1
|
Fang X, Li Y, Wang Y, Cai R, Ao Q. Platelet-derived biomaterials for targeted drug delivery and tissue repair. J Mater Chem B 2024. [PMID: 39711405 DOI: 10.1039/d4tb02477j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Platelets are nucleic-free cells with a lifespan of 7-10 days in the bloodstream, playing a crucial role in various physiological processes such as hemostasis, thrombus formation, tumor development and metastasis, inflammation, and host defense. By utilizing the unique structural and functional characteristics of platelets, platelet-modified nano-drugs can evade immune recognition and clearance and facilitate prolonged circulation in vivo, which ultimately allows the nanoparticles to reach sites of disease such as thrombi, tumors, inflammation, or bacterial infections, leading to specific adhesion and significantly enhancing the efficiency of targeted drug delivery. This paper reviews the novel design and application of platelet-derived biomaterials in various diseases in recent years and comprehensively demonstrates the potential of platelet-derived biomaterials in the fields of disease therapy and biodefence, which will provide a reference for advancing the development of platelet-derived biomaterials and clinical practice.
Collapse
Affiliation(s)
- Xinyu Fang
- College of Biomedical Engineering, National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China.
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ya Li
- College of Biomedical Engineering, National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China.
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yulin Wang
- College of Biomedical Engineering, National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China.
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Rupeng Cai
- College of Biomedical Engineering, National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Qiang Ao
- College of Biomedical Engineering, National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China.
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
2
|
Grivet-Brancot A, Buscemi M, Ciardelli G, Bronco S, Sartori S, Cassino C, Al Kayal T, Losi P, Soldani G, Boffito M. Cord Blood Platelet Lysate-Loaded Thermo-Sensitive Hydrogels for Potential Treatment of Chronic Skin Wounds. Pharmaceutics 2024; 16:1438. [PMID: 39598561 PMCID: PMC11597581 DOI: 10.3390/pharmaceutics16111438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Chronic skin wounds (CSWs) are a worldwide healthcare problem with relevant impacts on both patients and healthcare systems. In this context, innovative treatments are needed to improve tissue repair and patient recovery and quality of life. Cord blood platelet lysate (CB-PL) holds great promise in CSW treatment thanks to its high growth factors and signal molecule content. In this work, thermo-sensitive hydrogels based on an amphiphilic poly(ether urethane) (PEU) were developed as CB-PL carriers for CSW treatment. METHODS A Poloxamer 407®-based PEU was solubilized in aqueous medium (10 and 15% w/v) and added with CB-PL at a final concentration of 20% v/v. Hydrogels were characterized for their gelation potential, rheological properties, and swelling/dissolution behavior in a watery environment. CB-PL release was also tested, and the bioactivity of released CB-PL was evaluated through cell viability, proliferation, and migration assays. RESULTS PEU aqueous solutions with concentrations in the range 10-15% w/v exhibited quick (within a few minutes) sol-to-gel transition at around 30-37 °C and rheological properties modulated by the PEU concentration. Moreover, CB-PL loading within the gels did not affect the overall gel properties. Stability in aqueous media was dependent on the PEU concentration, and payload release was completed between 7 and 14 days depending on the polymer content. The CB-PL-loaded hydrogels also showed biocompatibility and released CB-PL induced keratinocyte migration and proliferation, with scratch wound recovery similar to the positive control (i.e., CB-PL alone). CONCLUSIONS The developed hydrogels represent promising tools for CSW treatment, with tunable gelation properties and residence time and the ability to encapsulate and deliver active biomolecules with sustained and controlled kinetics.
Collapse
Affiliation(s)
- Arianna Grivet-Brancot
- Institute for Chemical-Physical Processes, National Research Council, 56124 Pisa, Italy; (A.G.-B.); (S.B.)
