1
|
Vij M, Dand N, Kumar L, Choudhary N, Kumar P, Wadhwa P, Wani SUD, Shakeel F, Ali M. Novel microwave-based green approach for the synthesis of dual-loaded cyclodextrin nanosponges: Characterization, pharmacodynamics, and pharmacokinetics evaluation. GREEN PROCESSING AND SYNTHESIS 2024; 13. [DOI: 10.1515/gps-2024-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Abstract
Recently, microwave-based cyclodextrin nanosponges (CDNS) of domperidone (DOM) for their solubility and dissolution improvement have been studied. However, microwave-based CDNS for the dual-loading of cinnarizine (CIN) and DOM have not been documented. Therefore, this research concentrates explicitly on the concurrent loading of two drugs employing these nanocarriers, namely CIN and DOM, both categorized under Class II of the Biopharmaceutical Classification System. A green approach involving microwave synthesis was employed to fabricate these nanocarriers. Fourier transform infrared (FTIR) spectroscopy confirmed the formation of CDNS, while scanning electron microscopy scans illustrated their porous nature. X-ray diffraction studies established the crystalline structure of the nanocarriers. Differential scanning calorimetry and FTIR analyses corroborated the drugs’ loading and subsequent amorphization. In vitro drug release studies demonstrated an enhanced solubility of the drugs, suggesting a potential improvement in their bioavailability. The in vivo pharmacokinetic investigation emphatically substantiated this hypothesis, revealing a 4.54- and 2.90-fold increase in the bioavailability of CIN and DOM, respectively. This enhancement was further supported by the results of the pharmacodynamic study utilizing the gastrointestinal distress/pica model, which indicated a significantly reduced consumption of kaolin. Conclusively, this study affirms the adaptability of microwave-based CDNS for the concurrent loading of multiple drugs, leading to improved solubility and bioavailability.
Collapse
Affiliation(s)
- Mohit Vij
- School of Pharmaceutical Sciences, Lovely Professional University , Phagwara , Punjab, 144411 , India
- Government Pharmacy College , Seraj , Himachal Pradesh, 175035 , India
| | - Neha Dand
- Department of Pharmaceutics, Bharati Vidyapeeth’s College of Pharmacy , Navi Mumbai , 400614 , India
| | - Lalit Kumar
- GNA School of Pharmacy, GNA University , Phagwara , Punjab, 144401 , India
| | - Neeraj Choudhary
- GNA School of Pharmacy, GNA University , Phagwara , Punjab, 144401 , India
| | - Parveen Kumar
- Government Pharmacy College , Sullah, Kangra , Himachal Pradesh, 176084 , India
| | - Pankaj Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University , Phagwara , Punjab, 144411 , India
| | - Shahid Ud Din Wani
- Division of Pharmaceutics, Department of Pharmaceutical Sciences, University of Kashmir , Srinagar , 190006 , India
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University , Riyadh , 11451 , Saudi Arabia
| | - Mohammad Ali
- Department of Pharmacology, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University , B.G. Nagar, Nagamagala, Bellur , Karnataka, 571418 , India
| |
Collapse
|
2
|
Salazar Sandoval S, Díaz-Saldívar P, Araya I, Celis F, Cortés-Arriagada D, Riveros A, Rojas-Romo C, Jullian C, Silva N, Yutronic N, Kogan MJ, Jara P. Controlled Release of the Anticancer Drug Cyclophosphamide from a Superparamagnetic β-Cyclodextrin Nanosponge by Local Hyperthermia Generated by an Alternating Magnetic Field. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38640460 DOI: 10.1021/acsami.3c18038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
A β-cyclodextrin (β-CD) nanosponge (NS) was synthesized using diphenyl carbonate (DPC) as a cross-linker to encapsulate the antitumor drug cyclophosphamide (CYC), thus obtaining the NSs-CYC system. The formulation was then associated with magnetite nanoparticles (MNPs) to develop the MNPs-NSs-CYC ternary system. The formulations mentioned above were characterized to confirm the deposition of the MNPs onto the organic matrix and that the superparamagnetic nature of the MNPs was preserved upon association. The association of the MNPs with the NSs-drug complex was confirmed through field emission scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, dynamic light scattering, ζ-potential, atomic absorption spectroscopy, X-ray powder diffraction, selected area electron diffraction, and vibrating-sample magnetometer. The superparamagnetic properties of the ternary system allowed the release of CYC by utilizing magnetic hyperthermia upon the exposure of an alternating magnetic field (AMF). The drug release experiments were carried out at different frequencies and intensities of the magnetic field, complying with the "Atkinson-Brezovich criterion". The assays in AMF showed the feasibility of release by controlling hyperthermia of the drug, finding that the most efficient conditions were F = 280 kHz, H = 15 mT, and a concentration of MNPs of 5 mg/mL. CYC release was temperature-dependent, facilitated by local heat generation through magnetic hyperthermia. This phenomenon was confirmed by DFT calculations. Furthermore, the ternary systems outperformed the formulations without MNPs regarding the amount of released drug. The MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assays demonstrated that including CYC within the magnetic NS cavities reduced the effects on mitochondrial activity compared to those observed with the free drug. Finally, the magnetic hyperthermia assays showed that the tertiary system allows the generation of apoptosis in HeLa cells, demonstrating that the MNPs embedded maintain their properties to generate hyperthermia. These results suggest that using NSs associated with MNPs could be a potential tool for a controlled drug delivery in tumor therapy since the materials are efficient and potentially nontoxic.
