1
|
Moreno-Gonzalez M, Hampton K, Ruiz P, Beasy G, Nagies FSP, Parker A, Lazenby J, Bone C, Alava-Arteaga A, Patel M, Hellmich C, Luri-Martin P, Silan E, Philo M, Baker D, Rushbrook SM, Hildebrand F, Rushworth SA, Beraza N. Regulation of intestinal senescence during cholestatic liver disease modulates barrier function and liver disease progression. JHEP Rep 2024; 6:101159. [PMID: 39314550 PMCID: PMC11418120 DOI: 10.1016/j.jhepr.2024.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 09/25/2024] Open
Abstract
Background & Aims Senescence has been reported to have differential functions in cholangiocytes and hepatic stellate cells (HSCs) during human and murine cholestatic disease, being detrimental in biliary cells and anti-fibrotic in HSCs. Cholestatic liver disease is associated with loss of intestinal barrier function and changes in the microbiome, the mechanistic cause of which is undetermined. Methods Intestinal samples were analysed from controls and patients with primary sclerosing cholangitis, as well as wild-type (WT) and p16-3MR transgenic mice. Cholestatic liver disease was induced by bile duct ligation (BDL) and DDC diet feeding. Fexaramine was used as an intestinal-restricted FXR agonist and antibiotics were given to eliminate the intestinal microbiome. Senescent cells were eliminated in p16-3MR mice with ganciclovir and in WT mice with the senolytic drug ABT-263. In vitro studies were done in intestinal CaCo-2 cells and organoids were generated from intestinal crypts isolated from mice. Results Herein, we show increased senescence in intestinal epithelial cells (IECs) in patients with primary sclerosing cholangitis and in mice after BDL and DDC diet feeding. Intestinal senescence was increased in response to reduced exposure to bile acids and increased presence of lipopolysaccharide in vitro and in vivo during cholestatic liver disease. Senescence of IECs was associated with lower proliferation but increased intestinal stem cell activation, as supported by increased organoid growth from intestinal stem cells. Elimination of senescent cells with genetic and pharmacological approaches exacerbated liver injury and fibrosis during cholestatic liver disease, which was associated with increased IEC apoptosis and permeability. Conclusions Senescence occurs in IECs during cholestatic disease and the elimination of senescent cells has a detrimental impact on the gut-liver axis. Our results point to cell-specific rather than systemic targeting of senescence as a therapeutic approach to treat cholestatic liver disease. Impact and implications Cholestatic liver disease associates with the dysregulation of intestinal barrier function, while the mechanisms mediating the disruption of the gut-liver axis remain largely undefined. Here, we demonstrate that senescence, a cellular response to stress, is activated in intestinal cells during cholestatic liver disease in humans and mice. Mechanistically, we demonstrate that the reduction of bile acids and the increased presence of bacterial products mediate the activation of intestinal senescence during cholestatic liver disease. Importantly, the elimination of these senescent cells promotes further damage to the intestine that aggravates liver disease, with increased tissue damage and fibrosis. Our results provide evidence that therapeutic strategies to treat cholestatic liver disease by eliminating senescent cells may have unwanted effects in the intestine and support the need to develop cell/organ-specific approaches.
Collapse
Affiliation(s)
- Mar Moreno-Gonzalez
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Katherine Hampton
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Centre for Metabolic Health, Faculty of Medicine, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Paula Ruiz
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Gemma Beasy
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Falk SP. Nagies
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Aimee Parker
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - James Lazenby
- Science Operations, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Caitlin Bone
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Ane Alava-Arteaga
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Meha Patel
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Charlotte Hellmich
- Centre for Metabolic Health, Faculty of Medicine, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Haematology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Pablo Luri-Martin
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Ece Silan
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Mark Philo
- Science Operations, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - David Baker
- Science Operations, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Simon M. Rushbrook
- Centre for Metabolic Health, Faculty of Medicine, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Gastroenterology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Falk Hildebrand
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Stuart A. Rushworth
- Centre for Metabolic Health, Faculty of Medicine, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Naiara Beraza
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food Innovation and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| |
Collapse
|
2
|
Han W, Song T, Huang Z, Liu Y, Xu B, Huang C. Distinct signatures of gut microbiota and metabolites in primary biliary cholangitis with poor biochemical response after ursodeoxycholic acid treatment. Cell Biosci 2024; 14:80. [PMID: 38879547 PMCID: PMC11180406 DOI: 10.1186/s13578-024-01253-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/24/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND About 1/3 of primary biliary cholangitis (PBC) patients suffered from poor response worldwide. And these patients present intestinal disturbances. We aimed to identify signatures of microbiota and metabolites in PBC patients with poor response, comparing to patients with response. METHODS This study enrolled 25 subjects (14 PBC patients with response and 11 PBC patients with poor response). Metatranscriptomics and metabolomics analysis were carried out on their fecal. RESULTS PBC patients with poor response had significant differences in the composition of bacteria, characterized by decreased Gemmiger etc. and increased Ruminococcus etc. The differential microbiota functions characterized by decreased abundance of elongation factor Tu and elongation factor G base on the KO database, as well as decreased abundance of Replicase large subunit etc. based on the SWISS-PROT database. PBC with poor response also had significant differences in 17 kinds of bacterial metabolites, characterized by decreased level of metabolites vital in bile acids metabolism pathway (L-Cysteine etc.) and the all-trans-Retinoic acid, a kind of immune related metabolite. The altered microbiota was associated with the differential expressed metabolites and clinical liver function indicators. 1 bacterial genera, 2 bacterial species and 9 metabolites simultaneously discriminated PBC with poor response from PBC with response with high accuracy. CONCLUSION PBC patients with poor response exhibit unique changes in microbiota and metabolite. Gut microbiota and metabolite-based algorithms could be used as additional tools for differential prediction of PBC with poor prognosis.