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy;
| | - Marianna Buscemi
- Institute of Clinical Physiology, National Research Council, Massa, 56124 Pisa, Italy; (M.B.); (T.A.K.); (P.L.); (G.S.)
| | - Gianluca Ciardelli
- Institute for Chemical-Physical Processes, National Research Council, 56124 Pisa, Italy; (A.G.-B.); (S.B.)
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy;
| | - Simona Bronco
- Institute for Chemical-Physical Processes, National Research Council, 56124 Pisa, Italy; (A.G.-B.); (S.B.)
| | - Susanna Sartori
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy;
| | - Claudio Cassino
- Department of Science and Technological Innovation, Università del Piemonte Orientale, 15121 Alessandria, Italy;
| | - Tamer Al Kayal
- Institute of Clinical Physiology, National Research Council, Massa, 56124 Pisa, Italy; (M.B.); (T.A.K.); (P.L.); (G.S.)
| | - Paola Losi
- Institute of Clinical Physiology, National Research Council, Massa, 56124 Pisa, Italy; (M.B.); (T.A.K.); (P.L.); (G.S.)
| | - Giorgio Soldani
- Institute of Clinical Physiology, National Research Council, Massa, 56124 Pisa, Italy; (M.B.); (T.A.K.); (P.L.); (G.S.)
| | - Monica Boffito
- Institute for Chemical-Physical Processes, National Research Council, 56124 Pisa, Italy; (A.G.-B.); (S.B.)
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy;
| |
Collapse
|
3
|
Zhang Z, Yin C, Song X, Liu X, Zhong C, Zheng J, Ni Y, Shen R, Guo Y, Li X, Lin C, Zhang Y, Hu G. A self-fused peptide-loaded hydrogel with injectability and tissue-adhesiveness for preventing postoperative peritoneal adhesions. Mater Today Bio 2024; 28:101205. [PMID: 39221222 PMCID: PMC11364900 DOI: 10.1016/j.mtbio.2024.101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Peritoneal adhesions commonly occur following abdominal or pelvic surgery and can cause serious complications. Currently, physical barriers are the primary approach used in clinical practice to prevent adhesion, although their effectiveness is frequently inadequate. In this study, we developed an injectable peptide-loaded hydrogel with multiple functions, including self-fusion, tissue-adhesiveness, anti-inflammation, anti-cell adhesion and anti-angiogenesis. To assess the effectiveness of these hydrogels, which are stabilized by dynamic imine bonds and acetal connections, in preventing postoperative abdominal adhesions, we utilized both a rat abdominal adhesion model and a rat model simulating repeated-injury adhesions. In comparison to the commercially available HA hydrogel, as-prepared hydrogels exhibited significant reductions in inflammation, fibrosis, and angiogenesis, leading to an obvious decrease in peritoneal adhesions. Moreover, this peptide-loaded hydrogel demonstrated an ideal degradation time, maintaining an in vivo viability for about 10 days. We believe this peptide-loaded hydrogel presents a promising solution for the challenging clinical issue of postoperative abdominal adhesions.
