1
|
Amo-Aparicio J, Dinarello CA, Lopez-Vales R. Metabolic reprogramming of the inflammatory response in the nervous system: the crossover between inflammation and metabolism. Neural Regen Res 2024; 19:2189-2201. [PMID: 38488552 PMCID: PMC11034585 DOI: 10.4103/1673-5374.391330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 04/24/2024] Open
Abstract
Metabolism is a fundamental process by which biochemicals are broken down to produce energy (catabolism) or used to build macromolecules (anabolism). Metabolism has received renewed attention as a mechanism that generates molecules that modulate multiple cellular responses. This was first identified in cancer cells as the Warburg effect, but it is also present in immunocompetent cells. Studies have revealed a bidirectional influence of cellular metabolism and immune cell function, highlighting the significance of metabolic reprogramming in immune cell activation and effector functions. Metabolic processes such as glycolysis, oxidative phosphorylation, and fatty acid oxidation have been shown to undergo dynamic changes during immune cell response, facilitating the energetic and biosynthetic demands. This review aims to provide a better understanding of the metabolic reprogramming that occurs in different immune cells upon activation, with a special focus on central nervous system disorders. Understanding the metabolic changes of the immune response not only provides insights into the fundamental mechanisms that regulate immune cell function but also opens new approaches for therapeutic strategies aimed at manipulating the immune system.
Collapse
Affiliation(s)
| | | | - Ruben Lopez-Vales
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Spain
| |
Collapse
|
2
|
Wang YT, Moura AK, Zuo R, Zhou W, Wang Z, Roudbari K, Hu JZ, Li PL, Zhang Y, Li X. Coronary Microvascular Dysfunction is Associated with Augmented Lysosomal Signaling in Hypercholesterolemic Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.603000. [PMID: 39026774 PMCID: PMC11257577 DOI: 10.1101/2024.07.10.603000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Accumulating evidence indicates that coronary microvascular dysfunction (CMD) caused by hypercholesterolemia can lead to myocardial ischemia, with or without obstructive atherosclerotic coronary artery disease (CAD). However, the molecular pathways associated with compromised coronary microvascular function prior to the development of myocardial ischemic injury remain poorly defined. In this study, we investigated the effects of hypercholesterolemia on the function and integrity of the coronary microcirculation in mice and the underlying mechanisms. Mice were fed with a hypercholesterolemic Paigen's diet (PD) for 8 weeks. Echocardiography data showed that PD caused CMD, characterized by significant reductions in coronary blood flow and coronary flow reserve (CFR), but did not affect cardiac remodeling or dysfunction. Immunofluorescence studies revealed that PD-induced CMD was associated with activation of coronary arterioles inflammation and increased myocardial inflammatory cell infiltration. These pathological changes occurred in parallel with the upregulation of lysosomal signaling pathways in endothelial cells (ECs). Treating hypercholesterolemic mice with the cholesterol-lowering drug ezetimibe significantly ameliorated PD-induced adverse effects, including hypercholesterolemia, steatohepatitis, reduced CFR, coronary EC inflammation, and myocardial inflammatory cell infiltration. In cultured mouse cardiac endothelial cells (MCECs), 7-ketocholesterol (7K) increased mitochondrial reactive oxygen species (ROS) and inflammatory responses. Meanwhile, 7K induced the activation of TFEB and lysosomal signaling in MCECs, whereas the lysosome inhibitor bafilomycin A1 blocked 7K-induced TFEB activation and exacerbated 7K-induced inflammation and cell death. Interestingly, ezetimibe synergistically enhanced 7K-induced TFEB activation and attenuated 7K-induced mitochondrial ROS and inflammatory responses in MCECs. These results suggest that CMD can develop and precede detectable cardiac functional or structural changes in the setting of hypercholesterolemia, and that upregulation of TFEB-mediated lysosomal signaling in ECs plays a protective role against CMD.