Collapse
Affiliation(s)
- Weijia Han
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- Second Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ting Song
- Department of Hepatology, The Sixth People's Hospital of Qingdao, Qingdao, 266033, Shandong, China
| | - Zhongyi Huang
- Emergency Department, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Yanmin Liu
- Second Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Xu
- Second Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chunyang Huang
- Second Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Sivaprasadan S, Anila KN, Nair K, Mallick S, Biswas L, Valsan A, Praseedom RK, Nair BKG, Sudhindran S. Microbiota and Gut-Liver Axis: An Unbreakable Bond? Curr Microbiol 2024; 81:193. [PMID: 38805045 DOI: 10.1007/s00284-024-03694-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/08/2024] [Indexed: 05/29/2024]
Abstract
The gut microbiota, amounting to approximately 100 trillion (1014) microbes represents a genetic repertoire that is bigger than the human genome itself. Evidence on bidirectional interplay between human and microbial genes is mounting. Microbiota probably play vital roles in diverse aspects of normal human metabolism, such as digestion, immune modulation, and gut endocrine function, as well as in the genesis and progression of many human diseases. Indeed, the gut microbiota has been most closely linked to various chronic ailments affecting the liver, although concrete scientific data are sparse. In this narrative review, we initially discuss the basic epidemiology of gut microbiota and the factors influencing their initial formation in the gut. Subsequently, we delve into the gut-liver axis and the evidence regarding the link between gut microbiota and the genesis or progression of various liver diseases. Finally, we summarise the recent research on plausible ways to modulate the gut microbiota to alter the natural history of liver disease.
Collapse
Affiliation(s)
- Saraswathy Sivaprasadan
- Department of Gastrointestinal Surgery and Solid Organ Transplantation, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - K N Anila
- Department of Gastrointestinal Surgery and Solid Organ Transplantation, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Krishnanunni Nair
- Department of Gastrointestinal Surgery and Solid Organ Transplantation, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Shweta Mallick
- Department of Gastrointestinal Surgery and Solid Organ Transplantation, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Lalitha Biswas
- Amrita School of Nanosciences and Molecular Medicine, Kochi, India
| | - Arun Valsan
- Department of Hepatology & Gastroenterology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | | | | | - Surendran Sudhindran
- Department of Gastrointestinal Surgery and Solid Organ Transplantation, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India.
| |
Collapse
|
4
|
Dey P. Good girl goes bad: Understanding how gut commensals cause disease. Microb Pathog 2024; 190:106617. [PMID: 38492827 DOI: 10.1016/j.micpath.2024.106617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
This review examines the complex connection between commensal microbiota and the development of opportunistic infections. Several underlying conditions, such as metabolic diseases and weakened immune systems, increase the vulnerability of patients to opportunistic infections. The increasing antibiotic resistance adds significant complexity to the management of infectious diseases. Although commensals have long been considered beneficial, recent research contradicts this notion by uncovering chronic illnesses linked to atypical pathogens or commensal bacteria. This review examines conditions in which commensal bacteria, which are usually beneficial, contribute to developing diseases. Commensals' support for opportunistic infections can be categorized based on factors such as colonization fitness, pathoadaptive mutation, and evasion of host immune response. Individuals with weakened immune systems are especially susceptible, highlighting the importance of mucosal host-microbiota interaction in promoting infection when conditions are inappropriate. Dysregulation of gut microbial homeostasis, immunological modulation, and microbial interactions are caused by several factors that contribute to the development of chronic illnesses. Knowledge about these mechanisms is essential for developing preventive measures, particularly for susceptible populations, and emphasizes the importance of maintaining a balanced gut microbiota in reducing the impact of opportunistic infections.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India.
| |
Collapse
|
5
|
Pham HN, Pham L, Sato K. Navigating the liver landscape: upcoming pharmacotherapies for primary sclerosing cholangitis. Expert Opin Pharmacother 2024; 25:895-906. [PMID: 38813599 DOI: 10.1080/14656566.2024.2362263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION Primary sclerosing cholangitis (PSC) is a bile duct disorder characterized by ductular reaction, hepatic inflammation, and liver fibrosis. The pathogenesis of PSC is still undefined, and treatment options for patients are limited. Previous clinical trials evaluated drug candidates targeting various cellular functions and pathways, such as bile acid signaling and absorption, gut bacteria and permeability, and lipid metabolisms. However, most of phase III clinical trials for PSC were disappointing, except vancomycin therapy, and there are still no established medications for PSC with efficacy and safety confirmed by phase IV clinical trials. AREAS COVERED This review summarizes the currently ongoing or completed clinical studies for PSC, which are phase II or further, and discusses therapeutic targets and strategies, limitations, and future directions and possibilities of PSC treatments. A literature search was conducted in PubMed and ClinicalTrials.gov utilizing the combination of the searched term 'primary sclerosing cholangitis' with other keywords, such as 'clinical trials,' 'antibiotics,' or drug names. Clinical trials at phase II or further were included for consideration. EXPERT OPINION Only vancomycin demonstrated promising therapeutic effects in the phase III clinical trial. Other drug candidates showed futility or inconsistent results, and the search for novel PSC treatments is still ongoing.
