green analytical chemistry (GAC) principles for method development and application. This review article brings a last decade's update on the publications involving enantioseparation by electrophoresis for capillary and microchip systems. It also brings a critical discussion on GAC principles and new green metrics in the context of developing an enantioseparation method. Chemical and green features of native and modified cyclodextrins are discussed. Still, given the employment of greener substances, ionic liquids and deep-eutectic solvents are highlighted, and some new selectors are proposed. For all the mentioned selectors, green features about their production, application, and disposal are considered. Sample preparation and BGE composition in GAC perspective, as well as greener derivatization possibilities, were also addressed. Therefore, one of the goals of this review is to aid the electrophoretic researchers to look where they have not.
Collapse
Affiliation(s)
- Rafaella S Aredes
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Isabela de P Lima
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Amanda P Faillace
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Vinicius G C Madriaga
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Thiago de M Lima
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Fernando A S Vaz
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Flávia F de C Marques
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Lucas M Duarte
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Li M, Xia Z, Chen S, Liu X, Wang Q, Liu Y, Wu Y, Wen S, Gong Z. Insight into the negative effect and lipid profile alterations in liver of mice exposed to methylimidazolium ionic liquids, a novel "green" solvent. Toxicol Res (Camb) 2023; 12:884-894. [PMID: 37915492 PMCID: PMC10615802 DOI: 10.1093/toxres/tfad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/30/2023] [Indexed: 11/03/2023] Open
Abstract
Background Ionic liquids (ILs) have been recognized as potential environmentally friendly solvents; however, their potential toxicity to living organisms warrants thorough investigation, particularly for novel-generation ILs in mammalian models. Methods In this study, we examined the hepatic effects and disruption of lipid metabolism in mice exposed to 1-heptyl-3-methylimidazolium chloride (C7[MIM]Cl), a novel ILs. After four weeks of oral administration at different dosages (2.38, 5.95, and 11.9 mg/kg b.w.), we conducted clinical chemistry analysis and histopathological examination of the liver to assess biochemical and structural changes. Results The low-dose C7[MIM]Cl group exhibited a significant increase in alanine aminotransferase (ALT) levels, while aspartate aminotransferase (AST) levels were elevated in both low-dose and high-dose groups without statistical significance. Histopathological examination showed inflammatory cell infiltration and red blood cell aggregation in the livers of mice exposed to C7[MIM]Cl, particularly in the high-dose group. Oxidative stress levels showed moderate changes in response to C7[MIM]Cl exposure. Notably, hepatic biochemical parameters revealed a dose-dependent increase in triglycerides (TG) levels with statistically significant differences compared to the control group (P ≤ 0.01). Targeted lipidomic analysis revealed notable alterations in liver lipids of mice exposed to C7[MIM]Cl, with lysophosphatidylethanolamine (18:0), phosphatidylcholines (18:0), and phosphatidylcholines (19:0) identified as critical lipids associated with C7[MIM]Cl exposure. Furthermore, metabolic pathway analyses demonstrated significant disturbances in the glycerophospholipid metabolic pathway. Conclusion These findings provide valuable insights into the hepatic effects of C7[MIM]Cl exposure and novel perspectives on the disruption of lipid metabolism underlying ILs toxicity.
Collapse
Affiliation(s)
- Ming Li
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, No. 68 Xuefu South Road, Dongxihu District, Wuhan, Hubei 430023, China
| | - Zhunan Xia
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, No. 68 Xuefu South Road, Dongxihu District, Wuhan, Hubei 430023, China
| | - Shiyi Chen
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, No. 68 Xuefu South Road, Dongxihu District, Wuhan, Hubei 430023, China
| | - Xin Liu
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, No. 68 Xuefu South Road, Dongxihu District, Wuhan, Hubei 430023, China
| | - Qiao Wang
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, No. 68 Xuefu South Road, Dongxihu District, Wuhan, Hubei 430023, China
| | - Yan Liu
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, No. 68 Xuefu South Road, Dongxihu District, Wuhan, Hubei 430023, China
| | - Yongning Wu
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, No. 68 Xuefu South Road, Dongxihu District, Wuhan, Hubei 430023, China
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014); NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), No. 37, Guangqu Road, Chaoyang District, Beijing 100022, China
| | - Sheng Wen
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, No. 35 Zhuodaoquan North Road, Hongshan District, Wuhan, Hubei 430079, China
| | - Zhiyong Gong
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, No. 68 Xuefu South Road, Dongxihu District, Wuhan, Hubei 430023, China
| |
Collapse
|
29
|
Man GT, Albu PC, Nechifor AC, Grosu AR, Tanczos SK, Grosu VA, Ioan MR, Nechifor G. Thorium Removal, Recovery and Recycling: A Membrane Challenge for Urban Mining. MEMBRANES 2023; 13:765. [PMID: 37755188 PMCID: PMC10538078 DOI: 10.3390/membranes13090765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
Although only a slightly radioactive element, thorium is considered extremely toxic because its various species, which reach the environment, can constitute an important problem for the health of the population. The present paper aims to expand the possibilities of using membrane processes in the removal, recovery and recycling of thorium from industrial residues reaching municipal waste-processing platforms. The paper includes a short introduction on the interest shown in this element, a weak radioactive metal, followed by highlighting some common (domestic) uses. In a distinct but concise section, the bio-medical impact of thorium is presented. The classic technologies for obtaining thorium are concentrated in a single schema, and the speciation of thorium is presented with an emphasis on the formation of hydroxo-complexes and complexes with common organic reagents. The determination of thorium is highlighted on the basis of its radioactivity, but especially through methods that call for extraction followed by an established electrochemical, spectral or chromatographic method. Membrane processes are presented based on the electrochemical potential difference, including barro-membrane processes, electrodialysis, liquid membranes and hybrid processes. A separate sub-chapter is devoted to proposals and recommendations for the use of membranes in order to achieve some progress in urban mining for the valorization of thorium.
