1
|
Kulhankova K, Cheng A, Traore S, Auger M, Pelletier M, Hervault M, Wells K, Green J, Byrne A, Nelson B, Sponchiado M, Boosani C, Heffner C, Snow K, Murray S, Villacreses R, Rector M, Gansemer N, Stoltz D, Allamargot C, Couture F, Hemez C, Hallée S, Barbeau X, Harvey M, Lauvaux C, Gaillet B, Newby G, Liu D, McCray PB, Guay D. Amphiphilic shuttle peptide delivers base editor ribonucleoprotein to correct the CFTR R553X mutation in well-differentiated airway epithelial cells. Nucleic Acids Res 2024; 52:11911-11925. [PMID: 39315713 PMCID: PMC11514481 DOI: 10.1093/nar/gkae819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Base editing could correct nonsense mutations that cause cystic fibrosis (CF), but clinical development is limited by the lack of delivery methods that efficiently breach the barriers presented by airway epithelia. Here, we present a novel amphiphilic shuttle peptide based on the previously reported S10 peptide that substantially improved base editor ribonucleoprotein (RNP) delivery. Studies of the S10 secondary structure revealed that the alpha-helix formed by the endosomal leakage domain (ELD), but not the cell penetrating peptide (CPP), was functionally important for delivery. By isolating and extending the ELD, we created a novel shuttle peptide, termed S237. While S237 achieved lower delivery of green fluorescent protein, it outperformed S10 at Cas9 RNP delivery to cultured human airway epithelial cells and to pig airway epithelia in vivo, possibly due to its lower net charge. In well-differentiated primary human airway epithelial cell cultures, S237 achieved a 4.6-fold increase in base editor RNP delivery, correcting up to 9.4% of the cystic fibrosis transmembrane conductance regulator (CFTR) R553X allele and restoring CFTR channel function close to non-CF levels. These findings deepen the understanding of peptide-mediated delivery and offer a translational approach for base editor RNP delivery for CF airway disease.
Collapse
Affiliation(s)
| | | | - Soumba Traore
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Maud Auger
- Feldan Therapeutics, Quebec, Qc, Canada
- Department of Chemical Engineering, Laval University, Quebec, Qc, Canada
| | - Mia Pelletier
- Feldan Therapeutics, Quebec, Qc, Canada
- Department of Chemical Engineering, Laval University, Quebec, Qc, Canada
| | | | - Kevin D Wells
- Division of Animal Sciences, Swine Somatic Cell Genome Editing Center, University of Missouri, Columbia, MO, USA
| | - Jonathan A Green
- Division of Animal Sciences, Swine Somatic Cell Genome Editing Center, University of Missouri, Columbia, MO, USA
| | - Addison Byrne
- Division of Animal Sciences, Swine Somatic Cell Genome Editing Center, University of Missouri, Columbia, MO, USA
| | - Benjamin Nelson
- Division of Animal Sciences, Swine Somatic Cell Genome Editing Center, University of Missouri, Columbia, MO, USA
| | - Mariana Sponchiado
- Division of Animal Sciences, Swine Somatic Cell Genome Editing Center, University of Missouri, Columbia, MO, USA
| | - Chandra Boosani
- Division of Animal Sciences, Swine Somatic Cell Genome Editing Center, University of Missouri, Columbia, MO, USA
| | - Caleb S Heffner
- The Jackson Laboratory, Genetic Resource Science, Bar Harbor, ME, USA
| | - Kathy J Snow
- The Jackson Laboratory, Genetic Resource Science, Bar Harbor, ME, USA
| | - Stephen A Murray
- The Jackson Laboratory, Genetic Resource Science, Bar Harbor, ME, USA
| | - Raul A Villacreses
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael V Rector
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - Nicholas D Gansemer
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - David A Stoltz
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Chantal Allamargot
- Central Microscopy Research Facility (CMRF), and Office for the Vice President of Research (OVPR), University of Iowa, Iowa City, IA, USA