Collapse
Affiliation(s)
- Hoang Nam Pham
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Linh Pham
- Department of Science and Mathematics, Texas A&M University - Central Texas, Killeen, TX, USA
| | - Keisaku Sato
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
6
|
Sang Y, Zheng K, Zhao Y, Liu Y, Zhu S, Xie X, Shang L, Liu J, Li L. Efficacy and regulatory strategies of gut microbiota in immunotherapy: a narrative review. Transl Cancer Res 2024; 13:2043-2063. [PMID: 38737692 PMCID: PMC11082673 DOI: 10.21037/tcr-24-316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/29/2024] [Indexed: 05/14/2024]
Abstract
Background and Objective With advances in gut microbiome research, it has been recognized that the gut microbiome has an important and far-reaching impact on many human diseases, including cancer. Therefore, more and more researchers are focusing on the treatment of gut flora in tumors. In this article, we present a review of the mechanisms of gut microbes in tumor immunotherapy and related studies to provide reference for further research and insights into the clinical application of gut microbes. Methods Between April 25, 2023, and November 25, 2023, we searched for articles published only in English between 1984 and 2023 using the databases PubMed, American Medical Association and Elsevier ScienceDirect using the keywords "gut microbiology" and "tumor" or "immunotherapy". Key Content and Findings The gastrointestinal tract contains the largest number of microorganisms in the human body. Microorganisms are involved in regulating many physiological activities of the body. Studies have shown that gut microbes and their derivatives are involved in the occurrence and development of a variety of inflammations and tumors, and changes in their abundance and proportion affect the degree of cancer progression and sensitivity to immunotherapy. Gut microbiota-based drug research is ongoing, and some anti-tumor studies have entered the clinical trial stage. Conclusions The abundance and proportion of intestinal microorganisms influence the susceptibility of tumors to tumor immunotherapy. This article reviewed the effects and mechanisms of gut microbes on tumor immunotherapy to further explore the medical value of gut microbes in tumor immunotherapy.
Collapse
Affiliation(s)
- Yaodong Sang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Kexin Zheng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yulong Zhao
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Siqiang Zhu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaozhou Xie
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jin Liu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
7
|
van Vorstenbosch R, van Munster K, Pachen D, Mommers A, Stavropoulos G, van Schooten FJ, Ponsioen C, Smolinska A. The Detection of Primary Sclerosing Cholangitis Using Volatile Metabolites in Fecal Headspace and Exhaled Breath. Metabolites 2023; 14:23. [PMID: 38248826 PMCID: PMC10819709 DOI: 10.3390/metabo14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Up to 5% of inflammatory bowel disease patients may at some point develop primary sclerosing cholangitis (PSC). PSC is a rare liver disease that ultimately results in liver damage, cirrhosis and liver failure. It typically remains subclinical until irreversible damage has been inflicted. Hence, it is crucial to screen IBD patients for PSC, but its early detection is challenging, and the disease's etiology is not well understood. This current study aimed at the early detection of PSC in an IBD population using Volatile Organic Compounds in fecal headspace and exhaled breath. To this aim, fecal material and exhaled breath were collected from 73 patients (n = 16 PSC/IBD; n = 8 PSC; n = 49 IBD), and their volatile profile were analyzed using Gas Chromatography-Mass Spectrometry. Using the most discriminatory features, PSC detection resulted in areas under the ROC curve (AUCs) of 0.83 and 0.84 based on fecal headspace and exhaled breath, respectively. Upon data fusion, the predictive performance increased to AUC 0.92. The observed features in the fecal headspace relate to detrimental microbial dysbiosis and exogenous exposure. Future research should aim for the early detection of PSC in a prospective study design.
Collapse
Affiliation(s)
- Robert van Vorstenbosch
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Kim van Munster
- Department of Gastroenterology and Hepathology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (K.v.M.); (C.P.)
| | - Danielle Pachen
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Alex Mommers
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Georgios Stavropoulos
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Frederik-Jan van Schooten
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Cyriel Ponsioen
- Department of Gastroenterology and Hepathology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (K.v.M.); (C.P.)
| | - Agnieszka Smolinska
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| |
Collapse
|
8
|
Özdirik B, Schnabl B. Microbial Players in Primary Sclerosing Cholangitis: Current Evidence and Concepts. Cell Mol Gastroenterol Hepatol 2023; 17:423-438. [PMID: 38109970 PMCID: PMC10837305 DOI: 10.1016/j.jcmgh.2023.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Primary sclerosing cholangitis (PSC) is a rare cholestatic liver disease with progressive biliary inflammation, destruction of the biliary tract, and fibrosis, resulting in liver cirrhosis and end-stage liver disease. To date, liver transplantation is the only definitive treatment option for PSC. The precise etiology of PSC remains elusive, but it is widely accepted to involve a complex interplay between genetic predisposition, immunologic dysfunction, and environmental influence. In recent years, the gut-liver axis has emerged as a crucial pathway contributing to the pathogenesis of PSC, with particular focus on the role of gut microbiota. However, the role of the fungal microbiome or mycobiome has been overlooked for years, resulting in a lack of comprehensive studies on its involvement in PSC. In this review, we clarify the present clinical and mechanistic data and concepts concerning the gut bacterial and fungal microbiota in the context of PSC. This review sheds light on the role of specific microbes and elucidates the dynamics of bacterial and fungal populations. Moreover, we discuss the latest insights into microbe-altering therapeutic approaches involving the gut-liver axis and bile acid metabolism.