Collapse
Affiliation(s)
- Zequn Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Chao Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xi Liu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Chonglei Zhong
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Jun Zheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Rujuan Shen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Yihang Guo
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| |
Collapse
|
4
|
Krishna DV, Sankar MR, Sarma PVGK, Samundeshwari EL. Copper nanoparticles loaded gelatin/ polyvinyl alcohol/ guar gum-based 3D printable multimaterial hydrogel for tissue engineering applications. Int J Biol Macromol 2024; 276:133866. [PMID: 39009268 DOI: 10.1016/j.ijbiomac.2024.133866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Hydrogels are becoming increasingly significant in tissue engineering because of their numerous benefits, including biocompatibility, biodegradability, and their ability to provide a supportive structure for cell proliferation. This study presents the synthesis and characterization of a new multimaterial hydrogel with 3D-printing capabilities composed of copper nanoparticle-reinforced gelatin, polyvinyl alcohol (PVA), and guar gum-based biomaterials intended for tissue engineering applications. Combining CuNPs aims to enhance the hydrogel's antibacterial properties, mechanical strength, and bioactivity, which are essential for successful tissue regeneration. Hydrogels are chemically cross-linked with glyoxal and analyzed through different assessments to examine the compressive behavior, surface morphology, sorbing capacity, biocompatibility, thermal stability, and degradation properties. The results demonstrated that including CuNPs significantly improved the hydrogel's compressive modulus (4.18 MPa) for the hydrogel with the CuNPs and provided better antibacterial activity against common pathogens with controlled degradation. All the hydrogels exhibited a lower coefficient of friction, which was below 0.1. In vitro cell culture studies using chondrocytes indicated that the CuNPs-loaded hydrogel supported cell proliferation and growth of chondrogenic genes such as collagen type II (COL2) and aggrecan (ACAN). The biocompatibility and enhanced mechanical properties of the multimaterial hydrogel make it a promising candidate for developing customized, patient-specific tissue engineering scaffolds.
Collapse
Affiliation(s)
- D V Krishna
- Department of Mechanical Engineering, Indian Institute of Technology Tirupati, Andhra Pradesh 517619, India
| | - M R Sankar
- Department of Mechanical Engineering, Indian Institute of Technology Tirupati, Andhra Pradesh 517619, India.
| | - P V G K Sarma
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh 517502, India
| | - E L Samundeshwari
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh 517502, India
| |
Collapse
|
5
|
Shan BH, Wu FG. Hydrogel-Based Growth Factor Delivery Platforms: Strategies and Recent Advances. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210707. [PMID: 37009859 DOI: 10.1002/adma.202210707] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Growth factors play a crucial role in regulating a broad variety of biological processes and are regarded as powerful therapeutic agents in tissue engineering and regenerative medicine in the past decades. However, their application is limited by their short half-lives and potential side effects in physiological environments. Hydrogels are identified as having the promising potential to prolong the half-lives of growth factors and mitigate their adverse effects by restricting them within the matrix to reduce their rapid proteolysis, burst release, and unwanted diffusion. This review discusses recent progress in the development of growth factor-containing hydrogels for various biomedical applications, including wound healing, brain tissue repair, cartilage and bone regeneration, and spinal cord injury repair. In addition, the review introduces strategies for optimizing growth factor release including affinity-based delivery, carrier-assisted delivery, stimuli-responsive delivery, spatial structure-based delivery, and cellular system-based delivery. Finally, the review presents current limitations and future research directions for growth factor-delivering hydrogels.
Collapse
Affiliation(s)
- Bai-Hui Shan
- State Key Laboratory of Digital Medical Engineering Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
6
|
Namjoo AR, Abrbekoh FN, Saghati S, Amini H, Saadatlou MAE, Rahbarghazi R. Tissue engineering modalities in skeletal muscles: focus on angiogenesis and immunomodulation properties. Stem Cell Res Ther 2023; 14:90. [PMID: 37061717 PMCID: PMC10105969 DOI: 10.1186/s13287-023-03310-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/28/2023] [Indexed: 04/17/2023] Open
Abstract
Muscular diseases and injuries are challenging issues in human medicine, resulting in physical disability. The advent of tissue engineering approaches has paved the way for the restoration and regeneration of injured muscle tissues along with available conventional therapies. Despite recent advances in the fabrication, synthesis, and application of hydrogels in terms of muscle tissue, there is a long way to find appropriate hydrogel types in patients with congenital and/or acquired musculoskeletal injuries. Regarding specific muscular tissue microenvironments, the applied hydrogels should provide a suitable platform for the activation of endogenous reparative mechanisms and concurrently deliver transplanting cells and therapeutics into the injured sites. Here, we aimed to highlight recent advances in muscle tissue engineering with a focus on recent strategies related to the regulation of vascularization and immune system response at the site of injury.