| | | | - Colin Hemez
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | | | | | | | | | - Bruno Gaillet
- Department of Chemical Engineering, Laval University, Quebec, Qc, Canada
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Paul B McCray
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - David Guay
- Feldan Therapeutics, Quebec, Qc, Canada
- Department of Chemical Engineering, Laval University, Quebec, Qc, Canada
| |
Collapse
|
2
|
Moreira JVME, Bernardi LP, Teixeira FC, Paniago J, Teixeira LV, Bifi F, Souza DO, Rohden F. Spontaneously Hypertensive Rats Present Exacerbated Focal Stroke Behavioral Outcomes. Brain Sci 2024; 14:838. [PMID: 39199529 PMCID: PMC11352869 DOI: 10.3390/brainsci14080838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
This study aimed to analyze the effects of systemic arterial hypertension (SAH) in a model of permanent ischemic stroke (focal ischemia due to thermocoagulation of pial vessels) on sensorimotor function (cylinder test and patch removal test), behavioral tasks (novelty habituation memory open field task) and cerebral infarct size in adult male spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) for 42 days after the occurrence of a stroke. We observed that the stroke caused asymmetry in the front paws and delayed adhesive removal. These effects were spontaneously reduced in WKY rats, but not in SHR. Short- and long-term novelty habituation memories were abolished by stroke in WYK and SHR. On the 3rd day after stroke, the size of the focal cerebral infarct was the same in WKY and SHR. However, on the 7th day, the infarct size decreased in WKY rats, but not SHR. These results suggested that SAH impairment of sensorimotor recovery in rats subjected to cerebral ischemia could be related to augmented focal cerebral infarct size. Moreover, the behavioral tasks used in this study were unaffected by Systemic Arterial Hypertension. Our results highlight the need for animal models of comorbidities in stroke research.
Collapse
Affiliation(s)
- João Victor Matos e Moreira
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Annex Building, Ramiro Barcelos Street 2600, Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (J.V.M.e.M.); (L.P.B.); (J.P.); (L.V.T.); (F.B.); (D.O.S.)
| | - Luis Pedro Bernardi
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Annex Building, Ramiro Barcelos Street 2600, Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (J.V.M.e.M.); (L.P.B.); (J.P.); (L.V.T.); (F.B.); (D.O.S.)
| | - Fernanda Cardoso Teixeira
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre—UFCSPA, Porto Alegre 90050-170, Rio Grande do Sul, Brazil;
| | - Jerônimo Paniago
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Annex Building, Ramiro Barcelos Street 2600, Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (J.V.M.e.M.); (L.P.B.); (J.P.); (L.V.T.); (F.B.); (D.O.S.)
| | - Luciele Varaschini Teixeira
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Annex Building, Ramiro Barcelos Street 2600, Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (J.V.M.e.M.); (L.P.B.); (J.P.); (L.V.T.); (F.B.); (D.O.S.)
| | - Felippo Bifi
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Annex Building, Ramiro Barcelos Street 2600, Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (J.V.M.e.M.); (L.P.B.); (J.P.); (L.V.T.); (F.B.); (D.O.S.)
| | - Diogo Onofre Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Annex Building, Ramiro Barcelos Street 2600, Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (J.V.M.e.M.); (L.P.B.); (J.P.); (L.V.T.); (F.B.); (D.O.S.)
| | - Francieli Rohden
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Annex Building, Ramiro Barcelos Street 2600, Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (J.V.M.e.M.); (L.P.B.); (J.P.); (L.V.T.); (F.B.); (D.O.S.)