Collapse
Affiliation(s)
- Burcin Özdirik
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California; Department of Medicine, VA San Diego Healthcare System, San Diego, California.
| |
Collapse
|
9
|
Chen G, Hu X, Huang Y, Xiang X, Pan S, Chen R, Xu X. Role of the immune system in liver transplantation and its implications for therapeutic interventions. MedComm (Beijing) 2023; 4:e444. [PMID: 38098611 PMCID: PMC10719430 DOI: 10.1002/mco2.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Liver transplantation (LT) stands as the gold standard for treating end-stage liver disease and hepatocellular carcinoma, yet postoperative complications continue to impact survival rates. The liver's unique immune system, governed by a microenvironment of diverse immune cells, is disrupted during processes like ischemia-reperfusion injury posttransplantation, leading to immune imbalance, inflammation, and subsequent complications. In the posttransplantation period, immune cells within the liver collaboratively foster a tolerant environment, crucial for immune tolerance and liver regeneration. While clinical trials exploring cell therapy for LT complications exist, a comprehensive summary is lacking. This review provides an insight into the intricacies of the liver's immune microenvironment, with a specific focus on macrophages and T cells as primary immune players. Delving into the immunological dynamics at different stages of LT, we explore the disruptions after LT and subsequent immune responses. Focusing on immune cell targeting for treating liver transplant complications, we provide a comprehensive summary of ongoing clinical trials in this domain, especially cell therapies. Furthermore, we offer innovative treatment strategies that leverage the opportunities and prospects identified in the therapeutic landscape. This review seeks to advance our understanding of LT immunology and steer the development of precise therapies for postoperative complications.
Collapse
Affiliation(s)
- Guanrong Chen
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xin Hu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Yingchen Huang
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xiaonan Xiang
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Sheng Pan
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiao Xu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
- Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
10
|
Maspero M, Holubar SD, Raj R, Yilmaz S, Prien C, Lavryk O, Pita A, Hashimoto K, Steele SR, Hull TL. Ileal Pouch-anal Anastomosis in Primary Sclerosing Cholangitis-inflammatory Bowel Disease (PSC-IBD): Long-term Pouch and Liver Transplant Outcomes. Ann Surg 2023; 278:961-968. [PMID: 37477000 DOI: 10.1097/sla.0000000000006041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
OBJECTIVE To compare the effect of liver transplantation (LT) on ileal pouch-anal anastomosis (IPAA) outcomes in patients with primary sclerosing cholangitis and inflammatory bowel disease (PSC-IBD). BACKGROUND Patients with PSC-IBD may require both IPAA for colitis and LT for PSC. METHODS Patients with PSC-IBD from out institutional pouch registry (1985-2022) were divided according to LT status and timing of LT (before and after IPAA) and their outcomes analyzed. RESULTS A total of 160 patients were included: 112 (70%) nontransplanted at last follow-up; 48 (30%) transplanted, of which 23 (14%) before IPAA and 25 (16%) after. Nontransplanted patients at IPAA had more laparoscopic procedures [37 (46%) vs 8 (18%), P =0.002] and less blood loss (median 250 vs 400 mL, P =0.006). Morbidity and mortality at 90 days were similar. Chronic pouchitis was higher in transplanted compared with nontransplanted patients [32 (67%) vs 51 (45.5%), P =0.03], but nontransplanted patients had a higher rate of chronic antibiotic refractory pouchitis. Overall survival was similar, but nontransplanted patients had more PSC-related deaths (12.5% vs 2%, P =0.002). Pouch survival at 10 years was 90% for nontransplanted patients and 100% for transplanted patients (log-rank P =0.052). Timing of LT had no impact on chronic pouchitis, pouch failure, or overall survival. PSC recurrence was 6% at 10 years. For transplanted patients, graft survival was similar regardless of IPAA timing. CONCLUSIONS In patients with PSC-IBD and IPAA, LT is linked to an increased pouchitis rate but does not affect overall and pouch survival. Timing of LT does not influence short-term and long-term pouch outcomes.
Collapse
Affiliation(s)
- Marianna Maspero
- Department of Colon & Rectal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Stefan D Holubar
- Department of Colon & Rectal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Roma Raj
- Department of HPB Surgery and Liver Transplantation, Digestive Disease and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Sumeyye Yilmaz
- Department of Colon & Rectal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Christopher Prien
- Department of Colon & Rectal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Olga Lavryk
- Department of Colon & Rectal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Alejandro Pita
- Department of HPB Surgery and Liver Transplantation, Digestive Disease and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Koji Hashimoto
- Department of HPB Surgery and Liver Transplantation, Digestive Disease and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Scott R Steele
- Department of Colon & Rectal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Tracy L Hull
- Department of Colon & Rectal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH
| |
Collapse
|
11
|
Zhou T, Ismail A, Francis H. Bile Acids in Autoimmune Liver Disease: Unveiling the Nexus of Inflammation, Inflammatory Cells, and Treatment Strategies. Cells 2023; 12:2725. [PMID: 38067153 PMCID: PMC10705880 DOI: 10.3390/cells12232725] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
As bile acids not solely play an essential role in nutrition absorption, but also in regulating metabolic functions as well as immune response, bile acids and their signaling pathways are increasingly acknowledged as potential therapeutic targets in the context of chronic liver diseases. Bile acid receptors such as G protein bile acid-activated receptor 1 and farnesoid X receptor are expressed in different immune cells engaged in innate immunity. Recently, a series of studies have revealed distinct functions of bile acids and bile acid receptors within the adaptive immune system. In addition, a variety of molecules targeting bile acid receptors and transporters are currently in advanced stages of clinical development. Autoimmune liver diseases including conditions like primary biliary cholangitis, primary sclerosing cholangitis, and autoimmune hepatitis can lead to chronic inflammation, fibrosis, and even cirrhosis and liver failure. In this review, we focus on the role of bile acids in the inflammatory aspects of autoimmune liver diseases.
