1
|
Yang X, Chen C, Zhou S, Ren M, Zhang C, Cheng C, Yang C. Antitumor effects of plasma‑activated solution on a murine melanoma model in vivo and in vitro. Oncol Lett 2025; 29:75. [PMID: 39650231 PMCID: PMC11622002 DOI: 10.3892/ol.2024.14821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/16/2024] [Indexed: 12/11/2024] Open
Abstract
Melanoma is a common malignant skin tumor with highly invasive features and a high metastasis rate that can be difficult to treat clinically. Large-scale resection of primary cutaneous melanoma is often used to avoid postoperative recurrence. For advanced patients, radiotherapy, targeted therapy and immunotherapy are often needed. Low-temperature plasma has been proved to have significant antitumor effects on a variety of cancer cell lines cultured in vitro. The main limitation of direct low-temperature plasma treatment is that it has weak penetration ability and can only treat superficial lesions. In recent years, research on low-temperature plasma-activated solution has revealed that it also have good antitumor effects and low-temperature plasma penetration depth problems can be solved by local injection. The present study revealed that low-temperature plasma-activated phosphate buffer solution exhibited good antitumor effects and biosafety against melanoma in vitro and in vivo. It demonstrated that low-temperature plasma-activated solution has antitumor effects due to its regulation of intracellular redox, destruction of mitochondrial function and DNA damage. In vivo experiments demonstrated that treatment with low-temperature plasma-activated solution not only exhibited antitumor effects but also caused no significant damage to hematopoietic function or liver and kidney functions in mice. All these results demonstrated that low-temperature plasma-activated solution represent a promising antitumor treatment strategy.
Collapse
Affiliation(s)
- Xingyu Yang
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Cheng Chen
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Shiyun Zhou
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Miaomiao Ren
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Chenchen Zhang
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Cheng Cheng
- The Institute of Plasma Physics, Chinese Academy of Science, Hefei, Anhui 230000, P.R. China
| | - Chunjun Yang
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
2
|
Zhang Z, Wu W, Lin J, Li H. Unveiling the hidden causal links: skin flora and cutaneous melanoma. Front Oncol 2024; 14:1451175. [PMID: 39723372 PMCID: PMC11668787 DOI: 10.3389/fonc.2024.1451175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Objective The presence of skin flora (SF) has been identified as a significant factor in the onset and progression of cutaneous melanoma (CM). However, the vast diversity and abundance of SF present challenges to fully understanding the causal relationship between SF and CM. Methods A Two Sample Mendelian Randomization (TSMR) analysis was conducted to investigating the causal relationship between SF and CM. The Inverse-Variance Weighted (IVW) method was utilized as the primary approach to assess the causal relationship under investigation. Furthermore, an independent external cohort was employed to validate the initial findings, followed by a meta-analysis of the consolidated results. To address potential confounding factors related to the influence of SF on CM, a Multivariate Mendelian Randomization (MVMR) analysis was also conducted. Finally, a Reverse Mendelian Randomization (RMR) was conducted to further validate the causal association. Results TSMR results showed that 9 SF have a causal relationship with CM in the training cohort. Although these 9 SF weren't confirmed in the testing cohort, 4 SF remained significant in the meta-analysis after integrating results from both cohorts. MVMR analysis indicated that 3 SF were still significantly associated with CM after accounting for the interactions between different SF in the training cohort. No reverse causal relationship was identified in RMR analysis. Conclusion A total of 9 SF were identified as having a potential causal relationship with CM; however, a large randomized controlled trial is needed to verify these results.
Collapse
Affiliation(s)
- Zexin Zhang
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenfeng Wu
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiajia Lin
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongyi Li
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Yavuz A, Şimşek K, Başsorgun Cİ, Elpek GÖ, Ünal B. The Prognostic Significance of Tumor Budding and Tumor-Infiltrating Lymphocytes in Patients Diagnosed With Malignant Melanoma. Am J Dermatopathol 2024:00000372-990000000-00470. [PMID: 39660956 DOI: 10.1097/dad.0000000000002902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
ABSTRACT The tumor microenvironment plays a critical role in malignant melanoma, influencing progression and patient outcomes, particularly through tumor budding (TB) and tumor-infiltrating lymphocytes (TILs). Despite the importance of TB, its detailed impact still needs to be explored, especially its interaction with TILs. This study evaluates the prognostic significance of TB and TILs in malignant melanoma, assessing their potential as indicators for disease progression and survival. Conducted at Akdeniz University, the research included 92 patients diagnosed between 2014 and 2021. TB was evaluated according to the International Tumor Budding Consensus Conference guidelines, and TILs were assessed by the International Immuno-Oncology Biomarker Working Group standards. The analysis revealed significant correlations between TB and the level of anatomic invasion, Breslow thickness, satellite nodules, lymph node metastasis, distant metastasis, and stage (P < 0.05). A notable inverse relationship between TB and intratumoral TILs suggested their different roles in tumor progression. Tumor subtype, level of anatomic invasion, satellite nodules, lymphovascular invasion, lymph node metastasis, distant metastasis, stage, TILs, and TB were significant risk factors associated with poor prognosis (P < 0.005). Multivariate Cox regression identified histologic subtype and TB >10 as independent prognostic factors, underscoring the need for further research to integrate TB and TILs into clinical practice for better patient management and treatment planning.
Collapse
Affiliation(s)
- Ayşen Yavuz
- Department of Pathology, Akdeniz University, Konyaaltı, Turkey; and
| | - Kübra Şimşek
- Department of Pathology, Akdeniz University, Konyaaltı, Turkey; and
| | | | | | - Betül Ünal
- Antalya Bilim University, Döşemealtı, Turkey
| |
Collapse
|
4
|
Aljabali AAA, Tambuwala MM, El-Tanani M, Hassan SS, Lundstrom K, Mishra V, Mishra Y, Hromić-Jahjefendić A, Redwan EM, Uversky VN. A comprehensive review of PRAME and BAP1 in melanoma: Genomic instability and immunotherapy targets. Cell Signal 2024; 124:111434. [PMID: 39326690 DOI: 10.1016/j.cellsig.2024.111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
In a thorough review of the literature, the complex roles of PRAME (preferentially expressed Antigen of Melanoma) and BAP1 (BRCA1-associated protein 1) have been investigated in uveal melanoma (UM) and cutaneous melanoma. High PRAME expression in UM is associated with poor outcomes and correlated with extraocular extension and chromosome 8q alterations. BAP1 mutations in the UM indicate genomic instability and a poor prognosis. Combining PRAME and BAP1 immunohistochemical staining facilitates effective risk stratification. Mechanistically, both genes are associated with genomic instability, making them promising targets for cancer immunotherapy. Hypomethylation of PRAME, specifically in its promoter regions, is critical for UM progression and contributes to epigenetic reprogramming. Additionally, miR-211 regulation is crucial in melanoma and has therapeutic potential. The way PRAME changes signaling pathways provides clues about the cause of cancer due to genomic instability related to modifications in DNA repair. Inhibition of poly(ADP-ribose) polymerase-1 (PARP-1) and PARP-2 in cells expressing PRAME could lead to potential therapeutic applications. Pathway enrichment analysis underscores the significance of PRAME and BAP1 in melanoma pathogenesis.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan.
| | - Murtaza M Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, PO Box 11172, United Arab Emirates.
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, PO Box 11172, United Arab Emirates.
| | - Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur, 721140, West Bengal, India.
| | | | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, 21934 Alexandria, Egypt.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
5
|
Smith B, Church-Martin J, Abed H, Lloyd E, Hardwicke JT. False Positive Rate from Prospective Studies of PET-CT in Cutaneous Malignant Melanoma: A Systematic Review and Meta-Analysis. Cancer Treat Rev 2024; 131:102849. [PMID: 39522329 DOI: 10.1016/j.ctrv.2024.102849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Cutaneous malignant melanoma (CMM) is increasing in prevalence and possesses the highest mortality rate of any skin cancer. Positron Emission Tomography and Computed Tomography (PET-CT) may be utilised in either radiological staging or surveillance, primarily in stage III-IV disease. False positive (FP) results lead to patient distress, increased costs, and unnecessary follow-up. The FP rate in CMM literature varies widely, altering calculations of positive predictive value and has not undergone pooled meta-analytic. MATERIALS AND METHODS A systematic review and meta-analysis of FP results in prospective studies of PET-CT in CMM was performed in accordance with PRISMA guidelines. RESULTS The systematic review produced 14 trials for inclusion. Patient-based reporting had the lowest pooled proportion of FP results with 5.8 % (95 % CI = 3.3 % to 8.8 %), lesion-based was highest with 9.1 % (95 % CI = 3.4 % to 17.2 %) and combined was 6.1 % (95 % CI = 4.3 % to 8.1 %). Bias was low to unclear other than for FP reporting. Heterogeneity (I2) was variable across all analyses. FP findings were mainly lymphatic, dermatological, respiratory, or skeletal. Diagnostic information was not provided. CONCLUSIONS This study was the first attempt to quantify the pooled proportion of FP results from PET-CT in CMM. A small number of studies (n = 14) were available due to the predominance of retrospective methodology. Due to inconsistent reporting the true proportion of FP results is unclear. Systemic distribution was expected but limited diagnostic information was provided. Repeat meta-analysis using retrospective work should be performed. Future work should be prospective with clearly documented FP proportion, distribution, diagnosis, and follow-up.
Collapse
Affiliation(s)
- B Smith
- Warwick Medical School, The University of Warwick, Coventry CV4 7AL, United Kingdom
| | - J Church-Martin
- Warwick Medical School, The University of Warwick, Coventry CV4 7AL, United Kingdom.
| | - H Abed
- Department of Plastic Surgery, University Hospitals of Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, United Kingdom
| | - E Lloyd
- Warwick Medical School, The University of Warwick, Coventry CV4 7AL, United Kingdom; North Devon District Hospital, Raleigh Heights, Barnstaple, Devon EX31 4JB, United Kingdom
| | - J T Hardwicke
- Warwick Medical School, The University of Warwick, Coventry CV4 7AL, United Kingdom; Department of Plastic Surgery, University Hospitals of Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, United Kingdom
| |
Collapse
|
6
|
Sun W, Sun H, Yu C. The causal effects of childhood sunburn occasions on melanoma: A univariable and multivariable Mendelian randomization study. Open Med (Wars) 2024; 19:20241078. [PMID: 39655048 PMCID: PMC11627034 DOI: 10.1515/med-2024-1078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 12/12/2024] Open
Abstract
Observational studies have shown an association between childhood sunburn occasions (CSOs) and melanoma in situ (MIS). However, these studies have shown contradictory results. Here, we used a two-sample Mendelian randomization (MR) method to make a causal inference between CSOs and melanoma at the genetic level. Based on the publicly available genome-wide association study summary data, including childhood sunburn (n = 346,955) and MIS (n = 218,792), the inverse-variance weighted (IVW) method of the random effects model was used, supplemented by the MR-Egger method, the weighted median method, and the weighted mode method. IVW results showed a 2.58-fold increased risk of melanoma development for each standard deviation increase in CSOs (odds ratio [OR] = 3.58; 95% confidence interval [CI]: 1.68-7.64; P = 1.00 × 10-3), with the MR-Egger (OR = 4.76, 95% CI: 1.65-13.75, P = 5.60 × 10-3), weighted median (OR = 4.89, 95% CI: 1.62-14.76, P = 4.90 × 10-3), and weighted mode (OR = 6.26, 95% CI: 2.49-15.77, P = 3.00 × 10-4) supporting the results. Furthermore, both the funnel plot and the MR-Egger intercepts showed the absence of directional pleiotropy between childhood sunburn and MIS. Our study confirmed that CSOs increase the risk of melanoma development.
Collapse
Affiliation(s)
- Wei Sun
- Department of Radiation Oncology, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Second People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Huihui Sun
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Chong Yu
- Department of Radiation Oncology, Changshu Hospital Affiliated to Soochow University, Changshu No. 1 People’s Hospital, Changshu, 215500, Jiangsu, China
| |
Collapse
|
7
|
Shen J, Yan L, Pang J, Chu Z, Xie Y, Huang S, Chen X. Mechanically stabilized UiO-66-NH 2-MB screen printed carbon electrode for high-performance electrochemical ratiometric quantification of miR-21-5p. Analyst 2024. [PMID: 39611370 DOI: 10.1039/d4an01302f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The ratiometric sensing strategy, which uses dual-signal output, drastically compensates for the background noise and interference from the detection environment, compared to the sensing methods that rely on a single-signal output. However, the stability of the reference signal has become the primary challenge in constructing a ratiometric detection sensor. Therefore, in order to achieve stable ratiometric signal sensing, methylene blue (MB) was encapsulated in the UiO-66-NH2 framework and printed as a reference signal onto a screen-printed carbon electrode (SPCE), facilitating the precise detection of miR-21-5p. Subsequently, based on the ultra-sensitive detection mechanism of catalytic hairpin assembly (CHA), the combination of miR-21-5p with H1 sequence on the Au-deposited SPCE triggered the loop-open of H1. After that, ferrocene-labeled H2 (H2-Fc) and H3-Fc sequences were sequentially added to form a stable "T-shaped" structure, and miR-21-5p was released into the next cycle. Thus, the detection of miR-21-5p was quantified by the current ratio of Fc to MB, obtaining an ultra-low detection limit of 2.7 fM. This ratiometric sensing strategy based on SPCE offers a promising pathway for highly sensitive sensing platforms.