Collapse
Affiliation(s)
- Atieh Rezaei Namjoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- General and Vascular Surgery Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Lee R, Park HJ, Lee WY, Choi Y, Song H. Nanoscale level gelatin-based scaffolds enhance colony formation of porcine testicular germ cells. Theriogenology 2023; 202:125-135. [PMID: 36958136 DOI: 10.1016/j.theriogenology.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/01/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2023]
Abstract
The extracellular matrix is important in cell growth, proliferation, and differentiation. Gelatin, a support for adhering cells, is used for coating culture plate surfaces of several primary and stem cells. However, gelatin characteristics on culture plates and its cell interactions are not understood. Here, we aimed to identify the effect of gelatin topography on culture plates on the proliferation and colony formation of porcine spermatogonial germ cells (pSGC). To generate different surface topographies, gelatin powder was dissolved in H2O at varying melting temperatures (40, 60, 80, and 120 °C) and coated on the surface of the culture plates. At 40 °C, the pores of the gelatin scaffold were regular ellipses 5-6 μm in diameter and 10-30 nm in thickness. However, at 120 °C, irregular pores 20-30 μm in diameter and 10-20 nm in thickness were obtained. Additionally, the number of attached cells and pSGC colonies were significantly more at 40 °C than at 120 °C after a week of culture. Interestingly, the feeder cells did not settle properly at 120 °C but detached easily from the culture dishes. PSGC colonies were 100 μm in diameter at 40 °C, with small and detached colonies observed at 120 °C. Thus, optimal topography of gelatin was obtained at 40 °C, which was sufficient for the proliferation of feeder cells and the formation of pSGC colonies. Thus, gelatin scaffold conditions at 40 °C and 60 °C were optimal for the derivation and culture of pSGC, and gelatin surface morphology is important for the maintenance of supportive feeder cells for pSGC proliferation and colony formation.
Collapse
Affiliation(s)
- Ran Lee
- Department of Stem Cells & Regenerative Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Hyun Jung Park
- Department of Animal Biotechnology, Sangji University, Wonju-si, 26339, Republic of Korea.
| | - Won Young Lee
- Department of Livestock, Korea National University of Agricultures and Fisheries, Jeonju-si, 54874, Republic of Korea.
| | - Youngsok Choi
- Department of Stem Cells & Regenerative Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Hyuk Song
- Department of Stem Cells & Regenerative Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
8
|
Sapuła P, Bialik-Wąs K, Malarz K. Are Natural Compounds a Promising Alternative to Synthetic Cross-Linking Agents in the Preparation of Hydrogels? Pharmaceutics 2023; 15:253. [PMID: 36678882 PMCID: PMC9866639 DOI: 10.3390/pharmaceutics15010253] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The main aim of this review is to assess the potential use of natural cross-linking agents, such as genipin, citric acid, tannic acid, epigallocatechin gallate, and vanillin in preparing chemically cross-linked hydrogels for the biomedical, pharmaceutical, and cosmetic industries. Chemical cross-linking is one of the most important methods that is commonly used to form mechanically strong hydrogels based on biopolymers, such as alginates, chitosan, hyaluronic acid, collagen, gelatin, and fibroin. Moreover, the properties of natural cross-linking agents and their advantages and disadvantages are compared relative to their commonly known synthetic cross-linking counterparts. Nowadays, advanced technologies can facilitate the acquisition of high-purity biomaterials from unreacted components with no additional purification steps. However, while planning and designing a chemical process, energy and water consumption should be limited in order to reduce the risks associated with global warming. However, many synthetic cross-linking agents, such as N,N'-methylenebisacrylamide, ethylene glycol dimethacrylate, poly (ethylene glycol) diacrylates, epichlorohydrin, and glutaraldehyde, are harmful to both humans and the environment. One solution to this problem could be the use of bio-cross-linking agents obtained from natural resources, which would eliminate their toxic effects and ensure the safety for humans and the environment.