Collapse
Affiliation(s)
- Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - AbdiGhani Ismail
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
12
|
Grama A, Mititelu A, Sîrbe C, Benţa G, Pop TL. Immune-mediated cholangiopathies in children: the need to better understand the pathophysiology for finding the future possible treatment targets. Front Immunol 2023; 14:1206025. [PMID: 37928553 PMCID: PMC10623351 DOI: 10.3389/fimmu.2023.1206025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Cholangiopathies are defined as focal or extensive damage of the bile ducts. According to the pathogenetic mechanism, it may be immune-mediated or due to genetic, infectious, toxic, vascular, and obstructive causes. Their chronic evolution is characterized by inflammation, obstruction of bile flow, cholangiocyte proliferation, and progression toward fibrosis and cirrhosis. Immune-mediated cholangiopathies comprise primary sclerosing cholangitis (PSC), autoimmune cholangitis and IgG4-associated cholangitis in adults and biliary atresia (BA), neonatal sclerosing cholangitis (NSC) in children. The main purpose of this narrative review was to highlight the similarities and differences among immune-mediated cholangiopathies, especially those frequent in children in which cholangiocyte senescence plays a key role (BA, NSC, and PSC). These three entities have many similarities in terms of clinical and histopathological manifestations, and the distinction between them can be hard to achieve. In BA, bile duct destruction occurs due to aggression of the biliary cells due to viral infections or toxins during the intrauterine period or immediately after birth. The consequence is the activation of the immune system leading to severe inflammation and fibrosis of the extrahepatic biliary tract, lumen stenosis, and impairment of the biliary flow. PSC is characterized by inflammation and fibrosis of intra- and extrahepatic bile ducts, leading to secondary biliary cirrhosis. It is a multifactorial disease that occurs because of genetic predisposition [human leukocyte antigen (HLA) and non-HLA haplotypes], autoimmunity (cellular immune response, autoantibodies, association with inflammatory bowel disease), environmental factors (infections or toxic bile), and host factors (intestinal microbiota). NSC seems to be a distinct subgroup of childhood PSC that appears due to the interaction between genetic predisposition (HLA B8 and DR3) and the disruption of the immune system, validated by elevated IgG levels or specific antibodies [antinuclear antibody (ANA), anti-smooth muscle antibody (ASMA)]. Currently, the exact mechanism of immune cholangiopathy is not fully understood, and further data are required to identify individuals at high risk of developing these conditions. A better understanding of the immune mechanisms and pathophysiology of BA, NSC, and PSC will open new perspectives for future treatments and better methods of preventing severe evolution.
Collapse
Affiliation(s)
- Alina Grama
- 2Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- 2Pediatric Clinic and Center of Expertise in Pediatric Liver Rare Disorders, Emergency Clinical Hospital for Children, Cluj-Napoca, Romania
| | - Alexandra Mititelu
- 2Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- 2Pediatric Clinic and Center of Expertise in Pediatric Liver Rare Disorders, Emergency Clinical Hospital for Children, Cluj-Napoca, Romania
| | - Claudia Sîrbe
- 2Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- 2Pediatric Clinic and Center of Expertise in Pediatric Liver Rare Disorders, Emergency Clinical Hospital for Children, Cluj-Napoca, Romania
| | - Gabriel Benţa
- 2Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- 2Pediatric Clinic and Center of Expertise in Pediatric Liver Rare Disorders, Emergency Clinical Hospital for Children, Cluj-Napoca, Romania
| | - Tudor Lucian Pop
- 2Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- 2Pediatric Clinic and Center of Expertise in Pediatric Liver Rare Disorders, Emergency Clinical Hospital for Children, Cluj-Napoca, Romania
| |
Collapse
|
13
|
Ye C, Dong C, Lin Y, Shi H, Zhou W. Interplay between the Human Microbiome and Biliary Tract Cancer: Implications for Pathogenesis and Therapy. Microorganisms 2023; 11:2598. [PMID: 37894256 PMCID: PMC10608879 DOI: 10.3390/microorganisms11102598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Biliary tract cancer, encompassing intrahepatic and extrahepatic cholangiocarcinoma as well as gallbladder carcinoma, stands as a prevalent malignancy characterized by escalating incidence rates and unfavorable prognoses. The onset of cholangiocarcinoma involves a multitude of risk factors and could potentially be influenced by microbial exposure. The human microbiome, encompassing the entirety of human microbial genetic information, assumes a pivotal role in regulating key aspects such as host digestion, absorption, immune responses, and metabolism. The widespread application of next-generation sequencing technology has notably propelled investigations into the intricate relationship between the microbiome and diseases. An accumulating body of evidence strongly suggests a profound interconnection between biliary tract cancer and the human microbiome. This article critically appraises the existing evidence pertaining to the microbiome milieu within patients afflicted by biliary tract cancer. Furthermore, it delves into potential mechanisms through which dysregulation of the human microbiome could contribute to the advancement of biliary tract cancer. Additionally, the article expounds on its role in the context of chemotherapy and immunotherapy for biliary tract cancer.
Collapse
Affiliation(s)
- Cheng Ye
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (C.Y.); (C.D.); (Y.L.); (H.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Chunlu Dong
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (C.Y.); (C.D.); (Y.L.); (H.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yanyan Lin
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (C.Y.); (C.D.); (Y.L.); (H.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Huaqing Shi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (C.Y.); (C.D.); (Y.L.); (H.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (C.Y.); (C.D.); (Y.L.); (H.S.)