Collapse
Affiliation(s)
- Jianjing Shen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Li Yan
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Jun Pang
- College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhenyu Chu
- College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ying Xie
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Shan Huang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Xiaojun Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
8
|
Luo WF, Song DM, Shen T, He YB, Du HY, Si MJ, Fang LW. Exploring new mechanisms in cancer molecular pathways and pathogenic cell transformation: PIP4K2A as a prognostic marker and therapeutic target in cutaneous malignant melanoma. Discov Oncol 2024; 15:697. [PMID: 39579298 PMCID: PMC11585527 DOI: 10.1007/s12672-024-01555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/07/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Cutaneous malignant melanoma is a very aggressive and metastatic form of skin cancer, typically linked with poor outcomes. Advances in genomic analysis have underscored the crucial role of T cells in tumor immunity. Immune checkpoint inhibitors have notably transformed melanoma treatment by boosting T cell activity. Studies of gene expression have found that the phosphatidylinositol-4-phosphate kinase 2A (PIP4K2A) gene is abnormally expressed in various tumors, indicating its potential role in tumor progression. Utilizing single-cell sequencing and machine learning, researchers can now explore the complex interactions between T cells and melanoma cells at a genomic level. This study aimed to investigate the role of the PIP4K2A gene in cutaneous malignant melanoma, with a focus on its influence on T cell-mediated immune responses. METHODS Samples from cutaneous melanoma patients were analysed by single-cell transcriptome for differentially expressed genes and signalling pathways associated with cutaneous melanoma. Then, genes were identified and predictive models were built based on the transcriptomic data using machine learning models to assess whether the expression level of PIP4K2A could effectively predict the malignancy and prognosis of cutaneous melanoma. In addition, we also performed drug therapy predictive analysis and immunotherapy analysis.Finally, the critical role of PIP4K2A in cutaneous melanoma was further confirmed by immunohistochemistry. RESULTS The PIP4K2A gene exhibited a significantly elevated expression level in cutaneous malignant melanoma, showing a strong correlation with the clinical stage and patient prognosis. At the therapeutic level, high PIP4K2A expression is less responsive to immunotherapy, and this gene is a risk factor for drug therapy in cutaneous malignant melanoma. Additionally, our experimental outcomes validated this observation. CONCLUSIONS The PIP4K2A gene could be a crucial prognostic marker for cutaneous malignant melanoma, as it significantly affects T cell activity within the tumor microenvironment. This study offers essential insights into melanoma pathogenesis and assists in pinpointing new early diagnostic markers and therapeutic targets. Utilizing advanced genomic tools and computational techniques, the research enhances our understanding of T cell dynamics in melanoma, facilitating the development of personalized medicine and more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Wen-Fei Luo
- Jinzhou Medical University, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ding-Ming Song
- Department of Urology, Jinzhou Medical University, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Tong Shen
- Department of Urology, Jinzhou Medical University, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yi-Bo He
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Hong-Yang Du
- Department of Dermatology, Jinzhou Medical University, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Ming-Jue Si
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lu-Wei Fang
- Department of Dermatology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Mayasin YP, Osinnikova MN, Kharisova CB, Kitaeva KV, Filin IY, Gorodilova AV, Kutovoi GI, Solovyeva VV, Golubev AI, Rizvanov AA. Extracellular Matrix as a Target in Melanoma Therapy: From Hypothesis to Clinical Trials. Cells 2024; 13:1917. [PMID: 39594665 PMCID: PMC11592585 DOI: 10.3390/cells13221917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Melanoma is a malignant, highly metastatic neoplasm showing increasing morbidity and mortality. Tumor invasion and angiogenesis are based on remodeling of the extracellular matrix (ECM). Selective inhibition of functional components of cell-ECM interaction, such as hyaluronic acid (HA), matrix metalloproteinases (MMPs), and integrins, may inhibit tumor progression and enhance the efficacy of combination treatment with immune checkpoint inhibitors (ICIs), chemotherapy, or immunotherapy. In this review, we combine the results of different approaches targeting extracellular matrix elements in melanoma in preclinical and clinical studies. The identified limitations of many approaches, including side effects, low selectivity, and toxicity, indicate the need for further studies to optimize therapy. Nevertheless, significant progress in expanding our understanding of tumor biology and the development of targeted therapies holds great promise for the early approaches developed several decades ago to inhibit metastasis through ECM targeting.
Collapse
Affiliation(s)
- Yuriy P. Mayasin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Maria N. Osinnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Chulpan B. Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Ivan Y. Filin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Anna V. Gorodilova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Grigorii I. Kutovoi
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Anatolii I. Golubev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
10
|
da Silva VRF, da Silva GB, Manica D, Deolindo CTP, Bagatini MD, Kempka AP. Phytotherapeutic potential of Campomanesia xanthocarpa (Mart.) O. Berg: antitumor effects in vitro and in silico, with emphasis on SK-MEL-28 melanoma cells-a study on leaf and fruit infusions. In Silico Pharmacol 2024; 12:105. [PMID: 39569036 PMCID: PMC11574240 DOI: 10.1007/s40203-024-00286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
The study investigated the efficacy of Campomanesia xanthocarpa infusions on human melanoma cells (SK-MEL-28). The phytochemical profile revealed 18 phenolic compounds in the leaf infusion and 9 in the fruit infusion. After 24 h of treatment, the infusions demonstrated antineoplastic effects, reducing cell viability at all tested concentrations for the leaf infusion. For the fruit infusion, a significant reduction in cell viability was observed specifically at the 800 μg/mL concentration. Fluorescence microscopy and mitochondrial membrane potential results indicated that the leaf infusion was more effective in reducing cell viability and mitochondrial function in SK-MEL-28 cells, possibly due to its greater variety of phenolic compounds compared to the fruit infusion. The leaf infusion also induced higher production of intracellular reactive oxygen species compared to the fruit infusion. Protein sulfhydryl levels were reduced for the leaf infusion. Epigallocatechin gallate, Isoquercitrin, Rutin, Kaempferol-3-O-rutinoside, Chlorogenic acid, and Ellagic acid were identified as the main compounds with activity against SK-MEL-28 cells. Molecular docking analysis underscored factors such as affinity, cavity size, binding mode, and contact residues with specific compounds chosen for their favorable properties in targeting BRAF, CDK4, CDK6, MEK1, and MEK2. The variability in binding affinities may directly influence the compounds' ability to inhibit different signaling pathways related to cancer cell growth and proliferation. The results suggest that phenolic compounds from C. xanthocarpa extracts have therapeutic potential and could contribute to melanoma therapies. Supplementary information The online version contains supplementary material available at 10.1007/s40203-024-00286-1.
Collapse
Affiliation(s)
- Vanessa Ruana Ferreira da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC Brazil
| | - Gilnei Bruno da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC Brazil
| | - Daiane Manica
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC Brazil
| | - Carolina Turnes Pasini Deolindo
- Ministry of AgricultureLivestock, and Food Supply, Federal Agricultural Defense Laboratory, São José, SC Brazil
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC Brazil
| | - Margarete Dulce Bagatini
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC Brazil
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC Brazil
| | - Aniela Pinto Kempka
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC Brazil
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University, Fernando de Noronha Street, BR 282, Km 573.5, Pinhalzinho, SC 89870-000 Brazil
| |
Collapse
|
11
|
Li X, Hu J, Zhao Q, Yao W, Jing Z, Jin Z. Towards precision medicine: design considerations for nanozymes in tumor treatment. J Transl Med 2024; 22:1033. [PMID: 39550581 PMCID: PMC11568558 DOI: 10.1186/s12967-024-05845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/31/2024] [Indexed: 11/18/2024] Open
Abstract
Since the discovery of Fe3O4 nanoparticles with enzyme-like activity in 2007, nanozymes have emerged as a promising class of catalysts, offering advantages such as high catalytic efficiency, low cost, mild reaction conditions, and excellent stability. These properties make nanozymes highly suitable for large-scale production. In recent years, the convergence of nanomedicine and nanocatalysis has highlighted the potential of nanozymes in diagnostic and therapeutic applications, particularly in tumor therapy. Despite these advancements, the clinical translation of nanozymes remains hindered by the lack of designs tailored to specific tumor characteristics, limiting their effectiveness in targeted therapy. This review addresses the mechanisms by which nanozymes induce cell death in various tumor types and emphasizes the key design considerations needed to enhance their therapeutic potential. By identifying the challenges and opportunities in the field, this study aims to provide a foundation for future nanozyme development, ultimately contributing to more precise and effective cancer treatments.
Collapse
Affiliation(s)
- Xinqiao Li
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping district, Shenyang, 110001, People's Republic of China
| | - Jinpeng Hu
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping district, Shenyang, 110001, People's Republic of China
| | - Qi Zhao
- Department of Chemistry and the Institute for Sustainability and Energy, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA.
| | - Weifeng Yao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental & Chemical Engineering, Shanghai University of Electric Power, Shanghai, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China.
- Shanghai Engineering Research Center of Heat-Exchange System and Energy Saving, Shanghai University of Electric Power, Shanghai, People's Republic of China.
| | - Zhitao Jing
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping district, Shenyang, 110001, People's Republic of China.
| | - Zhizhong Jin
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping district, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
12
|
Viana AR, Poleze TC, da S Bruckmann F, Bottari NB, Peroza LR, Rosales I, Zago NS, Schetinger MRC, Krause LMF, Rhoden CRB, Mortari SR. Liposome preparation of alpha-arbutin: stability and toxicity assessment using mouse B16F10 melanoma cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:879-894. [PMID: 39221705 DOI: 10.1080/15287394.2024.2393308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Melanoma is the most aggressive type of skin cancer, with few therapeutic alternatives following metastasis development. In recent years, drug delivery-associated nanotechnology has shown promising targeted results with diminished adverse effects compared to conventional treatments. This study aimed to (1) examine the effects of plant-derived α-arbutin, a natural compound and (2) compare these findings with bioactively developed liposomes containing α-arbutin utilizing the B16-F10 murine melanoma cell line as a model. Liposomes were obtained through reversed-phase evaporation by applying a spray dryer to assess their stability. The following biologic assays were measured cytotoxicity/antiproliferative (MTT, Neutral Red, and dsDNA PicoGreen). In addition, the levels of melanin and purinergic enzymes were also measured. The production of reactive oxygen species (ROS) and nitric oxide (NO) was determined as a measure of oxidative state. Treatment with nano-liposome containing alpha-arbutin induced a significant 68.4% cytotoxicity, similar to the positive control, in the B16-F10 murine melanoma cell line at 72 hr. Further, arbutin and liposomes containing alpha-arbutin increased levels of ROS and nitrite formation at 72 hr at the highest concentration (100 and 300 µg/ml) of treatments. Arbutin and liposomes containing alpha-arbutin reduced melanin levels at all tested concentrations. In addition, arbutin and alpha-arbutin containing liposomes lowered nucleotides (AMP, ADP, and ATP) and nucleoside (adenosine) levels in melanoma cells. Evidence suggests that α-arbutin containing liposome can be considered as an alternative immunosuppressive agent stimulated in melanoma treatment.
Collapse
Affiliation(s)
- Altevir R Viana
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
| | - Thatyana C Poleze
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
| | - Franciele da S Bruckmann
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
- Laboratory of Nanostructured Magnetic Materials - LAMMAN, Franciscan University, Santa Maria, RS, Brazil
| | - Nathieli B Bottari
- Postgraduate Program in Toxicological Biochemistry, Federal University of Santa Maria-RS, Santa Maria, Brazil
| | - Luis R Peroza
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
| | - Ingrid Rosales
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
| | - Natalia S Zago
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
| | - Maria R C Schetinger
- Postgraduate Program in Toxicological Biochemistry, Federal University of Santa Maria-RS, Santa Maria, Brazil
| | - Luciana M F Krause
- Department of Morphology, Federal University of Santa Maria-RS, Santa Maria, Brazil
| | - Cristiano R B Rhoden
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
- Laboratory of Nanostructured Magnetic Materials - LAMMAN, Franciscan University, Santa Maria, RS, Brazil
| | - Sergio R Mortari
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
| |
Collapse
|
13
|
Garcia JP, Ho OA, Haider SA, Borna S, Gomez-Cabello CA, Forte AJ, Spaulding AC. Impact of Physician Specialty on Treatment Costs of Invasive Melanoma. Diseases 2024; 12:284. [PMID: 39589958 PMCID: PMC11592836 DOI: 10.3390/diseases12110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
INTRODUCTION Melanoma is a deadly type of skin cancer that develops from melanocytes and can manifest on the skin or other regions of the body. Its incidence is increasing rapidly, with approximately 100,000 diagnoses and 7000 deaths per year in the US alone. We conducted a cross-sectional study with the aim of determining an association between the cost of care for invasive melanoma and the specialty involved in the treatment to adequately guide future treatment. METHODS We analyzed data from 3817 patients (2013-2018) using the Florida inpatient/outpatient dataset, CMS cost reports, and the National Plan and Provider Enumeration System. Covariates included age, sex, race/ethnicity, insurance type, region, county rurality, the number of procedures, the comorbidity index, obesity, metastatic cancer presence, hospital size, and physician volume. Multivariable mixed linear regression was used to analyze the data, and the cost was adjusted to the 2019 USD. RESULTS Dermatology had the largest decrease in the overall and outpatient costs compared to general surgery, followed by plastic surgery. The inpatient costs for dermatology and plastic surgery were lower than those for general surgery, but not significantly so. CONCLUSIONS The costs associated with surgical procedures may vary depending on the specialty of the physician treating the patient. Dermatology was associated with lower treatment costs for invasive melanoma compared to other specialties, indicating that physician specialty influences the cost of care.