Collapse
Affiliation(s)
- Geani Teodor Man
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.T.M.); (A.C.N.); (A.R.G.)
- National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI, 240050 Râmnicu Valcea, Romania
| | - Paul Constantin Albu
- Radioisotopes and Radiation Metrology Department (DRMR), IFIN Horia Hulubei, 023465 Măgurele, Romania; (P.C.A.); (M.-R.I.)
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.T.M.); (A.C.N.); (A.R.G.)
| | - Alexandra Raluca Grosu
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.T.M.); (A.C.N.); (A.R.G.)
| | - Szidonia-Katalin Tanczos
- Department of Bioengineering, University Sapientia of Miercurea-Ciuc, 500104 Miercurea Ciuc, Romania;
| | - Vlad-Alexandru Grosu
- Department of Electronic Technology and Reliability, Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest, 061071 Bucharest, Romania
| | - Mihail-Răzvan Ioan
- Radioisotopes and Radiation Metrology Department (DRMR), IFIN Horia Hulubei, 023465 Măgurele, Romania; (P.C.A.); (M.-R.I.)
| | - Gheorghe Nechifor
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.T.M.); (A.C.N.); (A.R.G.)
| |
Collapse
|
30
|
Vuillemin ME, Waterlot C, Verdin A, Laclef S, Cézard C, Lesur D, Sarazin C, Courcot D, Hadad C, Husson E, Van Nhien AN. Copper-uptake mediated by an ecofriendly zwitterionic ionic liquid: A new challenge for a cleaner bioeconomy. J Environ Sci (China) 2023; 130:92-101. [PMID: 37032046 DOI: 10.1016/j.jes.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 06/19/2023]
Abstract
This study aims to investigate the ability of an imidazolium biobased Zwitterionic Ionic Liquids (ZILs) in enhancing the phytoavailability of copper from garden (G) and vineyard (V) soils using the model plant ryegrass. Uncontaminated and artificially contaminated CuSO4 soils, unamended and ZIL-amended soil modalities were designed. The copper/ZIL molar ratio (1/4) introduced was rationally established based on molecular modeling and on the maximal copper concentration in artificially contaminated soil. Higher accumulation of copper in the shoots was detected for the uncontaminated and copper contaminated ZIL amended V soils (18.9 and 23.3 mg/kg, respectively) contrary to G soils together with a ZIL concentration of around 3% (W/W) detected by LC-MS analyses. These data evidenced a Cu-accumulation improvement of 38% and 66% compared to non-amended V soils (13.6 and 13.9 mg/kg respectively). ZIL would be mainly present under Cu(II)-ZIL4 complexes in the shoots. The impact on the chemical composition of shoot was also studied. The results show that depending on the soils modalitity, the presence of free copper and/or ZIL led to different chemical compositions in lignin and monomeric sugar contents. In the biorefinery context, performances of enzymatic hydrolysis of shoots were also related to the presence of both ZIL and copper under free or complex forms. Ecotoxicity assessment of the vineyard soil samples indicated that the quantity of copper and ZIL remaining in the soils had no significant toxicity. ZIL amendment in a copper-contaminated soil was demonstrated as being a promising way to promote the valorization of phytoremediation plants.
Collapse
Affiliation(s)
- Marie E Vuillemin
- Enzyme and Cell Engineering, UMR 7025 CNRS, University of Picardie Jules Verne - Faculty of Sciences, 33 rue Saint Leu, 80039 Amiens Cedex, France
| | - Christophe Waterlot
- University of Lille, Mines-Télécom Institute, University of Artois, JUNIA, ULR 4515 - LGCgE, Laboratory of Civil Engineering and Geo-Environment, F-59000 Lille, France
| | - Anthony Verdin
- Environmental Chemistry and Life Interactions Unit, UCEIV UR4492, FR CNRS 3417, University of Littoral Côte d'Opale (ULCO), Dunkerque, France
| | - Sylvain Laclef
- Laboratory of Glycochemistry, Antimicrobials and Agroresources, UMR CNRS 7378, University of Picardie Jules Verne - Faculty of Sciences, 33 rue Saint Leu, 80039 Amiens Cedex, France; Institute of Chemistry of Picardie FR CNRS 3085, 80039 Amiens, France
| | - Christine Cézard
- Laboratory of Glycochemistry, Antimicrobials and Agroresources, UMR CNRS 7378, University of Picardie Jules Verne - Faculty of Sciences, 33 rue Saint Leu, 80039 Amiens Cedex, France; Institute of Chemistry of Picardie FR CNRS 3085, 80039 Amiens, France
| | - David Lesur
- Laboratory of Glycochemistry, Antimicrobials and Agroresources, UMR CNRS 7378, University of Picardie Jules Verne - Faculty of Sciences, 33 rue Saint Leu, 80039 Amiens Cedex, France; Institute of Chemistry of Picardie FR CNRS 3085, 80039 Amiens, France
| | - Catherine Sarazin
- Enzyme and Cell Engineering, UMR 7025 CNRS, University of Picardie Jules Verne - Faculty of Sciences, 33 rue Saint Leu, 80039 Amiens Cedex, France
| | - Dominique Courcot
- Environmental Chemistry and Life Interactions Unit, UCEIV UR4492, FR CNRS 3417, University of Littoral Côte d'Opale (ULCO), Dunkerque, France
| | - Caroline Hadad
- Laboratory of Glycochemistry, Antimicrobials and Agroresources, UMR CNRS 7378, University of Picardie Jules Verne - Faculty of Sciences, 33 rue Saint Leu, 80039 Amiens Cedex, France; Institute of Chemistry of Picardie FR CNRS 3085, 80039 Amiens, France
| | - Eric Husson
- Enzyme and Cell Engineering, UMR 7025 CNRS, University of Picardie Jules Verne - Faculty of Sciences, 33 rue Saint Leu, 80039 Amiens Cedex, France
| | - Albert Nguyen Van Nhien
- Laboratory of Glycochemistry, Antimicrobials and Agroresources, UMR CNRS 7378, University of Picardie Jules Verne - Faculty of Sciences, 33 rue Saint Leu, 80039 Amiens Cedex, France; Institute of Chemistry of Picardie FR CNRS 3085, 80039 Amiens, France.