| |
Collapse
|
3
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate: Impact on the microbiota-gut-brain axis and the immune-nervous system, and clinical cases of multiorgan toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115965. [PMID: 38244513 DOI: 10.1016/j.ecoenv.2024.115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/25/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Glyphosate (GLP) and GLP-based herbicides (GBHs), such as polyethoxylated tallow amine-based GLP surfactants (GLP-SH), developed in the late 70', have become the most popular and controversial agrochemicals ever produced. Nowadays, GBHs have reached 350 million hectares of crops in over 140 countries, with an annual turnover of 5 billion and 11 billion USD in the U.S.A. and worldwide, respectively. Because of the highly efficient inhibitory activity of GLP targeted to the 5-enolpyruvylshikimate-3-phosphate synthase pathway, present in plants and several bacterial strains, the GLP-resistant crop-based genetic agricultural revolution has decreased famine and improved the costs and quality of living in developing countries. However, this progress has come at the cost of the 50-year GBH overuse, leading to environmental pollution, animal intoxication, bacterial resistance, and sustained occupational exposure of the herbicide farm and companies' workers. According to preclinical and clinical studies covered in the present review, poisoning with GLP, GLP-SH, and GBHs devastatingly affects gut microbiota and the microbiota-gut-brain (MGB) axis, leading to dysbiosis and gastrointestinal (GI) ailments, as well as immunosuppression and inappropriate immunostimulation, cholinergic neurotransmission dysregulation, neuroendocrinal system disarray, and neurodevelopmental and neurobehavioral alterations. Herein, we mainly focus on the contribution of gut microbiota (GM) to neurological impairments, e.g., stroke and neurodegenerative and neuropsychiatric disorders. The current review provides a comprehensive introduction to GLP's microbiological and neurochemical activities, including deviation of the intestinal Firmicutes-to-Bacteroidetes ratio, acetylcholinesterase inhibition, excitotoxicity, and mind-altering processes. Besides, it summarizes and critically discusses recent preclinical studies and clinical case reports concerning the harmful impacts of GBHs on the GI tract, MGB axis, and nervous system. Finally, an insightful comparison of toxic effects caused by GLP, GBH-SH, and GBHs is presented. To this end, we propose a first-to-date survey of clinical case reports on intoxications with these herbicides.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Bio & Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium.
| | - Katarzyna Klepacka
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; ENSEMBLE(3) sp. z o. o., 01-919 Warsaw, Poland
| | - Włodzimierz Kutner
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
4
|
Mucha P, Sikorska E, Rekowski P, Ruczyński J. Interaction of Arginine-Rich Cell-Penetrating Peptides with an Artificial Neuronal Membrane. Cells 2022; 11:cells11101638. [PMID: 35626677 PMCID: PMC9139471 DOI: 10.3390/cells11101638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/05/2023] Open
Abstract
Arginine-rich cell-penetrating peptides (RRCPPs) exhibit intrinsic neuroprotective effects on neurons injured by acute ischemic stroke. Conformational properties, interaction, and the ability to penetrate the neural membrane are critical for the neuroprotective effects of RRCCPs. In this study, we applied circular dichroism (CD) spectroscopy and coarse-grained molecular dynamics (CG MD) simulations to investigate the interactions of two RRCPPs, Tat(49–57)-NH2 (arginine-rich motif of Tat HIV-1 protein) and PTD4 (a less basic Ala-scan analog of the Tat peptide), with an artificial neuronal membrane (ANM). CD spectra showed that in an aqueous environment, such as phosphate-buffered saline, the peptides mostly adopted a random coil (PTD4) or a polyproline type II helical (Tat(49–57)-NH2) conformation. On the other hand, in the hydrophobic environment of the ANM liposomes, the peptides showed moderate conformational changes, especially around 200 nm, as indicated by CD curves. The changes induced by the liposomes were slightly more significant in the PTD4 peptide. However, the nature of the conformational changes could not be clearly defined. CG MD simulations showed that the peptides are quickly attracted to the neuronal lipid bilayer and bind preferentially to monosialotetrahexosylganglioside (DPG1) molecules. However, the peptides did not penetrate the membrane even at increasing concentrations. This suggests that the energy barrier required to break the strong peptide–lipid electrostatic interactions was not exceeded in the simulated models. The obtained results show a correlation between the potential of mean force parameter and a peptide’s cell membrane-penetrating ability and neuroprotective properties.
Collapse
Affiliation(s)
- Piotr Mucha
- Laboratory of Chemistry of Biologically Active Compounds, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland;
- Environmental Nucleic Acid Laboratory, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
- Correspondence: (P.M.); (J.R.); Tel.: +48-58-5235432 (P.M.); +48-58-5235235 (J.R.)
| | - Emilia Sikorska
- Laboratory of Structural Research of Biopolymers, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland;
| | - Piotr Rekowski
- Laboratory of Chemistry of Biologically Active Compounds, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland;
- Environmental Nucleic Acid Laboratory, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Jarosław Ruczyński
- Laboratory of Chemistry of Biologically Active Compounds, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland;
- Correspondence: (P.M.); (J.R.); Tel.: +48-58-5235432 (P.M.); +48-58-5235235 (J.R.)
| |
Collapse
|