Collapse
Affiliation(s)
- John P. Garcia
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Olivia A. Ho
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Syed Ali Haider
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sahar Borna
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Antonio Jorge Forte
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
- Center for Digital Health, Mayo Clinic, Rochester, MN 55905, USA
| | - Aaron C. Spaulding
- Department of Health Science Research, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
14
|
Yuan L, Jin K, Shao A, Feng J, Shi C, Ye J, Grzybowski A. Analysis of international publication trends in artificial intelligence in skin cancer. Clin Dermatol 2024; 42:570-584. [PMID: 39260460 DOI: 10.1016/j.clindermatol.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Bibliometric methods were used to analyze publications on the use of artificial intelligence (AI) in skin cancer from 2010 to 2022, aiming to explore current publication trends and future directions. A comprehensive search using four terms, "artificial intelligence," "machine learning," "deep learning," and "skin cancer," was performed in the Web of Science database for original English language publications on AI in skin cancer from 2010 to 2022. We visually analyzed publication, citation, and coupling information, focusing on authors, countries and regions, publishing journals, institutions, and core keywords. The analysis of 989 publications revealed a consistent year-on-year increase in publications from 2010 to 2022 (0.51% versus 33.57%). The United States, India, and China emerged as the leading contributors. IEEE Access was identified as the most prolific journal in this area. Key journals and influential authors were highlighted. Examination of the top 10 most cited publications highlights the significant potential of AI in oncology. Co-citation network analysis identified four primary categories of classical literature on AI in skin tumors. Keyword analysis indicated that "melanoma," "classification," and "deep learning" were the most prevalent keywords, suggesting that deep learning for melanoma diagnosis and grading is the current research focus. The term "pigmented skin lesions" showed the strongest burst and longest duration, whereas "texture" was the latest emerging keyword. AI represents a rapidly growing area of research in skin cancer with the potential to significantly improve skin cancer management. Future research will likely focus on machine learning and deep learning technologies for screening and diagnostic purposes.
Collapse
Affiliation(s)
- Lu Yuan
- Department of Ophthalmology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Kai Jin
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - An Shao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia Feng
- Department of Ophthalmology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Caiping Shi
- Department of Ophthalmology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznan, Poland.
| |
Collapse
|
15
|
Chu PY, Lien KP, Chen KC, Li CY, Yang JS, Wang TH, Chiu YJ. Unraveling the Obesity Paradox: Exploring the Impact of Body Weight on Cutaneous Melanoma Prognosis in Asian Population. Diabetes Metab Syndr Obes 2024; 17:3863-3873. [PMID: 39449863 PMCID: PMC11499613 DOI: 10.2147/dmso.s477649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Background Obesity has been identified as a significant risk factor for various diseases, including certain cancers; however, its association with melanoma remains a subject of debate. Despite the increasing incidence of cutaneous melanoma in Taiwan, there has been limited research on its correlation with obesity. This study aims to investigate the relationship between obesity and the prognosis of cutaneous melanoma in Taiwan. Methods Between January 1, 2000, and December 31, 2022, 201 patients were diagnosed with cutaneous melanoma at our hospital, with 61.69% of them diagnosed with acral melanoma. Data on body weight, height, tumor stages and prognosis were collected and analyzed. Results The result revealed that older age (≥ 65 years old), male, advanced Breslow thickness stage (T3 and T4) and tumor ulceration were identified as risk factors for worse overall survival in both cutaneous melanoma and acral melanoma. In the adjusted multivariable analysis, being overweight was considered a protective factor in both cutaneous and acral melanoma. Conclusion Contrary to expectations, it was observed that melanoma patients with obesity exhibited better survival rates compared to those with normal or underweight status. Additionally, no significant differences were found between acral melanoma and non-acral melanoma subtypes regarding the impact of body weight on overall survival.
Collapse
Affiliation(s)
- Po-Yu Chu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Kuan-Po Lien
- Department of Medicine, Mackay Medical College, New Taipei City, 252005, Taiwan
- Department of Surgery, Cathay General Hospital, Taipei, 106438, Taiwan
| | - Kuan-Cheng Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Cheng-Yuan Li
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- Department of Dermatology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, 404327, Taiwan
| | - Tien-Hsiang Wang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Yu-Jen Chiu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| |
Collapse
|
16
|
Tang N, Li Y, Tang J, Chen J, Chen L, Dang L. ACOT7 positively regulated by CREB1 promotes the progression of cutaneous melanoma. Acta Histochem 2024; 126:152186. [PMID: 39142244 DOI: 10.1016/j.acthis.2024.152186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/24/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
Cutaneous melanoma (cM) is a prevalent invasive cancer resulting from the malignant transformation of melanocytes. At present, the primary treatment for melanoma is surgical resection, which is not appropriate for patients with metastasis. Therefore, it is necessary to identify effective therapeutic targets for the early diagnosis and treatment of metastatic melanoma. Acyl-CoA thioesterase 7 (ACOT7) has been reported to be involved in the progression of multiple cancer, while its role in melanoma has not been extensively researched. Through gain-of-function and loss-of-function experiments, ACOT7 was identified as a tumor promoter that facilitates the progression of melanoma cells. Cell proliferation was promoted by overexpressing ACOT7 in M14 cells, and was suppressed by silencing ACOT7 in MeWo cells. Knockdown of ACOT7 induced cell cycle arrest by increasing the expressions of cyclin dependent kinase inhibitor 1B (P27) and cyclin dependent kinase inhibitor 1 A (P21), while simultaneously reducing proliferating cell nuclear antigen (PCNA) expression. Upregulation of ACOT7 promoted the cell cycle of melanoma cells. Additionally, apoptosis was induced by the absence of ACOT7 through activating caspase-3 and poly (ADP-ribose) polymerase (PARP). The metastatic and invasive capacity of melanoma cells was significantly enhanced by the overexpression of ACOT7 and inhibited by the downregulation of ACOT7. Moreover, the cAMP responsive element binding protein 1 (CREB1) positively regulates ACOT7 expression by binding to its promoter region. A decrease of cell proliferation, migration and invasion, as well as an increase of cell apoptosis induced by silencing CREB1 were obviously reversed by ACOT7. In summary, ACOT7 transcriptionally activated by CREB1 elevates the progression of cM.
Collapse
Affiliation(s)
- Ni Tang
- Department of Dermatology, Longgang Central Hospital, Shenzhen, China
| | - Yunhui Li
- Department of Dermatology, Longgang Central Hospital, Shenzhen, China
| | - Junchi Tang
- Department of Dermatology, Longgang Central Hospital, Shenzhen, China
| | - Juexin Chen
- Department of Dermatology, Longgang Central Hospital, Shenzhen, China
| | - Lili Chen
- Department of Dermatology, Longgang Central Hospital, Shenzhen, China
| | - Lin Dang
- Department of Dermatology, Longgang Central Hospital, Shenzhen, China.
| |
Collapse
|
17
|
Li H, Chen Z, Huang Y, Chen C, Cai L. ELK4 targets CHMP6 to inhibit ferroptosis and enhance malignant properties of skin cutaneous melanoma cells. Arch Dermatol Res 2024; 316:634. [PMID: 39305302 DOI: 10.1007/s00403-024-03367-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Ferroptosis, a key factor in tumor progression, is poorly understood at the molecular level. This study investigates how ELK4 and CHMP6 regulate skin cutaneous melanoma (SKCM) cell proliferation and ferroptosis. Analysis of TCGA data reveals high expression of ELK4 and CHMP6 in SKCM. Overexpression of ELK4 or CHMP6 enhances cell proliferation, invasion, and migration while reducing ROS and Fe2 + levels. It also increases GPX4 and xCT expression and decreases ACSL4 levels in SKCM cells. The opposite effects are observed with ELK4 or CHMP6 knockdown. ELK4 binds to the CHMP6 promoter, promoting CHMP6 transcription. Knockdown of CHMP6 reverses the oncogenic effects of ELK4 overexpression. In conclusion, ELK4 enhances proliferation, invasion, and migration while inhibiting ferroptosis in SKCM cells by upregulating CHMP6 transcription. This study sheds light on the intricate mechanisms involved in SKCM progression and identifies potential therapeutic targets in melanoma treatment.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Dermatology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, P.R. China
| | - Zedong Chen
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, No. 199, Dazhi Street, Nangang District, Harbin, 150001, Heilongjiang, P.R. China
| | - Yuanjie Huang
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, No. 199, Dazhi Street, Nangang District, Harbin, 150001, Heilongjiang, P.R. China
| | - Chen Chen
- Department of Dermatology, The Second Hospital of Harbin, Harbin, 150056, Heilongjiang, P.R. China
| | - Limin Cai
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, No. 199, Dazhi Street, Nangang District, Harbin, 150001, Heilongjiang, P.R. China.
| |
Collapse
|
18
|
Wang X, Liu E, Hou C, Wang Y, Zhao Y, Guo J, Li M. Effects of natural products on angiogenesis in melanoma. Fitoterapia 2024; 177:106100. [PMID: 38972550 DOI: 10.1016/j.fitote.2024.106100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Melanoma is the most aggressive form of skin cancer and originates from genetic mutations in melanocytes. The disease is multifactorial, but its main cause is overexposure to UV radiation. Currently, available chemotherapy expresses little to no results, which may justify the extensive use of natural products to treat this cancer. In this study, we reviewed the inhibition of melanoma angiogenesis by natural products and its potential mechanisms using literature from PubMed, EMBASE, Web of Science, Ovid, ScienceDirect and China National Knowledge Infrastructure databases. According to summarizes 27 natural products including alkaloids, polyphenols, terpenoids, flavonoids, and steroids that effectively inhibit angiogenesis in melanoma. In addition to these there are 15 crude extracts that can be used as promising agents to inhibit angiogenesis, but their core components still deserve further investigation. There are current studies on melanoma angiogenesis involving oxidative stress, immune-inflammatory response, cell proliferation and migration and capillary formation. The above natural products can be involved in melanoma angiogenesis through core targets such as VE-cadherin, COX-2, iNOS, VEGF, bFGF, FGF2,MMP2,MMP9,IL-1β,IL-6 play a role in inhibiting melanoma angiogenesis. Effective excavation of natural products can not only clarify the mechanism of drug action and key targets, but also help to promote the preclinical research of natural products for melanoma treatment and further promote the development of new clinical drugs, which will bring the gospel to the vast number of patients who are deeply afflicted by melanoma.
Collapse
Affiliation(s)
- Xurui Wang
- Department of Chinese Medicine Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China,Chengdu, China; Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - E Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changcheng Hou
- Jiangsu Province Hospital of Traditional Chinese Medicine Chongqing Hospital, Chongqing, China
| | - Yueyue Wang
- Jiangsu Province Hospital of Traditional Chinese Medicine Chongqing Hospital, Chongqing, China
| | - Yijia Zhao
- Department of Dermatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Mingyue Li
- Special Needs Outpatient Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
19
|
Wang L, Zeng Y, Zhang Y, Zhu Y, Xu S, Liang Z. Acetylcytidine modification of DDX41 and ZNF746 by N-acetyltransferase 10 contributes to chemoresistance of melanoma. Front Oncol 2024; 14:1448890. [PMID: 39246323 PMCID: PMC11377236 DOI: 10.3389/fonc.2024.1448890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Background Rapidly developed chemoresistance to dacarbazine (DTIC) is a major obstacle in the clinical management of melanoma; however, the roles and mechanisms of epi-transcriptomic RNA modification in this process have not been investigated. Method DTIC-resistant (DR) melanoma cells were established for bulk RNA sequencing. The expressions of mRNAs were detected using qRT-PCR, and protein levels were determined using Western blotting and immunohistochemistry. Acetylated RNAs were detected by dot blotting and immunoprecipitation sequencing (acRIP-seq). A lung metastasis mouse model of melanoma was established to evaluate the anti-melanoma effects in vivo. Results We identified that the expression of N-acetyltransferase 10 (NAT10), a catalytic enzyme for the N 4-acetylcytidine (ac4C) modification of RNA, was significantly upregulated in the DR cells. Clinically, NAT10 expression was elevated in disease progression samples and predicted a poor outcome. Using ac4C RNA immunoprecipitation (ac4C-RIP), we found that the mRNAs of two C2H2 zinc finger transcriptional factors, DDX41 and ZNF746, were targets of NAT10-mediated ac4C modification. Gain- and loss-of-function experiments in NAT10, or in DDX41 and ZNF746, altered the chemosensitivity of melanoma accordingly, and the two target genes also negatively correlated with clinical outcomes. Finally, pharmacological inhibition of NAT10 with Remodelin sensitized melanoma cells to DTIC treatment in vitro and in a mouse xenograft model. Conclusion Our study elucidates the previously unrecognized role of NAT10-mediated ac4C modification in the chemoresistance of melanoma and provides a rationale for developing new strategies to overcome chemoresistance in melanoma patients.
Collapse
Affiliation(s)
- Li Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yuefen Zeng
- Department of Dermatology, The People's Hospital of Yuxi City, Kunming Medical University, Yuxi, Yunan, China
| | - Ying Zhang
- Department of Acupuncture and Tuina, The People's Hospital of Yuxi City, Kunming Medical University, Yuxi, Yunan, China
| | - Yun Zhu
- Department of Dermatology, The People's Hospital of Yuxi City, Kunming Medical University, Yuxi, Yunan, China
| | - Shuangyan Xu
- Department of Dermatology, The People's Hospital of Yuxi City, Kunming Medical University, Yuxi, Yunan, China
| | - Zuohui Liang
- Department of Dermatology, The People's Hospital of Yuxi City, Kunming Medical University, Yuxi, Yunan, China
| |
Collapse
|
20
|
Dastgheib ZS, Abolmaali SS, Farahavar G, Salmanpour M, Tamaddon AM. Gold nanostructures in melanoma: Advances in treatment, diagnosis, and theranostic applications. Heliyon 2024; 10:e35655. [PMID: 39170173 PMCID: PMC11336847 DOI: 10.1016/j.heliyon.2024.e35655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/16/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Melanoma, a lethal form of skin cancer, poses a significant challenge in oncology due to its aggressive nature and high mortality rates. Gold nanostructures, including gold nanoparticles (GNPs), offer myriad opportunities in melanoma therapy and imaging due to their facile synthesis and functionalization, robust stability, tunable physicochemical and optical properties, and biocompatibility. This review explores the emerging role of gold nanostructures and their composites in revolutionizing melanoma treatment paradigms, bridging the gap between nanotechnology and clinical oncology, and offering insights for researchers, clinicians, and stakeholders. It begins by elucidating the potential of nanotechnology-driven approaches in cancer therapy, highlighting the unique physicochemical properties and versatility of GNPs in biomedical applications. Various therapeutic modalities, including photothermal therapy, photodynamic therapy, targeted drug delivery, gene delivery, and nanovaccines, are discussed in detail, along with insights from ongoing clinical trials. In addition, the utility of GNPs in melanoma imaging and theranostics is explored, showcasing their potential in diagnosis, treatment monitoring, and personalized medicine. Furthermore, safety considerations and potential toxicities associated with GNPs are addressed, underscoring the importance of comprehensive risk assessment in clinical translation. Finally, the review concludes by discussing current challenges and future directions, emphasizing the need for innovative strategies to maximize the clinical impact of GNPs in melanoma therapy.