Collapse
Affiliation(s)
- Yun-Ting Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, USA
| | - Alexandra K. Moura
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, USA
| | - Rui Zuo
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, USA
| | - Wei Zhou
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, USA
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengchao Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, USA
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Kiana Roudbari
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, USA
| | - Jenny Z. Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, USA
| | - Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, USA
| |
Collapse
|
3
|
Monteil VM, Wright SC, Dyczynski M, Kellner MJ, Appelberg S, Platzer SW, Ibrahim A, Kwon H, Pittarokoilis I, Mirandola M, Michlits G, Devignot S, Elder E, Abdurahman S, Bereczky S, Bagci B, Youhanna S, Aastrup T, Lauschke VM, Salata C, Elaldi N, Weber F, Monserrat N, Hawman DW, Feldmann H, Horn M, Penninger JM, Mirazimi A. Crimean-Congo haemorrhagic fever virus uses LDLR to bind and enter host cells. Nat Microbiol 2024; 9:1499-1512. [PMID: 38548922 PMCID: PMC11153131 DOI: 10.1038/s41564-024-01672-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/11/2024] [Indexed: 06/07/2024]
Abstract
Climate change and population densities accelerated transmission of highly pathogenic viruses to humans, including the Crimean-Congo haemorrhagic fever virus (CCHFV). Here we report that the Low Density Lipoprotein Receptor (LDLR) is a critical receptor for CCHFV cell entry, playing a vital role in CCHFV infection in cell culture and blood vessel organoids. The interaction between CCHFV and LDLR is highly specific, with other members of the LDLR protein family failing to bind to or neutralize the virus. Biosensor experiments demonstrate that LDLR specifically binds the surface glycoproteins of CCHFV. Importantly, mice lacking LDLR exhibit a delay in CCHFV-induced disease. Furthermore, we identified the presence of Apolipoprotein E (ApoE) on CCHFV particles. Our findings highlight the essential role of LDLR in CCHFV infection, irrespective of ApoE presence, when the virus is produced in tick cells. This discovery holds profound implications for the development of future therapies against CCHFV.
Collapse
Affiliation(s)
- Vanessa M Monteil
- Unit of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| | - Shane C Wright
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Matheus Dyczynski
- Acus Laboratories GmbH, Cologne, Germany
- JLP Health GmbH, Vienna, Austria
| | - Max J Kellner
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | | | - Sebastian W Platzer
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | | | - Hyesoo Kwon
- National Veterinary Institute, Uppsala, Sweden
| | | | - Mattia Mirandola
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Stephanie Devignot
- Unit of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| | | | | | | | - Binnur Bagci
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Sivas Cumhuriyet University, Sivas, Turkey
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- University Tübingen, Tübingen, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Nazif Elaldi
- Department of Infectious Diseases and Clinical Microbiology, Medical Faculty, Cumhuriyet University, Sivas, Turkey
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Gießen, Germany
| | - Nuria Monserrat
- University of Barcelona, Barcelona, Spain
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - David W Hawman
- Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, USA
| | - Heinz Feldmann
- Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, USA
| | - Moritz Horn
- Acus Laboratories GmbH, Cologne, Germany
- JLP Health GmbH, Vienna, Austria
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria.
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
- Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Ali Mirazimi
- Unit of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden.
- Public Health Agency of Sweden, Solna, Sweden.
- National Veterinary Institute, Uppsala, Sweden.