| |
Collapse
|
31
|
Klausser R, Kopp J, Prada Brichtova E, Gisperg F, Elshazly M, Spadiut O. State-of-the-art and novel approaches to mild solubilization of inclusion bodies. Front Bioeng Biotechnol 2023; 11:1249196. [PMID: 37545893 PMCID: PMC10399460 DOI: 10.3389/fbioe.2023.1249196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
Throughout the twenty-first century, the view on inclusion bodies (IBs) has shifted from undesired by-products towards a targeted production strategy for recombinant proteins. Inclusion bodies can easily be separated from the crude extract after cell lysis and contain the product in high purity. However, additional solubilization and refolding steps are required in the processing of IBs to recover the native protein. These unit operations remain a highly empirical field of research in which processes are developed on a case-by-case basis using elaborate screening strategies. It has been shown that a reduction in denaturant concentration during protein solubilization can increase the subsequent refolding yield due to the preservation of correctly folded protein structures. Therefore, many novel solubilization techniques have been developed in the pursuit of mild solubilization conditions that avoid total protein denaturation. In this respect, ionic liquids have been investigated as promising agents, being able to solubilize amyloid-like aggregates and stabilize correctly folded protein structures at the same time. This review briefly summarizes the state-of-the-art of mild solubilization of IBs and highlights some challenges that prevent these novel techniques from being yet adopted in industry. We suggest mechanistic models based on the thermodynamics of protein unfolding with the aid of molecular dynamics simulations as a possible approach to solve these challenges in the future.
Collapse
Affiliation(s)
- Robert Klausser
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Julian Kopp
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Eva Prada Brichtova
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Florian Gisperg
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Mohamed Elshazly
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| | - Oliver Spadiut
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience, Vienna, Austria
- Christian Doppler Laboratory IB Processing 4.0, Technische Universität Wien, Vienna, Austria
| |
Collapse
|
32
|
Viana T, Almeida R, Figueira P, Rocha L, Neves MC, Freitas R, Freire M, Henriques B, Pereira E. Removal of mercury by silica-supported ionic liquids: Efficiency and ecotoxicological assessment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106611. [PMID: 37336029 DOI: 10.1016/j.aquatox.2023.106611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Anthropogenic impacts have affected the coastal environment and contributed to its contamination. Mercury (Hg) is widespread in nature and has been shown to be toxic in even the smallest amounts, negatively affecting not only the marine ecosystem but also the entire trophic chain due to its biomagnification. Mercury ranks third on the Agency for Toxic Substances and Diseases Registry (ATSDR) priority list and it is therefore imperative to develop more effective methods than those currently available to avoid the persistence of this contaminant in aquatic ecosystems. The present study aimed to evaluate the effectiveness of six different silica-supported ionic liquids (SIL) in removing Hg from contaminated saline water, under realistic conditions ([Hg] = 50 µg/L), and to ecotoxicologically evaluate the safety of the SIL-remedied water, using as test model the marine macroalga Ulva lactuca. The results revealed that SIL [Si][C3C1im][SCN] (250 mg/L) was the most effective in removing Hg from solution, with a efficiency up to 99 % in just 6 h, that enable to obtain < 1 µg/L Hg (European guideline in drinking water). U. lactuca exposed to either the SIL and/or the remedied water showed no significant changes in relative growth rate and chlorophyll a and b levels, compared to the control condition. Biomarker analysis (LPO, GSH, GSSG, SOD, GPx, CAT and GRed) also showed no significant changes in the biochemical performance of U. lactuca. Therefore, it could be assumed that water treatment with SIL or its presence in an aqueous environment does not pose toxicity levels that could inhibit the metabolism or cause cell damage to U. lactuca.