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
14
|
Catanzaro E, Gringeri E, Burra P, Gambato M. Primary Sclerosing Cholangitis-Associated Cholangiocarcinoma: From Pathogenesis to Diagnostic and Surveillance Strategies. Cancers (Basel) 2023; 15:4947. [PMID: 37894314 PMCID: PMC10604939 DOI: 10.3390/cancers15204947] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the most common malignancy in patients with primary sclerosing cholangitis (PSC), accounting for 2-8% of cases and being the leading cause of death in these patients. The majority of PSC-associated CCAs (PSC-CCA) develop within the first few years after PSC diagnosis. Older age and male sex, as well as concomitant inflammatory bowel disease (IBD) or high-grade biliary stenosis, are some of the most relevant risk factors. A complex combination of molecular mechanisms involving inflammatory pathways, direct cytopathic damage, and epigenetic and genetic alterations are involved in cholangiocytes carcinogenesis. The insidious clinical presentation makes early detection difficult, and the integration of biochemical, radiological, and histological features does not always lead to a definitive diagnosis of PSC-CCA. Surveillance is mandatory, but current guideline strategies failed to improve early detection and consequently a higher patient survival rate. MicroRNAs (miRNAs), gene methylation, proteomic and metabolomic profile, and extracellular vesicle components are some of the novel biomarkers recently applied in PSC-CCA detection with promising results. The integration of these new molecular approaches in PSC diagnosis and monitoring could contribute to new diagnostic and surveillance strategies.
Collapse
Affiliation(s)
- Elisa Catanzaro
- Gastroenterology, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
- Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| | - Enrico Gringeri
- Hepatobiliary Surgery and Liver Transplantation Center, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| | - Patrizia Burra
- Gastroenterology, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
- Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| | - Martina Gambato
- Gastroenterology, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
- Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| |
Collapse
|
15
|
Demir M, Sigal M. Mucosa-associated microbiota alterations in primary sclerosing cholangitis (PSC) before and after liver transplantation-who is calling the shots? Hepatobiliary Surg Nutr 2023; 12:795-797. [PMID: 37886186 PMCID: PMC10598306 DOI: 10.21037/hbsn-23-335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 10/28/2023]
Affiliation(s)
- Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Sigal
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
16
|
Wang X, Pan L, Wang F, Long F, Yang B, Tang D. Interventional effects of oral microecological agents on perioperative indicators of colorectal cancer: a meta-analysis. Front Oncol 2023; 13:1229177. [PMID: 37681033 PMCID: PMC10482437 DOI: 10.3389/fonc.2023.1229177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Purpose To investigate the efficacy of the application of microecological agents in patients with perioperative colorectal cancer. Methods The seven electronic databases including PubMed, Cochrane Library, Excerpt Medica Database (Embase), Web of Science (WOS), Chinese Biomedical Literature Database (CBM), China National Knowledge Infrastructure (CNKI), and Wan-fang Database were systematically searched for eligible studies from 2000 to February 2023. Results A total of 38 randomized controlled clinical trials were included in this study, with a total of 1765 patients in the microecological preparation group and 1769 patients in the control group. All data were analyzed using Review Manager 5.4 and R 4.2.2 software. Meta-analysis showed that in the perioperative period of colorectal cancer, the microecological agents group reduced patients' adverse drug reactions, improved intestinal flora with Lactobacillus (SMD, 3.0858, [2.0197; 4.1520], p< 0. 0001), Bifidobacterium (SMD, 2.1551, [1.6145; 2.6956], p< 0.0001) and Escherichia coli (SMD, -1.1393, [-1.6247; -0.6538], p< 0.0001); protection of intestinal mucosal barrier function, endotoxin (SMD, -2.6850 [-4.1399; -1.2301], p=0.0003), DAO (SMD, -2.5916, [-3.4694; -1.7137], p<0.0001) and plasma D-lactate (SMD, -5.4726, [-9.8901; -1.0551], p= 0.0152), reduced inflammatory response, IL-6 (SMD, -3.1279 [-5.7706; -0.4852], p=0.0204) and CRP (SMD, -3.9698 [-7.6296; -0.3100], p=0.0335); improved the immune function of the organism, CD4+ (SMD, 1.5817 [1.0818; 2.0817], p< 0.0001), CD4+/CD8+ (SMD, 1.2938 [0.9693; 1.6183] p< 0.0001) and IgG (SMD, 1.1376 [0.2993; 1.9759] p=0.0078), improved short-term clinical efficacy, ORR (RR, 1.5105 [1.2306; 1.8541], p< 0.0001) and DCR (RR, 0.3896 [0.2620; 0.5795], p< 0.0001). Conclusion By increasing the number of beneficial flora such as Lactobacillus and Bifidobacterium and decreasing the number of harmful flora such as Escherichia coli, the micro-ecological preparation group is beneficial in improving the ecological dysregulation in colorectal cancer patients receiving different treatments in the perioperative period. The microecological preparation group was able to reduce many types of adverse drug reactions, such as infections and gastrointestinal discomfort, compared to the control group. The microecological agents also reduced inflammatory responses, decreased the increase in harmful metabolites, enhanced patients' immune function, protected intestinal mucosal barrier function, and improved short-term clinical outcomes. Systematic review registration https://inplasy.com/inplasy-2023-4-0051/, identifier INPLASY202340051.