Collapse
Affiliation(s)
- Zahra Sadat Dastgheib
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| | - Ghazal Farahavar
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| | - Mohsen Salmanpour
- Cellular and Molecular Biology Research Center, School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| |
Collapse
|
21
|
Negrutiu M, Danescu S, Popa T, Rogojan L, Vesa SC, Baican A. Preoperative bimodal imaging evaluation in finding histological correlations of in situ, superficial spreading and nodular melanoma. Front Med (Lausanne) 2024; 11:1436078. [PMID: 39185465 PMCID: PMC11341425 DOI: 10.3389/fmed.2024.1436078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
Background The aim of this study is to correlate the diagnostic criteria described in dermoscopy, ultrasonography (US), and histology of the most common types of cutaneous melanoma (CM). Methods We conducted a prospective study including 40 CM cases, which were analyzed by dermoscopy using the Delta 30 dermatoscope and Vidix 4.0 videodermoscope, by ultrasound (US) using a high-resolution 20 MHz linear probe, along with histopathological analysis. Results The study involved 40 patients with histopathologically confirmed CM, comprising 10 nodular melanomas (NM), 21 superficial spreading melanomas (SSM), and nine in situ melanomas (MIS). US measurements of tumor thickness exhibited strong correlations with the histopathological Breslow index (BI), particularly in the NM and SSM groups. A notable correlation was observed between the presence of ulceration in histopathology and ultrasonography. Dermoscopic analysis revealed significant associations between specific features and CM types. For instance, the presence of an atypical network, irregular globules, irregular dots, prominent skin margins, angulated lines/polygons, dotted and short linear vessels, and negative network correlated with a median BI ≤ 0.5 mm. Conversely, the presence of blue-white veil, atypical vessels, blue-black color, and milky red color were associated with a median BI ≥ 2.3 mm. Furthermore, regression observed in histopathology correlated with regression identified in dermoscopy, we also found statistical correlations between the presence of vascularization at US with the high Clark level, and the presence of prominent skin markings at dermoscopy. The presence of histopathological regression was more frequently associated with tumors that had precise margins, absent vascularization and with those that did not have ulceration on US. The high mitotic rate was associated with tumors that presented imprecise margins, increased vascularization and US detectable ulceration. Conclusion Innovative CM diagnosis using non-invasive methods like dermoscopy and ultrasound may enhance accuracy and treatment guidance by assessing lesion characteristics.
Collapse
Affiliation(s)
- Mircea Negrutiu
- Department of Dermatology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sorina Danescu
- Department of Dermatology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Theodor Popa
- Department of Rehabilitation, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Liliana Rogojan
- Department of Histopathology, Cluj-Napoca Emergency County Hospital, Cluj-Napoca, Romania
| | - Stefan Cristian Vesa
- Department of Functional Sciences, Discipline of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian Baican
- Department of Dermatology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
22
|
Luo S, Wang D, Chen J, Hong S, Fang Y, Cao L, Yong L, Liu S. The combination of single-cell and RNA sequencing analysis decodes the melanoma tumor microenvironment and identifies novel T cell-associated signature genes. J Cancer 2024; 15:5085-5100. [PMID: 39132169 PMCID: PMC11310880 DOI: 10.7150/jca.96484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Skin cutaneous melanoma (SKCM), a malignant melanocyte-derived skin cancer, potentially leads to fatal outcomes without effective treatment. The variability in immunotherapy responses among melanoma patients is significantly influenced by the intricate immune microenvironment, particularly due to the status of tumor T cells, encompassing their activity, exhaustion levels, and antigen recognition capabilities. This study utilized single-cell RNA sequencing (scRNA-seq) to analyze 34 melanoma samples from two public datasets (GSE215120 and GSE115978). Herein, we extracted 706 marker genes associated with immune checkpoint (ICP) therapy from these T cells, 509 markers of T cells from 11 melanoma tissues, and eventually identified 33 candidate genes. These genes underwent LASSO and COX regression analyses to identify the signature genes. Of the initial 33 candidate genes, we successfully isolated six distinct T cell-associated immunotherapy-related genes (IRTGs). Additionally, the computation of each patient risk score proved beneficial in evaluating the immune cell infiltration level and functions as an independent prognostic factor for melanoma patient survival. The risk score results revealed promising predictive outcomes in determining the response of melanoma patients to immunotherapy. Notably, our study is the first to reveal the potential correlation between signature gene PEB4B and the immune microenvironment in melaoma, which was explored with multiple immunofluorescence (IF) and Immune Infiltration Assessment. In a conclusion, our findings demonstrate the potential utility of a risk score dependent on signature genes as a predictive tool for assessing the prognosis and response to immunotherapeutic interventions in melanoma patients.
Collapse
Affiliation(s)
- Sihan Luo
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230022, China
| | - Daiyue Wang
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230022, China
| | - Jiajie Chen
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230022, China
| | - Shaocheng Hong
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Yuanyuan Fang
- Department of Obstetrics and Gynecology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Lu Cao
- Department of Dermatology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Liang Yong
- Laboratory of Stem Cell, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, P R China
| | - Shengxiu Liu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230022, China
| |
Collapse
|
23
|
Gupta PK, Orlovskiy S, Arias-Mendoza F, Nelson DS, Nath K. 1H and 31P Magnetic Resonance Spectroscopic Metabolomic Imaging: Assessing Mitogen-Activated Protein Kinase Inhibition in Melanoma. Cells 2024; 13:1220. [PMID: 39056801 PMCID: PMC11274771 DOI: 10.3390/cells13141220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The MAPK signaling pathway with BRAF mutations has been shown to drive the pathogenesis of 40-60% of melanomas. Inhibitors of this pathway's BRAF and MEK components are currently used to treat these malignancies. However, responses to these treatments are not always successful. Therefore, identifying noninvasive biomarkers to predict treatment responses is essential for personalized medicine in melanoma. Using noninvasive 1H magnetic resonance spectroscopy (1H MRS), we previously showed that BRAF inhibition reduces lactate and alanine tumor levels in the early stages of effective therapy and could be considered as metabolic imaging biomarkers for drug response. The present work demonstrates that these metabolic changes observed by 1H MRS and those assessed by 31P MRS are also found in preclinical human melanoma models treated with MEK inhibitors. Apart from 1H and 31P MRS, additional supporting in vitro biochemical analyses are described. Our results indicate significant early metabolic correlations with response levels to MEK inhibition in the melanoma models and are consistent with our previous study of BRAF inhibition. Given these results, our study supports the potential clinical utility of noninvasive MRS to objectively image metabolic biomarkers for the early prediction of melanoma's response to MEK inhibition.
Collapse
Affiliation(s)
- Pradeep Kumar Gupta
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (F.A.-M.); (D.S.N.)
| | - Stepan Orlovskiy
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (F.A.-M.); (D.S.N.)
| | - Fernando Arias-Mendoza
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (F.A.-M.); (D.S.N.)
- Advanced Imaging Research, Inc., Cleveland, OH 44114, USA
| | - David S. Nelson
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (F.A.-M.); (D.S.N.)
| | - Kavindra Nath
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (F.A.-M.); (D.S.N.)
| |
Collapse
|
24
|
Gong W, Zhou J, Hou Y, Zhang J, He P, Yu Q. The causal relationship between immune cells mediating FIT3L, CCL4, OSM, and skin-derived deteriorated tumors. Skin Res Technol 2024; 30:e13774. [PMID: 38953214 PMCID: PMC11217673 DOI: 10.1111/srt.13774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVE Observational studies have identified a dual effect of circulating inflammatory proteins and immune cells on cancer progression. However, the specific mechanisms of action have not been clarified in the exacerbation of cutaneous-origin tumors. Therefore, this study aims to investigate whether the causal relationship between circulating inflammatory factors and basal cell carcinoma (BCC), cutaneous malignant melanoma (SKCM), and cutaneous squamous cell carcinoma (cSCC) is regulated by immune cells. METHODS This study employed the Two-Sample Mendelian Randomization (TSMR) approach to investigate the causal relationships between 91 circulating inflammatory factors and three prevalent types of skin cancer from a genetic perspective. Bayesian Weighted Mendelian Randomization (BWMR) was also used to validate correlation and reverse MR to assess inverse relationships. Subsequent sensitivity analyses were conducted to limit the impact of heterogeneity and pleiotropy. Finally, the two-step Mendelian Randomization (two-step MR) method was utilized to ascertain the mediating effects of specific immune cell traits in the causal pathways linking circulating inflammatory factors with BCC, SKCM, and cSCC. RESULTS The Inverse Variance Weighted (IVW) method and the Bayesian Weighted Algorithm collectively identified nine inflammatory factors causally associated with BCC, SKCM, and cSCC. The results from Cochran's Q test, mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO), and MR-Egger intercept were not statistically significant (p < 0.05). Additionally, the proportions mediated by CD4+ CD8dim T cell %leukocyte, CD4-CD8-Natural Killer T %T cell, and CD20 on IgD-CD38-B cell for FIt3L, CCL4, and OSM were 9.26%, 8.96%, and 10.16%, respectively. CONCLUSION Immune cell levels potentially play a role in the modulation process between circulating inflammatory proteins and cutaneous-origin exacerbated tumors. This finding offers a new perspective for the in-depth exploration of cutaneous malignancies.
Collapse
Affiliation(s)
- Wanli Gong
- School of ManagementShanxi Medical UniversityJinzhongShanxiChina
- Key Laboratory of Big Data in Clinical Decision ResearchShanxi Medical UniversityTaiyuanShanxiChina
| | - Jiayi Zhou
- Faculty of Arts and Social SciencesUniversity of SydneyBroadwayAustralia
| | - Yaqi Hou
- School of ManagementShanxi Medical UniversityJinzhongShanxiChina
- Key Laboratory of Big Data in Clinical Decision ResearchShanxi Medical UniversityTaiyuanShanxiChina
| | - juan Zhang
- School of ManagementShanxi Medical UniversityJinzhongShanxiChina
- Key Laboratory of Big Data in Clinical Decision ResearchShanxi Medical UniversityTaiyuanShanxiChina
| | - Peifeng He
- Key Laboratory of Big Data in Clinical Decision ResearchShanxi Medical UniversityTaiyuanShanxiChina
| | - Qi Yu
- School of ManagementShanxi Medical UniversityJinzhongShanxiChina
- Key Laboratory of Big Data in Clinical Decision ResearchShanxi Medical UniversityTaiyuanShanxiChina
| |
Collapse
|
25
|
Pelczar P, Kosteczko P, Wieczorek E, Kwieciński M, Kozłowska A, Gil-Kulik P. Melanoma in Pregnancy-Diagnosis, Treatment, and Consequences for Fetal Development and the Maintenance of Pregnancy. Cancers (Basel) 2024; 16:2173. [PMID: 38927879 PMCID: PMC11202133 DOI: 10.3390/cancers16122173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Cutaneous malignant melanoma is one of the most common neoplasms among pregnancy-associated cancers (PACs). Risk factors include excessive exposure to ultraviolet radiation, the presence of benign and dysplastic nevi, and a patient or family history of melanoma. Self-examination and careful inspection of nevi are crucial, especially in the context of their progression over time. Physiological changes that occur during pregnancy, such as the darkening and enlargement of the nevi, delay the diagnosis of CMM. In the fetus, metastases are very rare, and if they do occur, they concern the placenta or fetal tissues. The choice of treatment is influenced by the cancer stage, symptoms, the time of termination of pregnancy, and the patient's decision. Essential procedures which are safe for the fetus are diagnostic biopsy, ultrasound, and the therapeutic excision of the lesion and the affected lymph nodes. Other imaging methods can be used with a safe radiation dose limit of 100 mGy. Immunotherapy and targeted treatments must be carefully considered, because of their possible adverse effects on the fetus. An interdisciplinary approach to the problem of melanoma during pregnancy is necessary, involving doctors of various specialties.
Collapse
Affiliation(s)
- Patrycja Pelczar
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland; (P.P.); (P.K.); (E.W.); (M.K.)
| | - Pola Kosteczko
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland; (P.P.); (P.K.); (E.W.); (M.K.)
| | - Ewelina Wieczorek
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland; (P.P.); (P.K.); (E.W.); (M.K.)
| | - Maciej Kwieciński
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland; (P.P.); (P.K.); (E.W.); (M.K.)
| | - Aleksandra Kozłowska
- Department of Radiotherapy, Medical University of Lublin, 13 Radziwillowska Str., 20-080 Lublin, Poland;
| | - Paulina Gil-Kulik
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| |
Collapse
|
26
|
Fang Y, Yongqian Z, Yin L, Li M, Mei Z, Jing Y, Di W. Clinical characteristics, survival analysis and influencing factors of distant metastasis in patients with acromelanomas: A retrospective study. Medicine (Baltimore) 2024; 103:e38230. [PMID: 38847674 PMCID: PMC11155514 DOI: 10.1097/md.0000000000038230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/23/2024] [Indexed: 06/10/2024] Open
Abstract
The prognosis of acromelanomas (AM) is worse. The objective of this study was to investigate the clinical features of distant metastasis of AM and the factors affecting the survival and prognosis of patients. In this study, a retrospective study was conducted to select 154 AM patients admitted to Nanjing Pukou People's Hospital from January 2018 to April 2021 for clinical research. The clinical characteristics of distant metastasis were statistically analyzed, and the survival curve was drawn with 5-year follow-up outcomes. The median survival time of the patients was calculated, and the clinicopathological features and peripheral blood laboratory indexes of the surviving and dead patients were analyzed. Logistic regression model was used to analyze the risk factors affecting the prognosis of AM patients. In this study, 154 patients with AM were treated, including 88 males and 76 females, aged from 27 to 79 years old, with an average age of (59.3 ± 11.7) years old. Among them, 90 cases had distant metastasis. The main metastatic sites were lung (47.78%) and lymph nodes (42.22%). Among them, single site metastasis accounted for 41.11% and multiple site metastasis 58.89%. 89 cases survived and 65 cases died. The survival time was 22 months to 60 months, and the median survival time was 48.0 months. The Breslow thickness, stage at diagnosis, distant metastasis, site of metastasis and ulceration were compared between the survival group and the death group (P < .05). serum lactate dehydrogenase (LDH), neutrophil-to-lymphocyte ratio (NLR) and lymphocyte monocyte ratio (LMR) were compared between the survival group and the death group (P < .05). The results of Logistic regression model showed that LDH ≥ 281 U/L, NLR ≥ 2.96, LMR ≤ 3.57, newly diagnosed stage > stage II, distant metastasis, multiple site metastasis and tumor ulcer were independent risk factors for poor prognosis of AM patients (P < .05). Patients with AM had a higher proportion of distant metastasis, mainly lung and lymph node metastasis. Increased LDH, increased NLR, decreased LMR, higher initial stage, distant metastasis, multiple site metastasis, and combined tumor ulcer were closely related to the poor prognosis of patients after surgery.