Collapse
Affiliation(s)
- Sebastián Salazar Sandoval
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
- Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
- Facultad de Diseño, Universidad del Desarrollo, Avenida Plaza 680, Las Condes, Santiago 7610658, Chile
| | - Patricia Díaz-Saldívar
- Laboratorio de Nanomedicina y Biosensores, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Ingrid Araya
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Santiago 8370003, Chile
| | - Freddy Celis
- Laboratorio de Procesos Fotónicos y Electroquímicos, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso 2360002, Chile
| | - Diego Cortés-Arriagada
- Instituto Universitario de Investigación y Desarrollo Tecnológico, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile
| | - Ana Riveros
- Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Carlos Rojas-Romo
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Carolina Jullian
- Departamento de Química Orgánica y Fisicoquímica, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Nataly Silva
- Facultad de Diseño, Universidad del Desarrollo, Avenida Plaza 680, Las Condes, Santiago 7610658, Chile
| | - Nicolás Yutronic
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Marcelo J Kogan
- Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Paul Jara
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| |
Collapse
|
3
|
Salazar Sandoval S, Bruna T, Maldonado-Bravo F, Bolaños K, Adasme-Reyes S, Riveros A, Caro N, Yutronic N, Silva N, Kogan MJ, Jara P. β-Cyclodextrin Nanosponges Inclusion Compounds Associated with Silver Nanoparticles to Increase the Antimicrobial Activity of Quercetin. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093538. [PMID: 37176420 PMCID: PMC10179898 DOI: 10.3390/ma16093538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
This work aimed to synthesize and characterize a nanocarrier that consisted of a ternary system, namely β-cyclodextrin-based nanosponge (NS) inclusion compounds (ICs) associated with silver nanoparticles (AgNPs) to increase the antimicrobial activity of quercetin (QRC). The nanosystem was developed to overcome the therapeutical limitations of QRC. The host-guest interaction between NSs and QRC was confirmed by field emission scanning electron microscopy (FE-SEM), X-ray powder diffraction (XRPD), thermogravimetric analysis (TGA), and proton nuclear magnetic resonance (1H-NMR). Moreover, the association of AgNPs with the NS-QRC was characterized using FE-SEM, energy-dispersive spectroscopy (EDS), transmission electron microscopy (TEM), dynamic light scattering (DLS), ζ-potential, and UV-Vis. Finally, the antimicrobial activity of the novel formulations was tested, which depicted that the complexation of QRC inside the supramolecular interstices of NSs increases the inhibitory effects against Escherichia coli ATCC25922, as compared to that observed in the free QRC. In addition, at the same concentrations used to generate an antibacterial effect, the NS-QRC system with AgNPs does not affect the metabolic activity of GES-1 cells. Therefore, these results suggest that the use of NSs associated with AgNPs resulted in an efficient strategy to improve the physicochemical features of QRC.
Collapse
Affiliation(s)
- Sebastián Salazar Sandoval
- Departmento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7610658, Chile
- Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
- Facultad de Diseño, Universidad del Desarrollo, Avenida Plaza 680, Las Condes, Santiago 7610658, Chile
| | - Tamara Bruna
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avenida Ejército 146, Santiago 8320000, Chile
| | - Francisca Maldonado-Bravo
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avenida Ejército 146, Santiago 8320000, Chile
| | - Karen Bolaños
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Santiago 8380453, Chile
| | - Sofía Adasme-Reyes
- Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Ana Riveros
- Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Nelson Caro
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avenida Ejército 146, Santiago 8320000, Chile
| | - Nicolás Yutronic
- Departmento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7610658, Chile
| | - Nataly Silva
- Facultad de Diseño, Universidad del Desarrollo, Avenida Plaza 680, Las Condes, Santiago 7610658, Chile
| | - Marcelo J Kogan
- Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Paul Jara
- Departmento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7610658, Chile
| |
Collapse
|
4
|
Sakai S, Hirano Y, Kobayashi Y, Arai N. Effect of temperature on the structure and drug-release behaviour of inclusion complex of β-cyclodextrin with cyclophosphamide: a molecular dynamics study. SOFT MATTER 2023; 19:2902-2907. [PMID: 36987748 DOI: 10.1039/d2sm01542k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cyclodextrins (CDs) are suitable drug carriers because of their doughnut-shaped cavities with hydrophilic outer and hydrophobic inner surfaces. Temperature-responsive CD-based drug carriers are expected to be one of the most promising candidates for drug delivery systems. In this study, we performed molecular dynamics simulations of the inclusion complex of β-CD with cyclophosphamide (CP) at temperatures from 300 K to 400 K to investigate the temperature dependency of the release behaviour of CP and structural changes of β-CD in an aqueous solution. We analysed the distance between the centres of mass of β-CD and CP and the radius of gyration of β-CD. The CP molecule was released from the β-CD cavity at 400 K, whereas two different inclusion complexes, partially and completely, were observed at T < 400 K. β-CD encapsulating a CP molecule had a more spherical shape and rigidity than β-CD without a CP, and the rigidity of their inclusion complex decreased with increasing temperature. Our findings provide fundamental insights into the behaviours of the β-CD/CP complex and drug release at the molecular level and can facilitate the development of new temperature-responsive drug delivery systems with CD nanocarriers triggered by localised temperature increases using focused ultrasound.