Collapse
Affiliation(s)
- Thainara Viana
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry & Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Raquel Almeida
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry & Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Paula Figueira
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry & Department of Chemistry, University of Aveiro, Aveiro, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208, Matosinhos, Portugal
| | - Luciana Rocha
- CICECO, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Márcia C Neves
- CICECO, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rosa Freitas
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mara Freire
- CICECO, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Bruno Henriques
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry & Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| | - Eduarda Pereira
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry & Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
33
|
Kapitanov IV, Sudheer SM, Yadav T, Ghosh KK, Gathergood N, Gupta VK, Karpichev Y. Sustainable Phenylalanine-Derived SAILs for Solubilization of Polycyclic Aromatic Hydrocarbons. Molecules 2023; 28:molecules28104185. [PMID: 37241924 DOI: 10.3390/molecules28104185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The solubilization capacity of a series of sustainable phenylalanine-derived surface-active ionic liquids (SAILs) was evaluated towards polycyclic aromatic hydrocarbons-naphthalene, anthracene and pyrene. The key physico-chemical parameters of the studied systems (critical micelle concentration, spectral properties, solubilization parameters) were determined, analyzed and compared with conventional cationic surfactant, CTABr. For all studied PAH solubilization capacity increases with extension of alkyl chain length of PyPheOCn SAILs reaching the values comparable to CTABr for SAILs with n = 10-12. A remarkable advantage of the phenylalanine-derived SAILs PyPheOCn and PyPheNHCn is a possibility to cleave enzymatically ester and/or amide bonds under mild conditions, to separate polycyclic aromatic hydrocarbons in situ. A series of immobilized enzymes was tested to determine the most suitable candidates for tunable decomposition of SAILs. The decomposition pathway could be adjusted depending on the choice of the enzyme system, reaction conditions, and selection of SAILs type. The evaluated systems can provide selective cleavage of the ester and amide bond and help to choose the optimal decomposition method of SAILs for enzymatic recycling of SAILs transformation products or as a pretreatment towards biological mineralization. The concept of a possible practical application of studied systems for PAHs solubilization/separation was also discussed focusing on sustainability and a green chemistry approach.
Collapse
Affiliation(s)
- Illia V Kapitanov
- Department of Chemistry and Biotechnology, Tallinn University of Technology (TalTech), 12618 Tallinn, Estonia
| | - Surya M Sudheer
- Department of Chemistry and Biotechnology, Tallinn University of Technology (TalTech), 12618 Tallinn, Estonia
| | - Toshikee Yadav
- Department of Chemistry and Biotechnology, Tallinn University of Technology (TalTech), 12618 Tallinn, Estonia
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 92010, India
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 92010, India
| | - Nicholas Gathergood
- School of Chemistry, College of Science, University of Lincoln, Lincoln LN6 7TS, UK
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, Tallinn University of Technology (TalTech), 12618 Tallinn, Estonia
- Biorefining and Advanced Materials Research Centre, SRUC, Parkgate, Dumfries DG1 3NE, UK
| | - Yevgen Karpichev
- Department of Chemistry and Biotechnology, Tallinn University of Technology (TalTech), 12618 Tallinn, Estonia
| |
Collapse
|
34
|
Blaga AC, Dragoi EN, Tucaliuc A, Kloetzer L, Cascaval D. Folic Acid Ionic-Liquids-Based Separation: Extraction and Modelling. Molecules 2023; 28:molecules28083339. [PMID: 37110572 PMCID: PMC10144844 DOI: 10.3390/molecules28083339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/17/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Folic acid (vitamin B9) is an essential micronutrient for human health. It can be obtained using different biological pathways as a competitive option for chemical synthesis, but the price of its separation is the key obstacle preventing the implementation of biological methods on a broad scale. Published studies have confirmed that ionic liquids can be used to separate organic compounds. In this article, we investigated folic acid separation by analyzing 5 ionic liquids (CYPHOS IL103, CYPHOS IL104, [HMIM][PF6], [BMIM][PF6], [OMIM][PF6]) and 3 organic solvents (heptane, chloroform, and octanol) as the extraction medium. The best obtained results indicated that ionic liquids are potentially valuable for the recovery of vitamin B9 from diluted aqueous solutions as fermentation broths; the efficiency of the process reached 99.56% for 120 g/L CYPHOS IL103 dissolved in heptane and pH 4 of the aqueous folic acid solution. Artificial Neural Networks (ANNs) were combined with Grey Wolf Optimizer (GWO) for modelling the process, considering its characteristics.