Collapse
Affiliation(s)
- Yan Fang
- Department of Dermatology, Nanjing Pukou People’s Hospital, Nanjing, Jiangsu, People’s Republic of China
| | - Zhu Yongqian
- Department of Information, Jiangsu Provincial People’s Hospital, Nanjing, Jiangsu, People’s Republic of China
| | - Lu Yin
- Department of Dermatology, Nanjing Pukou People’s Hospital, Nanjing, Jiangsu, People’s Republic of China
| | - Min Li
- Department of Ultrasound, Jiangdong Community Service Center, Nanjing, Jiangsu, People’s Republic of China
| | - Zhang Mei
- Department of Pathology, Nanjing Pukou People’s Hospital, Nanjing, Jiangsu, People’s Republic of China
| | - Yang Jing
- Department of Dermatology, Nanjing Pukou People’s Hospital, Nanjing, Jiangsu, People’s Republic of China
| | - Wu Di
- Department of Dermatology, Jiangsu Provincial People’s Hospital, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
27
|
Wang L, Garg P, Chan KY, Yuan TZ, Lujan Hernandez AG, Han Z, Peterson SM, Tuscano E, Safavi C, Kwan E, Villalta M, Mathur M, Lai J, Axelrod F, Souders CA, Emery C, Sato AK. Discovery of a potent, selective, and tumor-suppressing antibody antagonist of adenosine A2A receptor. PLoS One 2024; 19:e0301223. [PMID: 38837964 PMCID: PMC11152298 DOI: 10.1371/journal.pone.0301223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/12/2024] [Indexed: 06/07/2024] Open
Abstract
New immune checkpoints are emerging in a bid to improve response rates to immunotherapeutic drugs. The adenosine A2A receptor (A2AR) has been proposed as a target for immunotherapeutic development due to its participation in immunosuppression of the tumor microenvironment. Blockade of A2AR could restore tumor immunity and, consequently, improve patient outcomes. Here, we describe the discovery of a potent, selective, and tumor-suppressing antibody antagonist of human A2AR (hA2AR) by phage display. We constructed and screened four single-chain variable fragment (scFv) libraries-two synthetic and two immunized-against hA2AR and antagonist-stabilized hA2AR. After biopanning and ELISA screening, scFv hits were reformatted to human IgG and triaged in a series of cellular binding and functional assays to identify a lead candidate. Lead candidate TB206-001 displayed nanomolar binding of hA2AR-overexpressing HEK293 cells; cross-reactivity with mouse and cynomolgus A2AR but not human A1, A2B, or A3 receptors; functional antagonism of hA2AR in hA2AR-overexpressing HEK293 cells and peripheral blood mononuclear cells (PBMCs); and tumor-suppressing activity in colon tumor-bearing HuCD34-NCG mice. Given its therapeutic properties, TB206-001 is a good candidate for incorporation into next-generation bispecific immunotherapeutics.
Collapse
Affiliation(s)
- Linya Wang
- Twist Bioscience, San Francisco, California, United States of America
| | - Pankaj Garg
- Gilead, Foster City, California, United States of America
| | - Kara Y. Chan
- Slingshot, Los Angeles, California, United States of America
| | - Tom Z. Yuan
- Twist Bioscience, San Francisco, California, United States of America
| | | | - Zhen Han
- Twist Bioscience, San Francisco, California, United States of America
| | - Sean M. Peterson
- Nurix Therapeutics, San Francisco, California, United States of America
| | - Emily Tuscano
- Sartorius, Fremont, California, United States of America
| | - Crystal Safavi
- Twist Bioscience, San Francisco, California, United States of America
| | - Eric Kwan
- Twist Bioscience, San Francisco, California, United States of America
| | - Mouna Villalta
- Twist Bioscience, San Francisco, California, United States of America
| | - Melina Mathur
- Twist Bioscience, San Francisco, California, United States of America
| | - Joyce Lai
- Twist Bioscience, San Francisco, California, United States of America
| | - Fumiko Axelrod
- Twist Bioscience, San Francisco, California, United States of America
| | - Colby A. Souders
- Twist Bioscience, San Francisco, California, United States of America
| | - Chloe Emery
- Twist Bioscience, San Francisco, California, United States of America
| | - Aaron K. Sato
- Twist Bioscience, San Francisco, California, United States of America
| |
Collapse
|
28
|
Li M, Gong J, Liu Q, Wu W. Research progress on the mechanism and signalling pathway of ferroptosis and its potential role in dermatosis research. Exp Dermatol 2024; 33:e15114. [PMID: 38853773 DOI: 10.1111/exd.15114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/28/2024] [Accepted: 05/26/2024] [Indexed: 06/11/2024]
Abstract
Ferroptosis is a novel type of cell death that is dependent on lipid peroxidation and iron accumulation, which distinguishes it from other types of programmed cell death. Current research indicates a significant association between ferroptosis and various pathological conditions, including cancer, neurological disorders, and cardiovascular diseases, albeit with a relatively unexplored role in dermatological afflictions. This paper elaborates on the mechanisms and signalling pathways of ferroptosis, summarizing the recent studies on ferroptosis and its related factors in dermatosis. Our objective is to shed light on novel perspectives and therapeutic strategies for dermatosis, enhancing the understanding of this under-researched area through this comprehensive review.
Collapse
Affiliation(s)
- Min Li
- Clinical School of Medicine, Jiangxi University of Chinese Medicine, Nan Chang, People's Republic of China
| | - Jian Gong
- Department of Integrated Traditional Chinese and Western Medicine of Dermatology, Dermatology Hospital of Jiangxi Province, Nanchang, Jiangxi, People's Republic of China
- Jiangxi Provincial Clinical Research Center for Skin Diseases, Nanchang, Jiangxi, People's Republic of China
| | - Qiao Liu
- Clinical School of Medicine, Jiangxi University of Chinese Medicine, Nan Chang, People's Republic of China
| | - Weiwei Wu
- Department of Plastic and Dermatological Surgery, The Fifth People's Hospital of Hainan Province, Haikou, Hainan, People's Republic of China
| |
Collapse
|
29
|
Hua HK, Zhu HM, Zhang ZG. Clinical significance of downregulated NISCH expression in skin cutaneous melanoma: Modulation of tumor cell invasion, migration, and EMT via PAK1 inhibition. Tissue Cell 2024; 88:102399. [PMID: 38723330 DOI: 10.1016/j.tice.2024.102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 06/17/2024]
Abstract
OBJECTIVE This study aimed to investigate the expression and functional role of NISCH in skin cutaneous melanoma (SKCM), exploring its association with clinical characteristics and its potential impact on human skin melanoma cell behavior. METHODS The research assessed differential NISCH expression in SKCM tissues using the GEPIA (Gene Expression Profiling Interactive Analysis) database and validated these findings through immunohistochemical staining of 45 clinical samples. To affirm NISCH expression at the cellular level, three human skin melanoma cell lines (RPMI-7951, A375, MEL-5), and the human normal skin cell line HEMa underwent quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blotting. Transwell experiments evaluated the migration and invasion capabilities of RPMI-7951 and A375 cells post-transduction with NISCH or PAK1 lentiviral activation particles. Additionally, qRT-PCR analysis of epithelial-mesenchymal transition (EMT)-related gene expression (Vimentin, E-cadherin, N-cadherin) was conducted in A375 and RPMI-7951 cells. RESULTS SKCM tissues exhibited significantly reduced NISCH expression compared to normal tissues. Immunohistochemical analysis revealed predominant nuclear localization of NISCH in melanoma cells, with reduced expression significantly correlating with sex, advanced stage, and lymph node metastasis. Melanoma cell lines displayed lower NISCH expression levels compared to normal skin cells. Functional experiments showcased that NISCH overexpression suppressed p-PAK1/PAK1, while PAK1 upregulation notably increased melanoma cell migration, invasion, and induced EMT. Remarkably, NISCH overexpression counteracted PAK1-induced effects on EMT, migration, and invasion in melanoma cells. CONCLUSION NISCH may significantly influence the aggressive behavior of SKCM cells via the PAK1 pathway, making it a potential therapeutic target for managing melanoma metastasis.
Collapse
Affiliation(s)
- Huai-Kang Hua
- Plastic and Reconstructive Surgery, Lishui People' s Hospital, Lishui, Zhejiang 323000, China
| | - Hong-Mei Zhu
- General practice, Xin Bi Community Health Center, Lishui, Zhejiang 321403, China
| | - Zhen-Guo Zhang
- Plastic and Reconstructive Surgery, Lishui People' s Hospital, Lishui, Zhejiang 323000, China.
| |
Collapse
|
30
|
Zhang M, Ju Y, Xue L, Zhao X, Xu X, Wu G, Bo H, Qin Z. Integration of single-cell and bulk RNA sequencing data reveals that CYTOR is a potential prognostic and immunotherapeutic response marker for skin cutaneous melanoma. J Cancer 2024; 15:3890-3902. [PMID: 38911384 PMCID: PMC11190755 DOI: 10.7150/jca.94823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/12/2024] [Indexed: 06/25/2024] Open
Abstract
Skin cutaneous melanoma (SKCM) is a highly malignant tumor that is prone to immune escape and distant metastasis. Immunotherapy is considered to be the best treatment for patients with SKCM. However, not all patients benefit from it. We observed a significant differential expression of the lncRNA CYTOR in patients with SKCM based on single-cell and bulk RNA sequencing data mining results. The results showed that compared to normal tissue lncRNA CYTOR expression was significantly upregulated in SKCM tissue. Subsequently, we validated this finding in clinical samples, and we also found that the expression of lncRNA CYTOR in SKCM was higher as it progressed. lncRNA CYTOR was differentially expressed in patients who responded to immunotherapy, suggesting that it may serve as a biomarker to predict the efficacy of SKCM immunotherapy. In-depth analysis revealed that lncRNA CYTOR expression was strongly correlated with immune cell infiltration, immune response, and immune checkpoint expression. Meanwhile, our experiments revealed that CYTOR affects SKCM cell invasion and clone formation and is associated with the activation of the EMT pathway. In summary, our findings illustrate, for the first time, the value of CYTOR as a potential prognostic and immunotherapeutic response marker in SKCM.
Collapse
Affiliation(s)
- Ming Zhang
- The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 220005, China
| | - Yikun Ju
- Department of Burn and Plastic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lei Xue
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Xueheng Zhao
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410006, China
| | - Xuezheng Xu
- Department of Orthopaedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Geng Wu
- The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 220005, China
| | - Hao Bo
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410006, China
| | - Zailong Qin
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Genetic and Metabolic Central Laboratory, Guangxi Clinical Research Center for Pediatric Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China
| |
Collapse
|
31
|
Wu LY, Park SH, Jakobsson H, Shackleton M, Möller A. Immune Regulation and Immune Therapy in Melanoma: Review with Emphasis on CD155 Signalling. Cancers (Basel) 2024; 16:1950. [PMID: 38893071 PMCID: PMC11171058 DOI: 10.3390/cancers16111950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Melanoma is commonly diagnosed in a younger population than most other solid malignancies and, in Australia and most of the world, is the leading cause of skin-cancer-related death. Melanoma is a cancer type with high immunogenicity; thus, immunotherapies are used as first-line treatment for advanced melanoma patients. Although immunotherapies are working well, not all the patients are benefitting from them. A lack of a comprehensive understanding of immune regulation in the melanoma tumour microenvironment is a major challenge of patient stratification. Overexpression of CD155 has been reported as a key factor in melanoma immune regulation for the development of therapy resistance. A more thorough understanding of the actions of current immunotherapy strategies, their effects on immune cell subsets, and the roles that CD155 plays are essential for a rational design of novel targets of anti-cancer immunotherapies. In this review, we comprehensively discuss current anti-melanoma immunotherapy strategies and the immune response contribution of different cell lineages, including tumour endothelial cells, myeloid-derived suppressor cells, cytotoxic T cells, cancer-associated fibroblast, and nature killer cells. Finally, we explore the impact of CD155 and its receptors DNAM-1, TIGIT, and CD96 on immune cells, especially in the context of the melanoma tumour microenvironment and anti-cancer immunotherapies.