Collapse
Affiliation(s)
- Seiga Sakai
- Department of Mechanical Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan.
| | - Yoshinori Hirano
- Department of Mechanical Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan.
| | - Yusei Kobayashi
- Department of Mechanical Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan.
| | - Noriyoshi Arai
- Department of Mechanical Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan.
| |
Collapse
|
5
|
Aldawsari MF, Alhowail AH, Anwer MK, Ahmed MM. Development of Diphenyl carbonate-Crosslinked Cyclodextrin Based Nanosponges for Oral Delivery of Baricitinib: Formulation, Characterization and Pharmacokinetic Studies. Int J Nanomedicine 2023; 18:2239-2251. [PMID: 37139486 PMCID: PMC10150753 DOI: 10.2147/ijn.s405534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
Background The aim of the present investigation is to prepare baricitinib (BAR)-loaded diphenyl carbonate (DPC) β-cyclodextrin (βCD) based nanosponges (NSs) to improve the oral bioavailability. Methods BAR-loaded DPC-crosslinked βCD NSs (B-DCNs) were prepared prepared by varying the molar ratio of βCD: DPC (1:1.5 to 1:6). The developed B-DCNs loaded with BAR were characterized for particle size, polydispersity index (PDI), zeta potential (ZP), % yield and percent entrapment efficiency (%EE). Results Based on the above evaluations, BAR-loaded DPC βCD NSs (B-CDN3) was optimized with mean size (345.8±4.7 nm), PDI (0.335±0.005), Yield (91.46±7.4%) and EE (79.1±1.6%). The optimized NSs (B-CDN3) was further confirmed by SEM, spectral analysis, BET analysis, in vitro release and pharmacokinetic studies. The optimized NSs (B-CDN3) showed 2.13 times enhancement in bioavailability in comparison to pure BAR suspension. Conclusion It could be anticipated that NSs loaded with BAR as a promising tool for release and bioavailability for the treatment of rheumatic arthritis and Covid-19.
Collapse
Affiliation(s)
- Mohammed F Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
- Correspondence: Mohammed F Aldawsari, Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia, Tel +966-555101369, Email
| | - Ahmad H Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al-Qassim, 51452, Saudi Arabia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| |
Collapse
|
6
|
β-Cyclodextrin-Based Nanosponges Inclusion Compounds Associated with Gold Nanorods for Potential NIR-II Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14102206. [DOI: 10.3390/pharmaceutics14102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
This article describes the synthesis and characterization of two nanocarriers consisting of β-cyclodextrin-based nanosponges (NSs) inclusion compounds (ICs) and gold nanorods (AuNRs) for potential near-infrared II (NIR-II) drug-delivery systems. These nanosystems sought to improve the stability of two drugs, namely melphalan (MPH) and curcumin (CUR), and to trigger their photothermal release after a laser irradiation stimulus (1064 nm). The inclusion of MPH and CUR inside each NS was confirmed by field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, Fourier transform infrared spectroscopy, (FT-IR) differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and proton nuclear magnetic resonance (1H-NMR). Furthermore, the association of AuNRs with both ICs was confirmed by FE-SEM, energy-dispersive spectroscopy (EDS), TEM, dynamic light scattering (DLS), ζ-potential, and UV–Vis. Moreover, the irradiation assays demonstrated the feasibility of the controlled-photothermal drug release of both MPH and CUR in the second biological window (1000–1300 nm). Finally, MTS assays depicted that the inclusion of MPH and CUR inside the cavities of NSs reduces the effects on mitochondrial activity, as compared to that observed in the free drugs. Overall, these results suggest the use of NSs associated with AuNRs as a potential technology of controlled drug delivery in tumor therapy, since they are efficient and non-toxic materials.