| |
Collapse
|
4
|
Kakava S, von Eckardstein A, Robert J. Regulation of low-density lipoprotein transport through endothelial cells by caveolae. Atherosclerosis 2023; 375:84-86. [PMID: 37100720 DOI: 10.1016/j.atherosclerosis.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023]
Affiliation(s)
- Sofia Kakava
- University Hospital of Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- University Hospital of Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
5
|
Li F, Li D, Yu J, Jia Y, Wen J, Li W, Tong Y, Wu J, Wan Z, Cao Y, Zhang Q, Zeng R. Association Between Plasma Ceramides and One-Year Mortality in Patients with Acute Coronary Syndrome: Insight from the PEACP Study. Clin Interv Aging 2023; 18:571-584. [PMID: 37050937 PMCID: PMC10084878 DOI: 10.2147/cia.s402253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Background The plasma lipidome profile is likely to improve risk stratification in patients with acute coronary syndrome (ACS) and predict cardiovascular events for secondary disease prevention. Ceramides are involved in the initiation or acceleration of several key pathophysiological processes in atherosclerosis. This study evaluated whether plasma ceramide levels at admission was associated with one-year mortality in patients with ACS. Methods In total, 826 patients with ACS from a prospective multicenter study for early evaluation of acute chest pain were enrolled. High-performance liquid chromatography with tandem mass spectrometry (LC/MS) was used to measure the plasma levels of eleven ceramides (C16-C26). The primary outcome was all-cause mortality, and the secondary outcome was cardiac mortality during the one-year follow-up. The relationship between the ceramide levels and mortality was evaluated by Cox regression analysis. The receiver operating characteristic (ROC) curve was established to evaluate discrimination of ceramides. Results Eighty-eight (10.7%) patients died after a 12-month follow-up. Five ceramides (C16:0, C18:0, C20:0, C24:1 and C24:2) and their ratios to Cer(d18:1/24:0) were independently associated with the risk of all-cause death and cardiac death. Combining the Global Registry of Acute Coronary Events (GRACE) score with ceramides and their ratios to Cer(d18:1/24:0) had areas under ROC curves ranging from 0.778-0.804 (P<0.001) for all-cause mortality, which was greater than that of the GRACE score alone. Conclusion Measurements of long-chain ceramides and very-long-chain ceramides may help in identifying a high risk of mortality beyond traditional assessment tools in patients with ACS. Trial Registration clinicaltrials.gov, identifier: NCT04122573.
Collapse
Affiliation(s)
- Fanghui Li
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Dongze Li
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Jing Yu
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yu Jia
- Department of General Practice and National Clinical Research Center for Geriatrics, International Medical Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Jirui Wen
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Wentao Li
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yao Tong
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Jiang Wu
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Zhi Wan
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Qing Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Rui Zeng
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Correspondence: Rui Zeng; Qing Zhang, Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, Sichuan, 610041, People’s Republic of China, Tel +86-28-85423248, Fax +86-28-85582944, Email ;
| |
Collapse
|
6
|
Hou D, Liu F, Ren X, Shen Q, Zhou S. Protective mechanism of mung bean coat against hyperlipidemia in mice fed with a high-fat diet: insight from hepatic transcriptome analysis. Food Funct 2021; 12:12434-12447. [PMID: 34792057 DOI: 10.1039/d1fo02455h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mung bean coat (MBC) is a good source of dietary fibre and phenolic compounds with medical properties, and can alleviate metabolic diseases. In the present study, the effects of MBC on high fat diet (HFD)-induced hyperlipidemia mice were evaluated, and the underlying mechanisms of MBC against hyperlipidemia from hepatic transcriptional analysis were explored. Four groups of mice were fed a normal control diet or a HFD with or without MBC supplementation (6%, w/w) for 12 weeks. The results demonstrated that MBC supplementation could effectively alleviate HFD-induced obese symptoms, such as body weight gain and white adipose tissue accumulation. Notably, the serum lipid profiles, including total triglyceride, total cholesterol, and low-density lipoprotein cholesterol, were significantly lowered, accompanied by a significant improvement in hepatic steatosis. RNA-sequencing analysis indicated 1126 differential expression genes responding to MBC supplementation, and the PPAR signaling pathway was significantly enriched. Furthermore, MBC supplementation could significantly upregulate the transcriptional expression of lipid transformation (lipidolysis)-related genes (Cpt1b, Cyp7a1, and PPAR-α) and downregulate the transcriptional expression of lipid synthesis-related genes (Scd1, Cd36, and PPAR-γ) to protect against the HFD-induced hyperlipidemia, and they were confirmed by qRCR and western blotting validation. Taken together, the present study provides valuable information for understanding the curative effects and action mechanism of MBC in alleviating hyperlipidemia, and thus may contribute to the development and application of MBC as functional foods or dietary supplement to protect against hyperlipidemia.
Collapse
Affiliation(s)
- Dianzhi Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China. .,College of Food Science and Nutritional Engineering, Key Laboratory of Plant Protein and Grain processing, China Agricultural University, Beijing 100083, China.
| | - Fang Liu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Xin Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Qun Shen
- College of Food Science and Nutritional Engineering, Key Laboratory of Plant Protein and Grain processing, China Agricultural University, Beijing 100083, China.
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|