Collapse
Affiliation(s)
- Li-Ying Wu
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- JC STEM Lab, Department of Otorhinolaryngology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Su-Ho Park
- JC STEM Lab, Department of Otorhinolaryngology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haakan Jakobsson
- Department of Medical Oncology, Paula Fox Melanoma and Cancer Centre, Alfred Health, Melbourne, VIC 3004, Australia;
| | - Mark Shackleton
- Department of Medical Oncology, Paula Fox Melanoma and Cancer Centre, Alfred Health, Melbourne, VIC 3004, Australia;
- School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Andreas Möller
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- JC STEM Lab, Department of Otorhinolaryngology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
32
|
Xia Q, Ma Q, Zhu J, Gu L, Zhou F. Prognostic factors in postoperative patients with cutaneous melanoma: a systematic review and meta-analysis. Am J Cancer Res 2024; 14:1947-1956. [PMID: 38859868 PMCID: PMC11162687 DOI: 10.62347/sqzt7285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/18/2024] [Indexed: 06/12/2024] Open
Abstract
Cutaneous melanoma is a prevalent tumor associated with a poor prognosis. This systematic review and meta-analysis aimed to identify and evaluate prognostic factors for patients with cutaneous melanoma following surgery, thereby providing crucial insights for enhancing patient outcomes. We searched PubMed, Embase, Cochrane Library, CINAHL, and Web of Science for studies on postoperative prognostic factors of cutaneous melanoma up to March 2024. Literature screening, data extraction, and quality assessment were performed, followed by meta-analysis using RevMan 5.3 software. Trial Sequential Analysis (TSA) was conducted with Stata 17 software to verify the robustness of the findings. Eleven studies encompassing 27,352 patients were included. The meta-analysis identified several prognostic factors impacting disease-specific survival post-surgery: age over 50 years (HR=1.05, 95% CI: 1.02-1.08), female gender (HR=0.71, 95% CI: 0.57-0.87), Breslow thickness greater than 2 mm (HR=1.11, 95% CI: 1.06-1.17), presence of ulceration (HR=2.06, 95% CI: 1.63-2.60), and positive sentinel lymph node (HR=3.03, 95% CI: 2.50-3.66). TSA confirmed the adequacy of the sample size. Aggressive treatment strategies are recommended for patients exhibiting these characteristics to improve prognosis and extend 5-year survival rates.
Collapse
Affiliation(s)
- Qi Xia
- Department of PICC, Day Chemotherapy Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of ChinaChengdu 610072, Sichuan, China
| | - Qinghua Ma
- Department of Nursing, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of ChinaChengdu 610072, Sichuan, China
| | - Jiuqun Zhu
- Department of Pharmacy, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of ChinaChengdu 610072, Sichuan, China
| | - Lu Gu
- Department of Radiation, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of ChinaChengdu 610072, Sichuan, China
| | - Fengling Zhou
- Department of Pediatrics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of ChinaChengdu 610072, Sichuan, China
| |
Collapse
|
33
|
Contel IJ, Fonseca-Alves CE, Ferrari HF, Laufer-Amorim R, Xavier-Júnior JCC. Review of the comparative pathological and immunohistochemical features of human and canine cutaneous melanocytic neoplasms. J Comp Pathol 2024; 211:26-35. [PMID: 38761560 DOI: 10.1016/j.jcpa.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/10/2024] [Accepted: 04/14/2024] [Indexed: 05/20/2024]
Abstract
Melanocytic neoplasms originate from melanocytes and melanoma, the malignant form, is a common canine neoplasm and the most aggressive human skin cancer. Despite many similarities between these neoplasms in both species, only a limited number of studies have approached these entities in a comparative manner. Therefore, this review compares benign and malignant melanocytic neoplasms in dogs and humans, exclusively those arising in the haired skin, with regard to their clinicopathological, immunohistochemical and molecular aspects. Shared features include spontaneous occurrence, macroscopic features and microscopic findings when comparing human skin melanoma in the advanced/invasive stage and canine cutaneous melanoma, immunohistochemical markers and several histopathological prognostic factors. Differences include the apparent absence of active mutations in the BRAF gene in canine cutaneous melanoma and less aggressive clinical behaviour in dogs than in humans. Further studies are required to elucidate the aetiology and genetic development pathways of canine cutaneous melanocytic neoplasms. Evaluation of the applicability of histopathological prognostic parameters commonly used in humans for dogs are also needed. The similarities between the species and the recent findings regarding genetic mutations in canine cutaneous melanomas suggest the potential utility of dogs as a natural model for human melanomas that are not related to ultraviolet radiation.
Collapse
Affiliation(s)
- Isabeli J Contel
- Department of Pathology, Botucatu Medical School, São Paulo State University, Av. Prof. Mário R. Guimarães Montenegro, s/n, Campus Botucatu, 18618-687, Botucatu, SP, Brazil
| | - Carlos E Fonseca-Alves
- Institute of Health Sciences, Paulista University, Rua Luiz Levorato, 140, Jardim Marabá, 17048-290, Bauru, SP, Brazil
| | - Heitor F Ferrari
- University Center of Adamantina, Rua Nove de Julho, 730, Centro, 17800-057, Adamantina, SP, Brazil
| | - Renee Laufer-Amorim
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University, Rua Prof. Doutor Walter Mauricio Correa, s/n, Campus de Botucatu, 18618-681, Botucatu, SP, Brazil
| | - José C C Xavier-Júnior
- Department of Pathology, Botucatu Medical School, São Paulo State University, Av. Prof. Mário R. Guimarães Montenegro, s/n, Campus Botucatu, 18618-687, Botucatu, SP, Brazil; Salesian Catholic University Center Auxilium, Medical School, Rod. Sen. Teotônio Vilela, 3821, Jardim Alvorada, 16016-500, Araçatuba, SP, Brazil.
| |
Collapse
|
34
|
Zhang X, Zhang M, Zhang Z, Zhou S. Salidroside induces mitochondrial dysfunction and ferroptosis to inhibit melanoma progression through reactive oxygen species production. Exp Cell Res 2024; 438:114034. [PMID: 38588875 DOI: 10.1016/j.yexcr.2024.114034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/14/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Reactive oxygen species (ROS) induces necroptotic and ferroptosis in melanoma cells. Salidroside (SAL) regulates ROS in normal cells and inhibits melanoma cell proliferation. This study used human malignant melanoma cells treated with SAL either alone or in combination with ROS scavenger (NAC) or ferroptosis inducer (Erastin). Through cell viability, wound healing assays, and a Seahorse analyze found that SAL inhibited cell proliferation, migration, extracellular acidification rate, and oxygen consumption rate. Metabolic flux analysis, complexes I, II, III, and IV activity of the mitochondrial respiratory chain assays, mitochondrial membrane potential assay, mitochondrial ROS, and transmission electron microscope revealed that SAL induced mitochondrial dysfunction and ultrastructural damage. Assessment of malondialdehyde, lipid ROS, iron content measurement, and Western blot analysis showed that SAL activated lipid peroxidation and promoted ferroptosis in A-375 cells. These effects were abolished after NAC treatment. Additionally, SAL and Erastin both inhibited cell proliferation and promoted cell death; SAL increased the Erastin sensitivity of cells while NAC antagonized it. In xenograft mice, SAL inhibited melanoma growth and promoted ROS-dependent ferroptosis. SAL induced mitochondrial dysfunction and ferroptosis to block melanoma progression through ROS production, which offers a scientific foundation for conducting SAL pharmacological research in the management of melanoma.
Collapse
Affiliation(s)
- Xianqi Zhang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China.
| | - Mengdi Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi Province, China.
| | - Ziyan Zhang
- Department of Dermatology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.
| | - Shengbo Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
35
|
Karaja SA, Halloum MA, Mansour SY, Almasri AA. Unusual location of subungual amelanotic melanoma in 39-year-old patient: a rare case report. Ann Med Surg (Lond) 2024; 86:2314-2317. [PMID: 38576910 PMCID: PMC10990321 DOI: 10.1097/ms9.0000000000001860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/13/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction and importance Melanoma represents only 1% of all skin cancers. Acral lentigious melanoma (ALM) which usually arises from feet, is the rarest main subtype of melanoma. Subungual melanoma (SUM) is a rare variant of ALM. Amelanotic melanoma (AM) is found only in 4-27.5% of melanomas, and the mean age for patients affected by AM exceeds 50 years. Late diagnosing leads to unfavourable prognosis. Case presentation The authors present a case of subungual amelanotic melanoma that affected the nail unit of the right thumb which is a rare case, especially when the patient is only 39 years old. The lesion enlarged over a year and was misdiagnosed many times and treated with no response. Sentinel node biopsy was positive and the patient was moved to a specialized hospital for treatment. Clinical discussion Diagnosing subungual amelanotic melanoma is challenging, not only because it is the rarest, but also it mimics many benign and malignant neoplasms due to the lack of pigmentation, in addition to the absence of clinical diagnostic features. AM exhibits a high growth rate helping in limiting the window for early detection. Conclusions Lately diagnosed subungual amelanotic melanoma usually associates with an increased risk of metastases, So it should be considered as a cause of any non-healing lesion. Early diagnosing gives patients the best chance for survival.
Collapse
|
36
|
Xie J, Wu D, Zhang P, Zhao S, Qi M. Deciphering cutaneous melanoma prognosis through LDL metabolism: Single-cell transcriptomics analysis via 101 machine learning algorithms. Exp Dermatol 2024; 33:e15070. [PMID: 38570935 DOI: 10.1111/exd.15070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Cutaneous melanoma poses a formidable challenge within the field of oncology, marked by its aggressive nature and capacity for metastasis. Despite extensive research uncovering numerous genetic and molecular contributors to cutaneous melanoma development, there remains a critical knowledge gap concerning the role of lipids, notably low-density lipoprotein (LDL), in this lethal skin cancer. This article endeavours to bridge this knowledge gap by delving into the intricate interplay between LDL metabolism and cutaneous melanoma, shedding light on how lipids influence tumour progression, immune responses and potential therapeutic avenues. Genes associated with LDL metabolism were extracted from the GSEA database. We acquired and analysed single-cell sequencing data (GSE215120) and bulk-RNA sequencing data, including the TCGA data set, GSE19234, GSE22153 and GSE65904. Our analysis unveiled the heterogeneity of LDL across various cell types at the single-cell sequencing level. Additionally, we constructed an LDL-related signature (LRS) using machine learning algorithms, incorporating differentially expressed genes and highly correlated genes. The LRS serves as a valuable tool for assessing the prognosis, immunity and mutation status of patients with cutaneous melanoma. Furthermore, we conducted experiments on A375 and WM-115 cells to validate the function of PPP2R1A, a pivotal gene within the LRS. Our comprehensive approach, combining advanced bioinformatics analyses with an extensive review of current literature, presents compelling evidence regarding the significance of LDL within the cutaneous melanoma microenvironment.
Collapse
Affiliation(s)
- Jiaheng Xie
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Songyun Zhao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Min Qi
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
37
|
Cong L, Zhao Q, Sun H, Zhou Z, Hu Y, Li C, Hao M, Cong X. A novel long non-coding RNA SLNCR1 promotes proliferation, migration, and invasion of melanoma via transcriptionally regulating SOX5. Cell Death Discov 2024; 10:160. [PMID: 38561355 PMCID: PMC10984963 DOI: 10.1038/s41420-024-01922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Steroid receptor RNA activator (SRA)-like non-coding RNA (SLNCR1) has been implicated in various tumorigenic processes, but the precise regulatory role in melanoma progression remains uncertain. We performed a comprehensive analysis to investigate the prognostic value of SLNCR1 expression in patients with melanoma by TCGA database and melanoma tissue samples via the Kaplan-Meier method. Subsequently, we conducted qRT-PCR and Fluorescence in Situ Hybridization (FISH) assays to identify SLNCR1 expression levels and localization in tissues and cells, respectively. Loss-of-function assays utilizing shRNAs vectors were used to investigate the potential impact of SLNCR1. Our data showed that SLNCR1 is significantly up-regulated in human malignant melanoma tissues and cell lines and functions as an oncogene. Silencing of SLNCR1 suppressed melanoma cell proliferation, migration, invasion, and inhibited tumorigenesis in a mouse xenograft model. Additionally, we employed bioinformatic predictive analysis, combined with dual-luciferase reporter analysis and functional rescue assays, to elucidate the mechanistic target of the SLNCR1/SOX5 axis in melanoma. Mechanistically, we discovered that SLNCR1 promotes EMT of human melanoma by targeting SOX5, as downregulation of SLNCR1 expression leads to a decrease in SOX5 protein levels and inhibits melanoma tumorigenesis. Our research offers promising insights for more precise diagnosis and treatment of human melanoma.
Collapse
Affiliation(s)
- Lele Cong
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Qing Zhao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Hongyan Sun
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zilong Zhou
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yue Hu
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
| | - Miao Hao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| | - Xianling Cong
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
38
|
Letsoalo K, Nortje E, Patrick S, Nyakudya T, Hlophe Y. Decoding the synergistic potential of MAZ-51 and zingerone as therapy for melanoma treatment in alignment with sustainable development goals. Cell Biochem Funct 2024; 42:e3950. [PMID: 38348768 DOI: 10.1002/cbf.3950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/28/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024]
Abstract
Melanoma, an invasive class of skin cancer, originates from mutations in melanocytes, the pigment-producing cells. Globally, approximately 132,000 new cases are reported each year, and in South Africa, the incidence stands at 2.7 per 100,000 people, signifying a worrisome surge in melanoma rates. Therefore, there is a need to explore treatment modalities that will target melanoma's signalling pathways. Melanoma metastasis is aided by ligand activity of transforming growth factor-beta 1 (TGF-β1), vascular endothelial growth factor-C (VEGF-C) and C-X-C chemokine ligand 12 (CXCL12) which bind to their receptors and promote tumour cell survival, lymphangiogenesis and chemotaxis. (3-(4-dimethylaminonaphthelen-1-ylmethylene)-1,3-dihydroindol-2-one) MAZ-51 is an indolinone-based molecule that inhibits VEGF-C induced phosphorylation of vascular endothelial growth factor receptor 3 (VEGFR-3). Despite the successful use of conventional cancer therapies, patients endure adverse side effects and cancer drug resistance. Moreover, conventional therapies are toxic to the environment and caregivers. The use of medicinal plants and their phytochemical constituents in cancer treatment strategies has become more widespread because of the rise in drug resistance and the development of unfavourable side effects. Zingerone, a phytochemical derived from ginger exhibits various pharmacological properties positioning it as a promising candidate for cancer treatment. This review provides an overview of melanoma biology and the intracellular signalling pathways promoting cell survival, proliferation and adhesion. There is a need to align health and environmental objectives within sustainable development goals 3 (good health and well-being), 13 (climate action) and 15 (life on land) to promote early detection of skin cancer, enhance sun-safe practices, mitigation of environmental factors and advancing the preservation of biodiversity, including medicinal plants. Thus, this review discusses the impact of cytostatic cancer drugs on patients and the environment and examines the potential use of phytochemicals as adjuvant therapy.