Collapse
Affiliation(s)
- Paulina Sapuła
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| | - Katarzyna Bialik-Wąs
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| | - Katarzyna Malarz
- A. Chelkowski Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
9
|
Liu X, Wang J, Xu X, Zhu H, Man K, Zhang J. SDF-1 Functionalized Hydrogel Microcarriers for Skin Flap Repair. ACS Biomater Sci Eng 2022; 8:3576-3588. [PMID: 35899941 DOI: 10.1021/acsbiomaterials.2c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Critically sized skin flaps used to treat skin defects often suffer from necrosis due to insufficient blood supply. Hence there is an urgent need to improve the survival rate of skin flaps by promoting local angiogenesis. The delivery of growth factor loaded microcarriers have shown promise in enhancing defect repair, however, their rapid clearance from the defect site limits their regenerative potential. Thus, it is critical to develop microcarriers which can promote the sustained release of bioactive factors to effectively stimulate tissue repair. This study aimed to develop a stromal cell-derived factor 1 (SDF-1) loaded microcarrier coated with Matrigel (MC@SDF-1@Mat) to promote skin flap repair. SEM imaging showed that the surface of the microcarrier was coated by a porous Matrigel film. The drug release experiment showed that the Matrigel-coated microcarriers enhanced the sustained release of the model drug methylene blue when compared to uncoated group. MC@SDF-1@Mat significantly promoted the proliferation, migration, and angiogenesis of HUVECs via CCK-8, wound healing assay, and tube formation assay, respectively. Moreover, the murine random skin flap model was further established and treated. It was found that the flap necrosis area in the MC@SDF-1@Mat treated group was significantly reduced. H&E and Masson staining showed the histological structure and collagen organization exhibited a normal phenotype in the MC@SDF-1@Mat treated group. Additionally, CD31 immunohistochemical analysis showed that the MC@SDF-1@Mat treated group exhibited the greatest degree of neovascularization. In conclusion, our SDF-1 functionalized gelatin-based hydrogel microcarrier has potential clinical applications in promoting skin flap repair and drug delivery.
Collapse
Affiliation(s)
- Xiaochuan Liu
- Key Laboratory of 3D Printing Technology in Stomatology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, P.R. China
| | - Jinsi Wang
- Key Laboratory of 3D Printing Technology in Stomatology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, P.R. China
| | - Xiaoqin Xu
- Key Laboratory of 3D Printing Technology in Stomatology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, P.R. China
| | - Hong Zhu
- Key Laboratory of 3D Printing Technology in Stomatology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, P.R. China
| | - Kenny Man
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jingying Zhang
- Key Laboratory of 3D Printing Technology in Stomatology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, P.R. China
| |
Collapse
|
10
|
Yu J, Hsu YC, Lee JK, Cheng NC. Enhanced angiogenic potential of adipose-derived stem cell sheets by integration with cell spheroids of the same source. Stem Cell Res Ther 2022; 13:276. [PMID: 35765015 PMCID: PMC9241243 DOI: 10.1186/s13287-022-02948-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background Adipose-derived stem cell (ASC) has been considered as a desirable source for cell therapy. In contrast to combining scaffold materials with cells, ASCs can be fabricated into scaffold-free three-dimensional (3D) constructs to promote regeneration at tissue level. However, previous reports have found decreased expression of vascular endothelial growth factor (VEGF) in ASC sheets. In this study, we aimed to integrate ASC spheroids into ASC sheets to enhance the angiogenic capability of cell sheets. Methods ASCs were seeded in agarose microwells to generate uniform cell spheroids with adjustable size, while extracellular matrix deposition could be stimulated by ascorbic acid 2-phosphate to form ASC sheets. RNA sequencing was performed to identify the transcriptomic profiles of ASC spheroids and sheets relative to monolayer ASCs. By transferring ASC spheroids onto ASC sheets, the spheroid sheet composites could be successfully fabricated after a short-term co-culture, and their angiogenic potential was evaluated in vitro and in ovo. Results RNA sequencing analysis revealed that upregulation of angiogenesis-related genes was found only in ASC spheroids. The stimulating effect of spheroid formation on ASCs toward endothelial lineage was demonstrated by enhanced CD31 expression, which maintained after ASC spheroids were seeded on cell sheets. Relative to ASC sheets, enhanced expression of VEGF and hepatocyte growth factor was also noted in ASC spheroid sheets, and conditioned medium of ASC spheroid sheets significantly enhanced tube formation of endothelial cells in vitro. Moreover, chick embryo chorioallantoic membrane assay showed a significantly higher capillary density with more branch points after applying ASC spheroid sheets, and immunohistochemistry also revealed a significantly higher ratio of CD31-positive area. Conclusion In the spheroid sheet construct, ASC spheroids can augment the pro-angiogenesis capability of ASC sheets without the use of exogenous biomaterial or genetic manipulation. The strategy of this composite system holds promise as an advance in 3D culture technique of ASCs for future application in angiogenesis and regeneration therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02948-3.