Collapse
Affiliation(s)
- Alexandra Cristina Blaga
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, D. Mangeron 73, 700050 Iasi, Romania
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, D. Mangeron 73, 700050 Iasi, Romania
| | - Alexandra Tucaliuc
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, D. Mangeron 73, 700050 Iasi, Romania
| | - Lenuta Kloetzer
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, D. Mangeron 73, 700050 Iasi, Romania
| | - Dan Cascaval
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, D. Mangeron 73, 700050 Iasi, Romania
| |
Collapse
|
35
|
Kumar Bambam A, Dhanola A, Kumar Gajrani K. A critical review on halogen-free ionic liquids as potential metalworking fluid additives. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
36
|
Sugumar V, Hayyan M, Madhavan P, Wong WF, Looi CY. Current Development of Chemical Penetration Enhancers for Transdermal Insulin Delivery. Biomedicines 2023; 11:biomedicines11030664. [PMID: 36979643 PMCID: PMC10044980 DOI: 10.3390/biomedicines11030664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
The use of the transdermal delivery system has recently gained ample recognition due to the ability to deliver drug molecules across the skin membrane, serving as an alternative to conventional oral or injectable routes. Subcutaneous insulin injection is the mainstay treatment for diabetes mellitus which often leads to non-compliance among patients, especially in younger patients. Apart from its invasiveness, the long-term consequences of insulin injection cause the development of physical trauma, which includes lipohypertrophy at the site of administration, scarring, infection, and sometimes nerve damage. Hence, there is a quest for a better alternative to drug delivery that is non-invasive and easily adaptable. One of the potential solutions is the transdermal delivery method. However, the stratum corneum (the top layer of skin) is the greatest barrier in transporting large molecules like insulin. Therefore, various chemical enhancers have been proposed to promote stratum corneum permeability, or they are designed to increase the permeability of the full epidermis, such as the use of ionic liquid, peptides, chemical pre-treatment as well as packaging insulin with carriers or nanoparticles. In this review, the recent progress in the development of chemical enhancers for transdermal insulin delivery is discussed along with the possible mechanistic of action and the potential outlook on the proposed permeation approaches in comparison to other therapeutical drugs
Collapse
Affiliation(s)
- Vaisnevee Sugumar
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia
| | - Maan Hayyan
- Chemical Engineering Program, Faculty of Engineering & Technology, Muscat University, P.O. Box 550, Muscat P.C.130, Oman
- Correspondence: (M.H.); (W.F.W.); (C.Y.L.)
| | - Priya Madhavan
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor’s University, 1, Jalan Taylors, Subang Jaya 47500, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (M.H.); (W.F.W.); (C.Y.L.)
| | - Chung Yeng Looi
- Medical Advancement for Better Quality of Life Impact Lab, Taylor’s University, 1, Jalan Taylors, Subang Jaya 47500, Malaysia
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
- Correspondence: (M.H.); (W.F.W.); (C.Y.L.)
| |
Collapse
|
37
|
Role and Recent Advancements of Ionic Liquids in Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15020702. [PMID: 36840024 PMCID: PMC9963759 DOI: 10.3390/pharmaceutics15020702] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
Advancements in the fields of ionic liquids (ILs) broaden its applications not only in traditional use but also in different pharmaceutical and biomedical fields. Ionic liquids "Solutions for Your Success" have received a lot of interest from scientists due to a myriad of applications in the pharmaceutical industry for drug delivery systems as well as targeting different diseases. Solubility is a critical physicochemical property that determines the drug's fate at the target site. Many promising drug candidates fail in various phases of drug research due to poor solubility. In this context, ionic liquids are regarded as effective drug delivery systems for poorly soluble medicines. ILs are also able to combine different anions/cations with other cations/anions to produce salts that satisfy the concept behind the ILs. The important characteristics of ionic liquids are the modularity of their physicochemical properties depending on the application. The review highlights the recent advancement and further applications of ionic liquids to deliver drugs in the pharmaceutical and biomedical fields.
Collapse
|
38
|
Toxicity of ionic liquids in marine and freshwater microorganisms and invertebrates: state of the art. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39288-39318. [PMID: 36745344 DOI: 10.1007/s11356-023-25562-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2023]
Abstract
The variety of applications and expected growth in ionic liquid production are raising concerns about the release of these compounds into aquatic systems. Up to date, 103 studies have provided ecotoxicological data regarding the exposure effects of Ionic Liquids towards aquatic microorganisms and invertebrate species: 61 were devoted to freshwater species (n = 28), while marine species (n = 12) were mentioned in 42. The aim of this review, by gathering published studies on ionic liquids and model aquatic organisms, was to present the toxic effects described in distinct species and to understand which are the main factors influencing the toxicity of some ionic liquids. In accordance with the most recognized pattern, freshwater species were featured in a higher number of publications than marine ones. After literature analysis, algal species were the most represented organisms in aquatic toxicity assessments. Among tested compounds, the imidazolium cations in combination with long alkyl-chain anions, showed to be the most toxic one. In analytical terms, it is not straightforward to find the undissociated compound in a natural compartment, as ionic liquids are composed of ionic components, easily subjected to dissociation. Given the aforementioned, the present review paper points out the need of increasing the number of organisms being assessed in ionic liquids toxicity assays, in order to start defining monitoring procedures. Moreover, such would allow a better understanding of ionic liquids contamination status and, also, the opportunity to remark the effectiveness of new in silico methods for the ecotoxicity assessment of this kind of substances.
Collapse
|
39
|
Liu XL, Chen MQ, Jiang YL, Gao RY, Wang ZJ, Wang P. Rhodobacter sphaeroides as a model to study the ecotoxicity of 1-alkyl-3-methylimidazolium bromide. Front Mol Biosci 2023; 10:1106832. [PMID: 36793784 PMCID: PMC9923006 DOI: 10.3389/fmolb.2023.1106832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
The purple non-sulfur bacterium Rhodobacter sphaeroides was selected as a biological model to investigate its response to the toxicity of 1-alkyl-3-methylimidazolium bromide ([Cnmim]Br), a type of ionic liquid (IL), with different alkyl chain lengths (n describes the number of carbon atoms in the alkyl chain). The inhibition of bacterial growth by [Cnmim]Br was positively correlated with n. Morphological characterization revealed that [Cnmim]Br caused cell membrane perforation. The signal amplitude of the electrochromic absorption band shift of endogenous carotenoids showed a negatively linear correlation with n, and the amplitude of the blue-shift of the B850 band in light-harvesting complex 2 showed a positively linear correlation with n. Furthermore, an increase in blocked ATP synthesis and increase in antioxidant enzyme activity were observed in chromatophores treated with ILs containing longer alkyl chains. In summary, the purple bacterium can be developed as a model to monitor ecotoxicity and examine the mechanism of IL toxicity.