Collapse
Affiliation(s)
- Xueyan Wang
- The First College of Clinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Lijun Pan
- Department of Medical Affairs, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Feiqing Wang
- Research Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Fengxi Long
- Development Planning Division, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Bing Yang
- Student Management Office, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Dongxin Tang
- Dean’s Office, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
17
|
Cai X, Tacke F, Guillot A, Liu H. Cholangiokines: undervalued modulators in the hepatic microenvironment. Front Immunol 2023; 14:1192840. [PMID: 37261338 PMCID: PMC10229055 DOI: 10.3389/fimmu.2023.1192840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
The biliary epithelial cells, also known as cholangiocytes, line the intra- and extrahepatic bile ducts, forming a barrier between intra- and extra-ductal environments. Cholangiocytes are mostly known to modulate bile composition and transportation. In hepatobiliary diseases, bile duct injury leads to drastic alterations in cholangiocyte phenotypes and their release of soluble mediators, which can vary depending on the original insult and cellular states (quiescence, senescence, or proliferation). The cholangiocyte-secreted cytokines (also termed cholangiokines) drive ductular cell proliferation, portal inflammation and fibrosis, and carcinogenesis. Hence, despite the previous consensus that cholangiocytes are bystanders in liver diseases, their diverse secretome plays critical roles in modulating the intrahepatic microenvironment. This review summarizes recent insights into the cholangiokines under both physiological and pathological conditions, especially as they occur during liver injury-regeneration, inflammation, fibrosis and malignant transformation processes.
Collapse
Affiliation(s)
- Xiurong Cai
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Hanyang Liu
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- Center of Gastrointestinal Diseases, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
18
|
The Role of Microbiota in Liver Transplantation and Liver Transplantation-Related Biliary Complications. Int J Mol Sci 2023; 24:ijms24054841. [PMID: 36902269 PMCID: PMC10003075 DOI: 10.3390/ijms24054841] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Liver transplantation as a treatment option for end-stage liver diseases is associated with a relevant risk for complications. On the one hand, immunological factors and associated chronic graft rejection are major causes of morbidity and carry an increased risk of mortality due to liver graft failure. On the other hand, infectious complications have a major impact on patient outcomes. In addition, abdominal or pulmonary infections, and biliary complications, including cholangitis, are common complications in patients after liver transplantation and can also be associated with a risk for mortality. Thereby, these patients already suffer from gut dysbiosis at the time of liver transplantation due to their severe underlying disease, causing end-stage liver failure. Despite an impaired gut-liver axis, repeated antibiotic therapies can cause major changes in the gut microbiome. Due to repeated biliary interventions, the biliary tract is often colonized by several bacteria with a high risk for multi-drug resistant germs causing local and systemic infections before and after liver transplantation. Growing evidence about the role of gut microbiota in the perioperative course and their impact on patient outcomes in liver transplantation is available. However, data about biliary microbiota and their impact on infectious and biliary complications are still sparse. In this comprehensive review, we compile the current evidence for the role of microbiome research in liver transplantation with a focus on biliary complications and infections due to multi-drug resistant germs.
Collapse
|
19
|
Research Progress of Fecal Microbiota Transplantation in Liver Diseases. J Clin Med 2023; 12:jcm12041683. [PMID: 36836218 PMCID: PMC9960958 DOI: 10.3390/jcm12041683] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
A growing body of evidence suggested that gut microbiota is associated with liver diseases through the gut-liver axis. The imbalance of gut microbiota could be correlated with the occurrence, development, and prognosis of a series of liver diseases, including alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), viral hepatitis, cirrhosis, primary sclerosing cholangitis (PSC), and hepatocellular carcinoma (HCC). Fecal microbiota transplantation (FMT) seems to be a method to normalize the patient's gut microbiota. This method has been traced back to the 4th century. In recent decade, FMT has been highly regarded in several clinical trials. As a novel approach to reconstruct the intestinal microecological balance, FMT has been used to treat the chronic liver diseases. Therefore, in this review, the role of FMT in the treatment of liver diseases was summarized. In addition, the relationship between gut and liver was explored through the gut-liver axis, and the definition, objectives, advantages, and procedures of FMT were described. Finally, the clinical value of FMT therapy in liver transplant (LT) recipients was briefly discussed.
Collapse
|
20
|
Cadamuro M, Al-Taee A, Gonda TA. Advanced endoscopy meets molecular diagnosis of cholangiocarcinoma. J Hepatol 2023; 78:1063-1072. [PMID: 36740048 DOI: 10.1016/j.jhep.2023.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/22/2022] [Accepted: 01/18/2023] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma remains an aggressive and deadly malignancy that is often diagnosed late. Intrinsic tumour characteristics and the growth pattern of cancer cells contribute to the challenges of diagnosis and chemoresistance. However, establishing an early and accurate diagnosis, and in some instances identifying targetable changes, has the potential to impact survival. Primary sclerosing cholangitis, a chronic cholangiopathy prodromal to the development of a minority of cholangiocarcinomas, poses a particular diagnostic challenge. We present our diagnostic and theranostic approach to the initial evaluation of cholangiocarcinomas, focusing on extrahepatic cholangiocarcinoma. This involves a multipronged strategy incorporating advanced imaging, endoscopic methods, multiple approaches to tissue sampling, and molecular markers. We also provide an algorithm for the sequential use of these tools.