Collapse
Affiliation(s)
- Kganya Letsoalo
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Evangeline Nortje
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Sean Patrick
- Environmental Chemical Pollution and Health Research Unit, University of Pretoria, Pretoria, South Africa
| | - Trevor Nyakudya
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Yvette Hlophe
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
39
|
Marrapodi R, Bellei B. The Keratinocyte in the Picture Cutaneous Melanoma Microenvironment. Cancers (Basel) 2024; 16:913. [PMID: 38473275 PMCID: PMC10930874 DOI: 10.3390/cancers16050913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Melanoma progression is a multistep evolution from a common melanocytic nevus through a radial superficial growth phase, the invasive vertical growth phase finally leading to metastatic dissemination into distant organs. Melanoma aggressiveness largely depends on the propensity to metastasize, which means the capacity to escape from the physiological microenvironment since tissue damage due to primary melanoma lesions is generally modest. Physiologically, epidermal melanocytes are attached to the basement membrane, and their adhesion/migration is under the control of surrounding keratinocytes. Thus, the epidermal compartment represents the first microenvironment responsible for melanoma spread. This complex process involves cell-cell contact and a broad range of secreted bioactive molecules. Invasion, or at the beginning of the microinvasion, implies the breakdown of the dermo-epidermal basement membrane followed by the migration of neoplastic melanocytic cells in the superficial papillary dermis. Correspondingly, several experimental evidences documented the structural and functional rearrangement of the entire tissue surrounding neoplasm that in some way reflects the atypia of tumor cells. Lastly, the microenvironment must support the proliferation and survival of melanocytes outside the normal epidermal-melanin units. This task presumably is mostly delegated to fibroblasts and ultimately to the self-autonomous capacity of melanoma cells. This review will discuss remodeling that occurs in the epidermis during melanoma formation as well as skin changes that occur independently of melanocytic hyperproliferation having possible pro-tumoral features.
Collapse
Affiliation(s)
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Via Elio Chianesi 53, 00144 Rome, Italy;
| |
Collapse
|
40
|
Jones N, Nonaka T. Circulating miRNAs as biomarkers for the diagnosis in patients with melanoma: systematic review and meta-analysis. Front Genet 2024; 15:1339357. [PMID: 38419786 PMCID: PMC10899317 DOI: 10.3389/fgene.2024.1339357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Objective: Melanoma is the most aggressive and deadly form of skin cancer, especially at later stages. There is currently no excellent diagnostic test established for the diagnosis of melanoma; however, circulating microRNAs (miRNAs) have shown some promise. We seek to conduct a systematic review and meta-analysis to establish the clinical utility of circulating miRNAs in diagnosing melanoma. Methods: PubMed, Wiley, and Web of Science were searched for studies that determined miRNA sensitivity and specificity in patients with melanoma. The included studies were assessed in Stata, and the sensitivity, specificity, summary receiver operating characteristic (SROC), positive likelihood ratio, negative likelihood ratio, and the area under the SROC curve (AUC) were calculated. Results: 9 studies with 898 melanoma patients were included in the meta-analysis. The circulating miRNAs showed high diagnostic accuracy with a sensitivity of 0.89 (p < 0.001), specificity of 0.85 (p < 0.001), diagnostic odds ratio of 45, and an area under the curve of 0.93. Conclusion: Circulating miRNAs have shown a high diagnostic power in detecting melanoma.
Collapse
Affiliation(s)
- Nicholas Jones
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Taichiro Nonaka
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, LA, United States
| |
Collapse
|
41
|
Pimenta J, Prada J, Pires I, Cotovio M. Cyclooxygenase-2 (COX-2) Expression in Equine Melanocytic Tumors. Vet Sci 2024; 11:77. [PMID: 38393095 PMCID: PMC10891553 DOI: 10.3390/vetsci11020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Equine melanocytic tumors are common and have an unusual benign behavior with low invasiveness and metastatic rates. However, tumoral mass growth is usually a concern that can have life-threatening consequences. COX-2 is related to oncogenesis, promoting neoplastic cell proliferation, invasion, and metastasis. The aim of this study was to evaluate the immunohistochemical expression of COX-2 in equine melanocytic tumors. Through extension and intensity of labeling, 39 melanocytomas and 38 melanomas were evaluated. Of the malignant tumors, 13.2% were negative and 63.2% presented a low COX-2 expression. Only 6 malignant tumors presented >50% of labeled cells, 18 malignant and 8 benign had an expression between 21 and 50%, 8 malignant and 3 benign tumors had an expression between 6 and 20%, 1 malignant tumor had an expression between 1 and 5%, and 5 malignant and 28 benign tumors had no expression. Malignant tumors showed higher COX-2 expression than did benign tumors, with statistically significant differences. The low levels of COX-2 may be one of the molecular reasons for the presence of expansive mass growth instead of the invasive pattern of other species, which is related to high COX-2 levels.
Collapse
Affiliation(s)
- José Pimenta
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- CIVG—Vasco da Gama Research Center, EUVG—Vasco da Gama University School, 3020-210 Coimbra, Portugal
| | - Justina Prada
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Isabel Pires
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Mário Cotovio
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisbon, Portugal
| |
Collapse
|
42
|
Jadav M, Solanki R, Patel S, Pooja D, Kulhari H. Development of thiolated xanthan gum-stearylamine conjugate based mucoadhesive system for the delivery of biochanin-A to melanoma cells. Int J Biol Macromol 2024; 257:128693. [PMID: 38092110 DOI: 10.1016/j.ijbiomac.2023.128693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Recently, instead of creating new active compounds, scientists have been working to increase the bioavailability and residence time of existing drugs by modifying the characteristics of the delivery systems. In the present study, a novel mucoadhesive bioconjugate (SN-XG-SH) was synthesized by functionalizing a polysaccharide xanthan gum (XG) with cysteamine hydrochloride (CYS) and a lipid stearylamine (SN). FTIR, CHNS and 1H NMR studies confirmed the successful synthesis of SN-XG-SH. Mucoadhesion of the thiolated XG was enhanced and evaluated by different methods. Disulfide bond formation between thiolated XG and skin mucus enhances mucoadhesive behavior. The mucoadhesive bioconjugate was used to prepare nanoparticles for the delivery of hydrophobic biochanin-A (Bio-A) for the treatment of melanoma. The thiolated xanthan gum nanoparticles also demonstrated high drug entrapment efficiency, sustained drug release, and high storage stability. The drug loaded nanoparticles (Bio-A@TXNPs) significantly improved the cytotoxicity of Bio-A against human epidermoid cancer cells (A431 cells) by inducing apoptosis and changing mitochondrial membrane potential. In conclusion, thiolation of XG improves its mucoadhesive properties and prolongs the release of Bio-A. Thus, thiolated XG conjugate has a high potential for use as a bioadhesive agent in controlled and localised delivery of drugs in different skin diseases including melanoma.
Collapse
Affiliation(s)
- Mahima Jadav
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Deep Pooja
- School of Pharmacy, National Forensic Science University, Gandhinagar, Gujarat 382007, India.
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India.
| |
Collapse
|
43
|
Caraban BM, Aschie M, Deacu M, Cozaru GC, Pundiche MB, Orasanu CI, Voda RI. A Narrative Review of Current Knowledge on Cutaneous Melanoma. Clin Pract 2024; 14:214-241. [PMID: 38391404 PMCID: PMC10888040 DOI: 10.3390/clinpract14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Cutaneous melanoma is a public health problem. Efforts to reduce its incidence have failed, as it continues to increase. In recent years, many risk factors have been identified. Numerous diagnostic systems exist that greatly assist in early clinical diagnosis. The histopathological aspect illustrates the grim nature of these cancers. Currently, pathogenic pathways and the tumor microclimate are key to the development of therapeutic methods. Revolutionary therapies like targeted therapy and immune checkpoint inhibitors are starting to replace traditional therapeutic methods. Targeted therapy aims at a specific molecule in the pathogenic chain to block it, stopping cell growth and dissemination. The main function of immune checkpoint inhibitors is to boost cellular immunity in order to combat cancer cells. Unfortunately, these therapies have different rates of effectiveness and side effects, and cannot be applied to all patients. These shortcomings are the basis of increased incidence and mortality rates. This study covers all stages of the evolutionary sequence of melanoma. With all these data in front of us, we see the need for new research efforts directed at therapies that will bring greater benefits in terms of patient survival and prognosis, with fewer adverse effects.
Collapse
Affiliation(s)
- Bogdan Marian Caraban
- Clinical Department of Plastic Surgery, Microsurgery-Reconstructive, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
| | - Mariana Aschie
- Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
- Clinical Service of Pathology, Departments of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Academy of Medical Sciences of Romania, 030171 Bucharest, Romania
- The Romanian Academy of Scientists, 030167 Bucharest, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), "Ovidius" University of Constanta, 900591 Constanta, Romania
| | - Mariana Deacu
- Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
- Clinical Service of Pathology, Departments of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
| | - Georgeta Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), "Ovidius" University of Constanta, 900591 Constanta, Romania
- Clinical Service of Pathology, Departments of Genetics, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
| | - Mihaela Butcaru Pundiche
- Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
- Clinical Department of General Surgery, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
| | - Cristian Ionut Orasanu
- Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
- Clinical Service of Pathology, Departments of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), "Ovidius" University of Constanta, 900591 Constanta, Romania
| | - Raluca Ioana Voda
- Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
- Clinical Service of Pathology, Departments of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), "Ovidius" University of Constanta, 900591 Constanta, Romania
| |
Collapse
|
44
|
Zakariya F, Salem FK, Alamrain AA, Sanker V, Abdelazeem ZG, Hosameldin M, Tan JK, Howard R, Huang H, Awuah WA. Refining mutanome-based individualised immunotherapy of melanoma using artificial intelligence. Eur J Med Res 2024; 29:25. [PMID: 38183141 PMCID: PMC10768232 DOI: 10.1186/s40001-023-01625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024] Open
Abstract
Using the particular nature of melanoma mutanomes to develop medicines that activate the immune system against specific mutations is a game changer in immunotherapy individualisation. It offers a viable solution to the recent rise in resistance to accessible immunotherapy alternatives, with some patients demonstrating innate resistance to these drugs despite past sensitisation to these agents. However, various obstacles stand in the way of this method, most notably the practicality of sequencing each patient's mutanome, selecting immunotherapy targets, and manufacturing specific medications on a large scale. With the robustness and advancement in research techniques, artificial intelligence (AI) is a potential tool that can help refine the mutanome-based immunotherapy for melanoma. Mutanome-based techniques are being employed in the development of immune-stimulating vaccines, improving current options such as adoptive cell treatment, and simplifying immunotherapy responses. Although the use of AI in these approaches is limited by data paucity, cost implications, flaws in AI inference capabilities, and the incapacity of AI to apply data to a broad population, its potential for improving immunotherapy is limitless. Thus, in-depth research on how AI might help the individualisation of immunotherapy utilising knowledge of mutanomes is critical, and this should be at the forefront of melanoma management.
Collapse
Affiliation(s)
- Farida Zakariya
- Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Nigeria
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Fatma K Salem
- Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | | | - Vivek Sanker
- Research Assistant, Dept. Of Neurosurgery, Trivandrum Medical College, Trivandrum, India
| | - Zainab G Abdelazeem
- Division of Molecular Biology, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | | | - Rachel Howard
- School of Clinical Medicine, University of Cambridge, Cambridge, England
| | - Helen Huang
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Wireko Andrew Awuah
- Medical Institute, Sumy State University, Zamonstanksya 7, Sumy, 40007, Ukraine.
| |
Collapse
|
45
|
Lombrea A, Watz CG, Bora L, Dehelean CA, Diaconeasa Z, Dinu S, Turks M, Lugiņina J, Peipiņš U, Danciu C. Enhanced Cytotoxicity and Antimelanoma Activity of Novel Semisynthetic Derivatives of Betulinic Acid with Indole Conjugation. PLANTS (BASEL, SWITZERLAND) 2023; 13:36. [PMID: 38202344 PMCID: PMC10780819 DOI: 10.3390/plants13010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
The prevalence and severity of skin cancer, specifically malignant melanoma, among Caucasians remains a significant concern. Natural compounds from plants have long been explored as potential anticancer agents. Betulinic acid (BI) has shown promise in its therapeutic properties, including its anticancer effects. However, its limited bioavailability has hindered its medicinal applications. To address this issue, two recently synthesized semisynthetic derivatives, N-(2,3-indolo-betulinoyl)diglycylglycine (BA1) and N-(2,3-indolo-betulinoyl)glycylglycine (BA2), were compared with previously reported compounds N-(2,3-indolo-betulinoyl)glycine (BA3), 2,3-indolo-betulinic acid (BA4), and BI. These compounds were evaluated for their effects on murine melanoma cells (B164A5) using various in vitro assays. The introduction of an indole framework at the C2 position of BI resulted in an increased cytotoxicity. Furthermore, the cytotoxicity of compound BA4 was enhanced by conjugating its carboxylic group with an amino acid residue. BA2 and BA3, with glycine and glycylglycine residues at C28, exhibited approximately 2.20-fold higher inhibitory activity compared to BA4. The safety assessment of the compounds on human keratinocytes (HaCaT) has revealed that concentrations up to 10 µM slightly reduced cell viability, while concentrations of 75 µM resulted in lower cell viability rates. LDH leakage assays confirmed cell membrane damage in B164A5 cells when exposed to the tested compounds. BA2 and BA3 exhibited the highest LDH release, indicating their strong cytotoxicity. The NR assay revealed dose-dependent lysosome disruption for BI and 2,3-indolo-betulinic acid derivatives, with BA1, BA2, and BA3 showing the most cytotoxic effects. Scratch assays demonstrated concentration-dependent inhibition of cell migration, with BA2 and BA3 being the most effective. Hoechst 3342 staining revealed that BA2 induced apoptosis, while BA3 induced necrosis at lower concentrations, confirming their anti-melanoma properties. In conclusion, the semisynthetic derivatives of BI, particularly BA2 and BA3, show promise as potential candidates for further research in developing effective anti-cancer therapies.