Collapse
|
40
|
Kowsari MH, Jalali F. Tracing the Effect of Replacing [Gly] - with [Ala] - and Hydroxylation of [emim] + on the Fine-Tuning of the Transport Properties of the Corresponding Amino Acid-Based Ionic Liquids Using MD Simulation. J Phys Chem B 2023; 127:194-204. [PMID: 36563049 DOI: 10.1021/acs.jpcb.2c07805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Natural amino acid-based ionic liquids (AAILs) composed of deprotonated amino acids, [AA]-, as anions and hydroxylated imidazolium cations provide an eco-friendly nontoxic IL family with the growing number of chemical and biochemical revolutionary applications. In this paper, the transport properties of four AAILs composed of 1-(2-hydroxyethyl)-3-methylimidazolium ([HOemim]+) and 1-ethyl-3-methylimidazolium ([emim]+) cations with alaninate and glycinate anions were studied by molecular dynamics (MD) simulations. A nonpolarizable all-atom force field with the scaled charge (±0.8e) on each of the ions was applied and compared with the unit charge model in some cases. The tunable effects of the presence of the hydroxyl group in the side chain of the imidazolium cation, the type of amino acid anion, and the varied temperature on the dynamical behavior of AAILs were investigated in detail. The experimentally compatible trends of the simulated ionic self-diffusion coefficients, ionic conductivity, and ionicity were found to be inverse to the viscosity and ionic association of these ILs as [emim][Gly] > [emim][Ala] > [HOemim][Gly] > [HOemim][Ala]. The main reason behind these trends is the higher ability of the hydroxylated cation for the hydrogen-bond formation with [AA]-. The mean square displacement (MSD), self-diffusion, and transference number of imidazolium cations are larger than those of [AA]- anions, except in the case of [HOemim][Gly]. It was found that the activation energy for diffusion of [AA]- is lower than that of [HOemim]+ but higher than that of [emim]+ in [HOemim][AA] and [emim][AA] ILs, respectively. The computed velocity autocorrelation function (VACF) showed that [Gly]-, as the lightest ion, has the shortest mean collision time and velocity randomization time among the ions, especially in the [HOemim][Gly] IL. Replacing [emim]+ with [HOemim]+, similar to the effect of decreasing temperature, causes significant decreasing of the ionic self-diffusion and increasing of the well depth of the first minimum of the ionic VACFs. Current findings show that introducing suitable functional groups in the side chain of imidazolium cations can be a viable approach for efficient engineering design and fine-tuning of the transport properties of these AAILs.
Collapse
Affiliation(s)
- Mohammad H Kowsari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan45137-66731, Iran.,Center for Research in Climate Change and Global Warming (CRCC), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan45137-66731, Iran
| | - Farzaneh Jalali
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan45137-66731, Iran
| |
Collapse
|
41
|
Design of Sustainable Ionic Liquids Based on L-Phenylalanine and L-Alanine Dipeptides: Synthesis, Toxicity and Biodegradation Studies. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
42
|
Almeida S, Ozkan S, Gonçalves D, Paulo I, Queirós CSGP, Ferreira O, Bordado J, Galhano dos Santos R. A Brief Evaluation of Antioxidants, Antistatics, and Plasticizers Additives from Natural Sources for Polymers Formulation. Polymers (Basel) 2022; 15:6. [PMID: 36616356 PMCID: PMC9823788 DOI: 10.3390/polym15010006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The circular economy plays an important role in the preparation and recycling of polymers. Research groups in different fields, such as materials science, pharmaceutical and engineering, have focused on building sustainable polymers to minimize the release of toxic products. Recent studies focused on the circular economy have suggested developing new polymeric materials based on renewable and sustainable sources, such as using biomass waste to obtain raw materials to prepare new functional bio-additives. This review presents some of the main characteristics of common polymer additives, such as antioxidants, antistatic agents and plasticizers, and recent research in developing bio-alternatives. Examples of these alternatives include the use of polysaccharides from agro-industrial waste streams that can be used as antioxidants, and chitosan which can be used as an antistatic agent.