Collapse
|
7
|
Cyclodextrin-Based Nanoplatforms for Tumor Phototherapy: An Update. Pharmaceutics 2022; 14:pharmaceutics14071375. [PMID: 35890271 PMCID: PMC9323899 DOI: 10.3390/pharmaceutics14071375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Tumor phototherapies are light-mediated tumor treatment modalities, which usually refer to tumor photothermal therapy (PTT) and photodynamic therapy (PDT). Due to the outstanding spatial-temporal control over treatment through light irradiation, tumor phototherapies display extremely low side effects during treatment and are believed to be a tumor treatment method with a clinical translation potential. However, current tumor phototherapy nanoplatforms face obstacles, including light irradiation-induced skin burning, tumor hypoxia microenvironments, limited light penetration depth, et al. Therefore, one important research direction is developing a tumor phototherapy nanoplatform with multifunctionality and enhanced pharmacological effects to overcome the complexity of tumor treatment. On the other hand, cyclodextrins (CDs) are starch-originated circular oligosaccharides with negligible toxicity and have been used to form supermolecular nanostructures through a host–guest interaction between the inner cavity of CDs and functional biomolecules. In the past few years, numerous studies have focused on CD-based multifunctional tumor phototherapy nanoplatforms with an enhanced photoeffect, responsive morphological transformation, and elevated drug bioavailability. This review focuses on the preparation methods of CD-based tumor phototherapy nanoplatforms and their unique physiochemical properties for improving anti-tumor pharmacological efficacy.
Collapse
|
8
|
Patil T, Gambhir R, Vibhute A, Tiwari AP. Gold Nanoparticles: Synthesis Methods, Functionalization and Biological Applications. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02287-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Inclusion complex of cyclodextrin with ergotamine and evaluation of cyclodextrin-based nanosponges. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01149-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Real DA, Bolaños K, Priotti J, Yutronic N, Kogan MJ, Sierpe R, Donoso-González O. Cyclodextrin-Modified Nanomaterials for Drug Delivery: Classification and Advances in Controlled Release and Bioavailability. Pharmaceutics 2021; 13:2131. [PMID: 34959412 PMCID: PMC8706493 DOI: 10.3390/pharmaceutics13122131] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022] Open
Abstract
In drug delivery, one widely used way of overcoming the biopharmaceutical problems present in several active pharmaceutical ingredients, such as poor aqueous solubility, early instability, and low bioavailability, is the formation of inclusion compounds with cyclodextrins (CD). In recent years, the use of CD derivatives in combination with nanomaterials has shown to be a promising strategy for formulating new, optimized systems. The goals of this review are to give in-depth knowledge and critical appraisal of the main CD-modified or CD-based nanomaterials for drug delivery, such as lipid-based nanocarriers, natural and synthetic polymeric nanocarriers, nanosponges, graphene derivatives, mesoporous silica nanoparticles, plasmonic and magnetic nanoparticles, quantum dots and other miscellaneous systems such as nanovalves, metal-organic frameworks, Janus nanoparticles, and nanofibers. Special attention is given to nanosystems that achieve controlled drug release and increase their bioavailability during in vivo studies.
Collapse
Affiliation(s)
- Daniel Andrés Real
- Laboratorio de Nanobiotecnología y Nanotoxicología, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380544, Chile; (D.A.R.); (K.B.); (M.J.K.)
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago 8380544, Chile
| | - Karen Bolaños
- Laboratorio de Nanobiotecnología y Nanotoxicología, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380544, Chile; (D.A.R.); (K.B.); (M.J.K.)
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago 8380544, Chile
- Cellular Communication Laboratory, Program of Cellular and Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago 8380453, Chile
| | - Josefina Priotti
- Área Técnica Farmacéutica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario S2002LRK, Argentina;
| | - Nicolás Yutronic
- Laboratorio de Nanoquímica y Química Supramolecular, Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| | - Marcelo J. Kogan
- Laboratorio de Nanobiotecnología y Nanotoxicología, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380544, Chile; (D.A.R.); (K.B.); (M.J.K.)
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago 8380544, Chile
| | - Rodrigo Sierpe
- Laboratorio de Nanobiotecnología y Nanotoxicología, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380544, Chile; (D.A.R.); (K.B.); (M.J.K.)
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago 8380544, Chile
- Laboratorio de Nanoquímica y Química Supramolecular, Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
- Laboratorio de Biosensores, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| | - Orlando Donoso-González
- Laboratorio de Nanobiotecnología y Nanotoxicología, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380544, Chile; (D.A.R.); (K.B.); (M.J.K.)
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago 8380544, Chile
- Laboratorio de Nanoquímica y Química Supramolecular, Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| |
Collapse
|