Collapse
Affiliation(s)
- Adelina Lombrea
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (L.B.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Claudia Geanina Watz
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
| | - Larisa Bora
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (L.B.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Cristina Adriana Dehelean
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Zorita Diaconeasa
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 9 No., Revolutiei Bv., 300041 Timisoara, Romania;
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 9 No., Revolutiei Bv., 300041 Timisoara, Romania
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (M.T.); (J.L.); (U.P.)
| | - Jevgeņija Lugiņina
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (M.T.); (J.L.); (U.P.)
| | - Uldis Peipiņš
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (M.T.); (J.L.); (U.P.)
- Nature Science Technologies Ltd., Rupnicu Str. 4, LV-2114 Olaine, Latvia
| | - Corina Danciu
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (L.B.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
46
|
Zheng S, Yu H, Zheng X, Wu UT, Ming WK, Huang H, Song J, Zhang X, Lyu J, Deng L. Analysis and prediction of 5-year survival in patients with cutaneous melanoma: a model-based period analysis. Front Endocrinol (Lausanne) 2023; 14:1238086. [PMID: 38125787 PMCID: PMC10731280 DOI: 10.3389/fendo.2023.1238086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023] Open
Abstract
Background The survival and prognosis of patients are significantly threatened by cutaneous melanoma (CM), which is a highly aggressive disease. It is therefore crucial to determine the most recent survival rate of CM. This study used population-based cancer registry data to examine the 5-year relative survival rate of CM in the US. Methods Period analysis was used to assess the relative survival rate and trends of patients with CM in the Surveillance, Epidemiology, and End Results (SEER) database during 2004-2018. And based on the data stratified by age, gender, race and subtype in the SEER database, a generalized linear model was 12established to predict the 5-year relative survival rate of CM patients from 2019 to 2023. Results The 5-year relative survival increased to various degrees for both total CM and CM subtypes during the observation period. The improvement was greatest for amelanotic melanoma, increasing from 69.0% to 81.5%. The 5-year overall relative survival rates of CM were 92.9%, 93.5%, and 95.6% for 2004-2008, 2009-2013, and 2014-2018, respectively. Females had a marginally higher survival rate than males for almost all subtypes, older people had lower survival rates than younger people, white patients had higher survival rates than nonwhite ones, and urban locations had higher rates of survival from CM than rural locations did. The survival rate of CM was significantly lower for distant metastasis. Conclusion The survival rate of patients with CM gradually improved overall during 2004-2018. With the predicted survival rate of 96.7% for 2019-2023, this trend will still be present. Assessing the changes experienced by patients with CM over the previous 15 years can help in predicting the future course of CM. It also provides a scientific foundation that associated departments can use to develop efficient tumor prevention and control strategies.
Collapse
Affiliation(s)
- Suzheng Zheng
- Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, Guangzhou, China
| | - Hai Yu
- Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, Guangzhou, China
| | - Xinkai Zheng
- Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, Guangzhou, China
| | - U Tim Wu
- Meng Yi Centre Limited, Macao, Macao SAR, China
| | - Wai-kit Ming
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hui Huang
- Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, Guangzhou, China
| | - Jiaxin Song
- Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, Guangzhou, China
| | - Xiaoxi Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, Guangzhou, China
| | - Jun Lyu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| | - Liehua Deng
- Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, Guangzhou, China
- Department of Dermatology, The Fifth Affiliated Hospital of Jinan University, Heyuan, China
| |
Collapse
|
47
|
Zhong S, Lan L, Wen Y. Evaluating the effect of childhood sunburn on the risk of cutaneous melanoma through Mendelian randomization. Cancer Sci 2023; 114:4706-4716. [PMID: 37752763 PMCID: PMC10728005 DOI: 10.1111/cas.15974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
Despite numerous observational studies indicating an increased risk of cutaneous melanoma (CM) due to childhood sunburn, no studies have established a definitive cause-and-effect relationship. Therefore, our objective was to employ a Mendelian randomization (MR) design to explore a possible causal association between childhood sunburn and the risk of CM. To investigate the causal relationship between childhood sunburn and CM, we used large-scale genetic summary-level data from genome-wide association studies (GWAS), including childhood sunburn (n = 346,955) and CM (n = 262,288), building upon previous observational studies. In the analysis, we mainly used the inverse-variance weighted (IVW) method of the random effects model, supplemented by the weighted median method and MR-Egger method. The results of the IVW method demonstrated that genetically predicted childhood sunburn was significantly associated with higher odds of CM, with an odds ratio (OR) of 2.418 (95%CI, 1.426-4.099; p = .001). The weighted median method and MR-Egger regression also demonstrated directionally similar results (both p < .05). Furthermore, both the funnel plot and the MR-Egger intercepts showed the absence of directional pleiotropy between childhood sunburn and CM. Our study offers potential evidence linking genetically predicted childhood sunburn with CM, underscoring the need for individuals with a history of childhood sunburn to be extra vigilant regarding the occurrence of CM.
Collapse
Affiliation(s)
- Shengdong Zhong
- Department of Plastic surgeryLongyan First Affiliated Hospital of Fujian Medical UniversityLongyanChina
| | - Liting Lan
- Clinical Research CenterThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
- Clinical Research CenterLonggang Maternity and Child Clinical Institute of Shantou University Medical CollegeShenzhenChina
| | - Yuqing Wen
- Department of Plastic surgeryLongyan First Affiliated Hospital of Fujian Medical UniversityLongyanChina
| |
Collapse
|
48
|
Zhu Y, Song B, Yang Z, Peng Y, Cui Z, Chen L, Song B. Integrative lactylation and tumor microenvironment signature as prognostic and therapeutic biomarkers in skin cutaneous melanoma. J Cancer Res Clin Oncol 2023; 149:17897-17919. [PMID: 37955686 DOI: 10.1007/s00432-023-05483-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND The incidence of skin cutaneous melanoma (SKCM), one of the most aggressive and lethal skin tumors, is increasing worldwide. However, for advanced SKCM, we still lack an accurate and valid way to predict its prognosis, as well as novel theories to guide the planning of treatment options for SKCM patients. Lactylation (LAC), a novel post-translational modification of histones, has been shown to promote tumor growth and inhibit the antitumor response of the tumor microenvironment (TME) in a variety of ways. We hope that this study will provide new ideas for treatment options for SKCM patients, as well as research on the molecular mechanisms of SKCM pathogenesis and development. METHODS At the level of the RNA sequencing set (TCGA, GTEx), we used differential expression analysis, LASSO regression analysis, and multifactor Cox regression analysis to screen for prognosis-related genes and calculate the corresponding LAC scores. The content of TME cells in the tumor tissue was calculated using the CIBERSORT algorithm, and the TME score was calculated based on its results. Finally, the LAC-TME classifier was established and further analyzed based on the two scores, including the construction of a prognostic model, analysis of clinicopathological characteristics, and correlation analysis of tumor mutation burden (TMB) and immunotherapy. Based on single-cell RNA sequencing data, this study analyzed the cellular composition in SKCM tissues and explored the role of LAC scores in intercellular communication. To validate the functionality of the pivotal gene CLPB in the model, cellular experiments were ultimately executed. RESULTS We screened a total of six prognosis-related genes (NDUFA10, NDUFA13, CLPB, RRM2B, HPDL, NARS2) and 7 TME cells with good prognosis. According to Kaplan-Meier survival analysis, we found that the LAClow/TMEhigh group had the highest overall survival (OS) and the LAChigh/TMElow group had the lowest OS (p value < 0.05). In further analysis of immune infiltration, tumor microenvironment (TME), functional enrichment, tumor mutational load and immunotherapy, we found that immunotherapy was more appropriate in the LAClow/TMEhigh group. Moreover, the cellular assays exhibited substantial reductions in proliferation, migration, and invasive potentials of melanoma cells in both A375 and A2058 cell lines upon CLPB knockdown. CONCLUSIONS The prognostic model using the combined LAC score and TME score was able to predict the prognosis of SKCM patients more consistently, and the LAC-TME classifier was able to significantly differentiate the prognosis of SKCM patients across multiple clinicopathological features. The LAC-TME classifier has an important role in the development of immunotherapy regimens for SKCM patients.
Collapse
Affiliation(s)
- Yuhan Zhu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Chanle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Binyu Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Chanle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Ziyi Yang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Chanle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Yixuan Peng
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Chanle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Zhiwei Cui
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Chanle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Lin Chen
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Chanle West Road, Xi'an, 710032, Shaanxi Province, China.
| | - Baoqiang Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Chanle West Road, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
49
|
Hibler W, Merlino G, Yu Y. CAR NK Cell Therapy for the Treatment of Metastatic Melanoma: Potential & Prospects. Cells 2023; 12:2750. [PMID: 38067178 PMCID: PMC10706172 DOI: 10.3390/cells12232750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Melanoma is among the most lethal forms of cancer, accounting for 80% of deaths despite comprising just 5% of skin cancer cases. Treatment options remain limited due to the genetic and epigenetic mechanisms associated with melanoma heterogeneity that underlie the rapid development of secondary drug resistance. For this reason, the development of novel treatments remains paramount to the improvement of patient outcomes. Although the advent of chimeric antigen receptor-expressing T (CAR-T) cell immunotherapies has led to many clinical successes for hematological malignancies, these treatments are limited in their utility by their immune-induced side effects and a high risk of systemic toxicities. CAR natural killer (CAR-NK) cell immunotherapies are a particularly promising alternative to CAR-T cell immunotherapies, as they offer a more favorable safety profile and have the capacity for fine-tuned cytotoxic activity. In this review, the discussion of the prospects and potential of CAR-NK cell immunotherapies touches upon the clinical contexts of melanoma, the immunobiology of NK cells, the immunosuppressive barriers preventing endogenous immune cells from eliminating tumors, and the structure and design of chimeric antigen receptors, then finishes with a series of proposed design innovations that could improve the efficacy CAR-NK cell immunotherapies in future studies.
Collapse
Affiliation(s)
| | | | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
50
|
Gaballo A, Ragusa A, Nobile C, Gallo N, Salvatore L, Piccirillo C, Nito A, Caputo A, Guida G, Zito A, Filotico R, Quarta A. Enhanced Delivery of 5-Aminolevulinic Acid by Lecithin Invasomes in 3D Melanoma Cancer Model. Mol Pharm 2023; 20:5593-5606. [PMID: 37755323 PMCID: PMC10630953 DOI: 10.1021/acs.molpharmaceut.3c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
Photodynamic therapy (PDT) is a noninvasive therapeutic approach for the treatment of skin cancer and diseases. 5-Aminolevulinic acid is a prodrug clinically approved for PDT. Once internalized by cancer cells, it is rapidly metabolized to the photosensitizer protoporphyrin IX, which under the proper light irradiation, stimulates the deleterious reactive oxygen species (ROS) production and leads to cell death. The high hydrophilicity of 5-aminolevulinic acid limits its capability to cross the epidermis. Lipophilic derivatives of 5-aminolevulinic acid only partly improved skin penetration, thus making its incorporation into nanocarriers necessary. Here we have developed and characterized 5-aminolevulinic acid loaded invasomes made of egg lecithin, either 1,2-dilauroyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphocholine, and the terpene limonene. The obtained invasomes are highly thermostable and display a spherical morphology with an average size of 150 nm and an encapsulation efficiency of 80%; moreover, the ex vivo epidermis diffusion tests established that nanovesicles containing the terpene led to a much higher skin penetration (up to 80% in 3 h) compared to those without limonene and to the free fluorescent tracer (less than 50%). Finally, in vitro studies with 2D and 3D human cell models of melanoma proved the biocompatibility of invasomes, the enhanced intracellular transport of 5-aminolevulinic acid, its ability to generate ROS upon irradiation, and consequently, its antiproliferative effect. A simplified scaffold-based 3D skin model containing melanoma spheroids was also prepared. Considering the results obtained, we conclude that the lecithin invasomes loaded with 5-aminolevulinic acid have a good therapeutic potential and may represent an efficient tool that can be considered a valid alternative in the topical treatment of melanoma and other skin diseases.
Collapse
Affiliation(s)
- Antonio Gaballo
- Consiglio
Nazionale delle Ricerche, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Andrea Ragusa
- Department
of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, 73100, Italy
| | - Concetta Nobile
- Consiglio
Nazionale delle Ricerche, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Nunzia Gallo
- Department
of Engineering for Innovation, University
of Salento, via Monteroni, Lecce, 73100, Italy
| | - Luca Salvatore
- Typeone
Biomaterials Srl, Muro Leccese, Lecce, 73036, Italy
| | - Clara Piccirillo
- Consiglio
Nazionale delle Ricerche, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Alessia Nito
- Consiglio
Nazionale delle Ricerche, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Annalisa Caputo
- Consiglio
Nazionale delle Ricerche, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Gabriella Guida
- Department
of Basic Medical Sciences Neurosciences and Sense Organs, University of Bari, Bari, 70124, Italy
| | - Alfredo Zito
- Pathology
Department, IRCCS Istituto Tumori “Giovanni
Paolo II”, Bari, 70124, Italy
| | - Raffaele Filotico
- Dermato-Oncology
Unit, IRCCS Istituto Tumori “Giovanni
Paolo II”, Bari, 70124, Italy
- Section
of Dermatology and Venereology, Department of Precision and Regenerative
Medicine and Ionian Area (DiMePRe-J), University
of Bari “Aldo Moro”, Bari, 70124, Italy
| | - Alessandra Quarta
- Consiglio
Nazionale delle Ricerche, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| |
Collapse
|