Collapse
Affiliation(s)
- Suzete Almeida
- CERENA-Centre for Natural Resources and the Environment, Instituto Superior Técnico, Av. Rovisco Pais, 5, 1049-001 Lisboa, Portugal
| | - Sila Ozkan
- CERENA-Centre for Natural Resources and the Environment, Instituto Superior Técnico, Av. Rovisco Pais, 5, 1049-001 Lisboa, Portugal
| | - Diogo Gonçalves
- CERENA-Centre for Natural Resources and the Environment, Instituto Superior Técnico, Av. Rovisco Pais, 5, 1049-001 Lisboa, Portugal
| | - Ivo Paulo
- CERENA-Centre for Natural Resources and the Environment, Instituto Superior Técnico, Av. Rovisco Pais, 5, 1049-001 Lisboa, Portugal
| | - Carla S. G. P. Queirós
- CERENA-Centre for Natural Resources and the Environment, Instituto Superior Técnico, Av. Rovisco Pais, 5, 1049-001 Lisboa, Portugal
- CQE, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Olga Ferreira
- CERENA-Centre for Natural Resources and the Environment, Instituto Superior Técnico, Av. Rovisco Pais, 5, 1049-001 Lisboa, Portugal
| | - João Bordado
- CERENA-Centre for Natural Resources and the Environment, Instituto Superior Técnico, Av. Rovisco Pais, 5, 1049-001 Lisboa, Portugal
| | - Rui Galhano dos Santos
- CERENA-Centre for Natural Resources and the Environment, Instituto Superior Técnico, Av. Rovisco Pais, 5, 1049-001 Lisboa, Portugal
| |
Collapse
|
43
|
Han TH, Lee JD, Seo BC, Jeon WH, Yang HA, Kim S, Haam K, Park MK, Park J, Han TS, Ban HS. Cancer-specific cytotoxicity of pyridinium-based ionic liquids by regulating hypoxia-inducible factor-1α-centric cancer metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114334. [PMID: 36442398 DOI: 10.1016/j.ecoenv.2022.114334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
Owing to their unique properties and biological activities, ionic liquids (ILs) have attracted research interest in pharmaceutics and medicine. Hypoxia-inducible factor (HIF)- 1α is an attractive cancer drug target involved in cancer malignancy in the hypoxic tumor microenvironment. Herein, we report the inhibitory activity of ILs on the HIF-1α pathway and their mechanism of action. Substitution of a dimethylamino group on pyridinium reduced hypoxia-induced HIF-1α activation. It selectively inhibited the viability of the human colon cancer cell line HCT116, compared to that of the normal fibroblast cell line WI-38. These activities were enhanced by increasing the alkyl chain length in the pyridinium. Under hypoxic conditions, dimethylaminopyridinium reduced the accumulation of HIF-1α and its target genes without affecting the HIF1A mRNA level in cancer cells. It suppressed the oxygen consumption rate and ATP production by directly inhibiting electron transfer chain complex I, which led to enhanced intracellular oxygen content and oxygen-dependent degradation of HIF-1α under hypoxia. These results indicate that dimethylaminopyridinium suppresses the mitochondria and HIF-1α-dependent glucose metabolic pathway in hypoxic cancer cells. This study provides insights into the anticancer activity of pyridinium-based ILs through the regulation of cancer metabolism, making them promising candidates for cancer treatment.
Collapse
Affiliation(s)
- Tae-Hee Han
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, South Korea
| | - Jong-Dae Lee
- Department of Chemistry, College of Natural Sciences, Chosun University, 309 Pilmundaero, Dong-gu, Gwangju 61452, South Korea.
| | - Beom-Chan Seo
- Department of Chemistry, College of Natural Sciences, Chosun University, 309 Pilmundaero, Dong-gu, Gwangju 61452, South Korea
| | - Won-Hui Jeon
- Department of Chemistry, College of Natural Sciences, Chosun University, 309 Pilmundaero, Dong-gu, Gwangju 61452, South Korea
| | - Hyun-A Yang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
| | - Seongyeong Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
| | - Keeok Haam
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
| | - Min Kyung Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
| | - Junhee Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
| | - Tae-Su Han
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, South Korea
| | - Hyun Seung Ban
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, South Korea.
| |
Collapse
|
44
|
Makarov D, Fadeeva Y, Safonova E, Shmukler L. Predictive modeling of antibacterial activity of ionic liquids by machine learning methods. Comput Biol Chem 2022; 101:107775. [DOI: 10.1016/j.compbiolchem.2022.107775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 11/03/2022]
|
45
|
Castañeda Ruiz AJ, Shetab Boushehri MA, Phan T, Carle S, Garidel P, Buske J, Lamprecht A. Alternative Excipients for Protein Stabilization in Protein Therapeutics: Overcoming the Limitations of Polysorbates. Pharmaceutics 2022; 14:2575. [PMID: 36559072 PMCID: PMC9781097 DOI: 10.3390/pharmaceutics14122575] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Given their safety and efficiency in protecting protein integrity, polysorbates (PSs) have been the most widely used excipients for the stabilization of protein therapeutics for years. In recent decades, however, there have been numerous reports about visible or sub-visible particles in PS-containing biotherapeutic products, which is a major quality concern for parenteral drugs. Alternative excipients that are safe for parenteral administration, efficient in protecting different protein drugs against various stress conditions, effective in protein stabilization in high-concentrated liquid formulations, stable under the storage conditions for the duration of the product's shelf-life, and compatible with other formulation components and the primary packaging are highly sought after. The aim of this paper is to review potential alternative excipients from different families, including surfactants, carbohydrate- and amino acid-based excipients, synthetic amphiphilic polymers, and ionic liquids that enable protein stabilization. For each category, important characteristics such as the ability to stabilize proteins against thermal and mechanical stresses, current knowledge related to the safety profile for parenteral administration, potential interactions with other formulation components, and primary packaging are debated. Based on the provided information and the detailed discussion thereof, this paper may pave the way for the identification or development of efficient excipients for biotherapeutic protein stabilization.