Collapse
Affiliation(s)
- Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, 1 Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, 300 Zhongda Rd., Taoyuan 320, Taiwan
| | - Jen-Kuang Lee
- Department of Medicine, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan S. Rd., Taipei 100, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan S. Rd., Taipei 100, Taiwan.
| |
Collapse
|
11
|
Wang W, Sheng H, Cao D, Zhang F, Zhang W, Yan F, Ding D, Cheng N. S-nitrosoglutathione functionalized polydopamine nanoparticles incorporated into chitosan/gelatin hydrogel films with NIR-controlled photothermal/NO-releasing therapy for enhanced wound healing. Int J Biol Macromol 2022; 200:77-86. [PMID: 34973982 DOI: 10.1016/j.ijbiomac.2021.12.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 01/21/2023]
Abstract
Nitric oxide (NO) has aroused wide interest in the treating infected wounds due to its characteristic functionalities. However, its utilization is limited due to its volatile properties, high reactivity, direct potential toxicity, and byproducts of NO donors limited its application. Herein, endogenously NO donor S-nitrosoglutathione (GSNO) was connected covalently to polydopamine nanoparticles (PDA-GSNO NPs) to minimize the loss of NO in aqueous medium. Meanwhile, near-infrared (NIR)-controlled NO release and photothermal therapy (PTT) was obtained through the photothermal conversion by PDA. Then chitosan (CS)/gelatin (GE) biocomposite hydrogel films with preferable biocompatibility, surface hydrophilicity, hydroabsorptivity, and mechanical adhesive properties were constructed. By embedding PDA-GSNO NPs into the films, a multifunctional wound dressing was fabricated. Under NIR light irradiation, the combination of PTT, NO-releasing, and CS antibacterial agents can strengthen the in vitro antimicrobial efficacy and in vivo wound healing activities. Meanwhile, the obtained wound dressing presented good biocompatibility. This work outlines an approach for combating bacterial infections and demonstrating the possibility for synergistic NO-releasing wound healing.
Collapse
Affiliation(s)
- Wenyu Wang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Huan Sheng
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Daihong Cao
- Department of Pathophysiology, Weifang Medical University, Weifang, Shangdong 261053, PR China
| | - Fenglian Zhang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Fang Yan
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China.
| | - Dejun Ding
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China.
| | - Ni Cheng
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China.
| |
Collapse
|
12
|
Hendow EK, Day RM. A facile approach to therapeutic angiogenesis using a platelet concentrate and microsphere composite. NANO SELECT 2021. [DOI: 10.1002/nano.202100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Eseelle K. Hendow
- Centre for Precision Healthcare UCL Division of Medicine University College London London UK
| | - Richard M. Day
- Centre for Precision Healthcare UCL Division of Medicine University College London London UK
| |
Collapse
|