Collapse
Affiliation(s)
- Angel J. Castañeda Ruiz
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | | | - Tamara Phan
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Stefan Carle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Alf Lamprecht
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
46
|
Molecule(s) of Interest: I. Ionic Liquids-Gateway to Newer Nanotechnology Applications: Advanced Nanobiotechnical Uses', Current Status, Emerging Trends, Challenges, and Prospects. Int J Mol Sci 2022; 23:ijms232214346. [PMID: 36430823 PMCID: PMC9696100 DOI: 10.3390/ijms232214346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
Ionic liquids are a potent class of organic compounds exhibiting unique physico-chemical properties and structural compositions that are different from the classical dipolar organic liquids. These molecules have found diverse applications in different chemical, biochemical, biophysical fields, and a number of industrial usages. The ionic liquids-based products and procedural applications are being developed for a number of newer industrial purposes, and academic uses in nanotechnology related procedures, processes, and products, especially in nanobiotechnology and nanomedicine. The current article overviews their uses in different fields, including applications, functions, and as parts of products and processes at primary and advanced levels. The application and product examples, and prospects in various fields of nanotechnology, domains of nanosystem syntheses, nano-scale product development, the process of membrane filtering, biofilm formation, and bio-separations are prominently discussed. The applications in carbon nanotubes; quantum dots; and drug, gene, and other payload delivery vehicle developments in the nanobiotechnology field are also covered. The broader scopes of applications of ionic liquids, future developmental possibilities in chemistry and different bio-aspects, promises in the newer genres of nanobiotechnology products, certain bioprocesses controls, and toxicity, together with emerging trends, challenges, and prospects are also elaborated.
Collapse
|
47
|
Macrocyclic Ionic Liquids with Amino Acid Residues: Synthesis and Influence of Thiacalix[4]arene Conformation on Thermal Stability. Molecules 2022; 27:molecules27228006. [PMID: 36432113 PMCID: PMC9698724 DOI: 10.3390/molecules27228006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Novel thiacalix[4]arene based ammonium ionic liquids (ILs) containing amino acid residues (glycine and L-phenylalanine) in cone, partial cone, and 1,3-alternate conformations were synthesized by alkylation of macrocyclic tertiary amines with N-bromoacetyl-amino acids ethyl ester followed by replacing bromide anions with bis(trifluoromethylsulfonyl)imide ions. The melting temperature of the obtained ILs was found in the range of 50−75 °C. The effect of macrocyclic core conformation on the synthesized ILs’ melting points was shown, i.e., the ILs in partial cone conformation have the lowest melting points. Thermal stability of the obtained macrocyclic ILs was determined via thermogravimetry and differential scanning calorimetry. The onset of decomposition of the synthesized compounds was established at 305−327 °C. The compounds with L-phenylalanine residues are less thermally stable by 3−19 °C than the same glycine-containing derivatives.
Collapse
|
48
|
Stachowiak W, Smolibowski M, Kaczmarek DK, Rzemieniecki T, Niemczak M. Toward revealing the role of the cation in the phytotoxicity of the betaine-based esterquats comprising dicamba herbicide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157181. [PMID: 35817095 DOI: 10.1016/j.scitotenv.2022.157181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
In this study, two homologous series of esterquats comprising alkyl (from ethyl to octadecyl) betainate cations and bromide as well as dicamba anions were successfully synthesized, starting from a renewable raw material - glycine betaine. Due to the favorable octanol-water partition coefficient and utilization of biodegradable cations of natural origin, synthesized esterquats can be considered promising alternatives to currently applied dicamba-based formulations. In addition, the obtained results allowed us to verify whether the organic cations in quaternary ammonium salts containing herbicidally active anions (such as dicamba) play the role of biologically inactive adjuvants that only enhance the efficiency of the active ingredient or if they simultaneously exhibit a significant degree of phytotoxicity. Analysis of the influence of alkyl betainate esterquats containing nonherbicidal (bromide) anions on seedlings of white mustard revealed that alkyl betainate cations promote the germination of white mustard seeds; however, the subsequent growth of the seedlings was significantly inhibited. Further studies performed on white mustard and cornflower plants in a stage of 4-6 leaves allowed us to conclude that in the case of sensitive plants, the high phytotoxicity can be attributed to the presence of the dicamba anion, whereas for more resistant plants the additional influence of the cation on the phytotoxic effect is visible. Esterquats comprising a dodecyl substituent or longer had high surface active properties. Nonetheless, their contact angle values were not correlated with phytotoxicity data, indicating an additional influence of the cation on this stage of plant development. Interestingly, subsequent dose-response experiments conducted for two selected dicamba-based products confirmed that the greatest phytotoxicity was expressed by compounds containing a decyl substituent.
Collapse
Affiliation(s)
- Witold Stachowiak
- Department of Chemical Technology, Poznan University of Technology, Poznan 60-965, Poland
| | - Mikołaj Smolibowski
- Faculty of Computing and Telecommunications, Poznan University of Technology, Poznan 60-965, Poland
| | | | - Tomasz Rzemieniecki
- Department of Chemical Technology, Poznan University of Technology, Poznan 60-965, Poland
| | - Michał Niemczak
- Department of Chemical Technology, Poznan University of Technology, Poznan 60-965, Poland.
| |
Collapse
|
49
|
Ionic liquids as protein stabilizers for biological and biomedical applications: A review. Biotechnol Adv 2022; 61:108055. [DOI: 10.1016/j.biotechadv.2022.108055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/22/2022]
|
50
|
Factors driving metal partition in ionic liquid-based acidic aqueous biphasic systems. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|