Collapse
Affiliation(s)
| | - Ahmad Al-Taee
- Carle Illinois College of Medicine, University of Illinois Urbaba-Champaign, Champaign County, IL, USA
| | - Tamas A Gonda
- Division of Gastroenterology and Hepatology, New York University, New York, NY, USA.
| |
Collapse
|
21
|
Talapko J, Včev A, Meštrović T, Pustijanac E, Jukić M, Škrlec I. Homeostasis and Dysbiosis of the Intestinal Microbiota: Comparing Hallmarks of a Healthy State with Changes in Inflammatory Bowel Disease. Microorganisms 2022; 10:microorganisms10122405. [PMID: 36557658 PMCID: PMC9781915 DOI: 10.3390/microorganisms10122405] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota, which represent a community of different microorganisms in the human intestinal tract, are crucial to preserving human health by participating in various physiological functions and acting as a metabolic organ. In physiological conditions, microbiota-host partnership exerts homeostatic stability; however, changes in intestinal microbiota composition (dysbiosis) are an important factor in the pathogenesis of inflammatory bowel disease and its two main disease entities: ulcerative colitis and Crohn's disease. The incidence and prevalence of these inflammatory conditions have increased rapidly in the last decade, becoming a significant problem for the healthcare system and a true challenge in finding novel therapeutic solutions. The issue is that, despite numerous studies, the etiopathogenesis of inflammatory bowel disease is not completely clear. Based on current knowledge, chronic intestinal inflammation occurs due to altered intestinal microbiota and environmental factors, as well as a complex interplay between the genetic predisposition of the host and an inappropriate innate and acquired immune response. It is important to note that the development of biological and immunomodulatory therapy has led to significant progress in treating inflammatory bowel disease. Certain lifestyle changes and novel approaches-including fecal microbiota transplantation and nutritional supplementation with probiotics, prebiotics, and synbiotics-have offered solutions for dysbiosis management and paved the way towards restoring a healthy microbiome, with only minimal long-term unfavorable effects.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Aleksandar Včev
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation and the Department of Health Metrics Sciences, University of Washington, Seattle, WA 98195, USA
- Correspondence: (T.M.); (I.Š.)
| | - Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100 Pula, Croatia
| | - Melita Jukić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
- General Hospital Vukovar, Županijska 35, 32000 Vukovar, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
- Correspondence: (T.M.); (I.Š.)
| |
Collapse
|
22
|
Gustafsson JK, Johansson MEV. The role of goblet cells and mucus in intestinal homeostasis. Nat Rev Gastroenterol Hepatol 2022; 19:785-803. [PMID: 36097076 DOI: 10.1038/s41575-022-00675-x] [Citation(s) in RCA: 195] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 12/08/2022]
Abstract
The intestinal tract faces numerous challenges that require several layers of defence. The tight epithelium forms a physical barrier that is further protected by a mucus layer, which provides various site-specific protective functions. Mucus is produced by goblet cells, and as a result of single-cell RNA sequencing identifying novel goblet cell subpopulations, our understanding of their various contributions to intestinal homeostasis has improved. Goblet cells not only produce mucus but also are intimately linked to the immune system. Mucus and goblet cell development is tightly regulated during early life and synchronized with microbial colonization. Dysregulation of the developing mucus systems and goblet cells has been associated with infectious and inflammatory conditions and predisposition to chronic disease later in life. Dysfunctional mucus and altered goblet cell profiles are associated with inflammatory conditions in which some mucus system impairments precede inflammation, indicating a role in pathogenesis. In this Review, we present an overview of the current understanding of the role of goblet cells and the mucus layer in maintaining intestinal health during steady-state and how alterations to these systems contribute to inflammatory and infectious disease.
Collapse
Affiliation(s)
- Jenny K Gustafsson
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemisty and Cell biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
23
|
Zheng L. New insights into the interplay between intestinal flora and bile acids in inflammatory bowel disease. World J Clin Cases 2022; 10:10823-10839. [PMID: 36338232 PMCID: PMC9631134 DOI: 10.12998/wjcc.v10.i30.10823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/08/2022] [Accepted: 09/16/2022] [Indexed: 02/05/2023] Open
Abstract
Intestinal flora plays a key role in nutrient absorption, metabolism and immune defense, and is considered to be the cornerstone of maintaining the health of human hosts. Bile acids synthesized in the liver can not only promote the absorption of fat-soluble substances in the intestine, but also directly or indirectly affect the structure and function of intestinal flora. Under the action of intestinal flora, bile acids can be converted into secondary bile acids, which can be reabsorbed back to the liver through the enterohepatic circulation. The complex dialogue mechanism between intestinal flora and bile acids is involved in the development of intestinal inflammation such as inflammatory bowel disease (IBD). In this review, the effects of intestinal flora, bile acids and their interactions on IBD and the progress of treatment were reviewed.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| |
Collapse
|
24
|
Cadamuro M, Strazzabosco M. Inflammatory pathways and cholangiocarcinoma risk mechanisms and prevention. Adv Cancer Res 2022; 156:39-73. [PMID: 35961707 PMCID: PMC10916841 DOI: 10.1016/bs.acr.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cholangiocarcinoma (CCA), a neoplasm burdened by a poor prognosis and currently lacking adequate therapeutic treatments, can originate at different levels of the biliary tree, in the intrahepatic, hilar, or extrahepatic area. The main risk factors for the development of CCA are the presence of chronic cholangiopathies of various etiology. To date, the most studied prodromal diseases of CCA are primary sclerosing cholangitis, Caroli's disease and fluke infestations, but other conditions, such as metabolic syndrome, nonalcoholic fatty liver disease and obesity, are emerging as associated with an increased risk of CCA development. In this review, we focused on the analysis of the pro-inflammatory mechanisms that induce the development of CCA and on the role of cells of the immune response in cholangiocarcinogenesis. In very recent times, these cellular mechanisms have been the subject of emerging studies aimed at verifying how the modulation of the inflammatory and immunological responses can have a therapeutic significance and how these can be used as therapeutic targets.
Collapse
Affiliation(s)
| | - Mario Strazzabosco
- Liver Center, Department of Internal Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
25
|
Pavicevic S, Reichelt S, Uluk D, Lurje I, Engelmann C, Modest DP, Pelzer U, Krenzien F, Raschzok N, Benzing C, Sauer IM, Stintzing S, Tacke F, Schöning W, Schmelzle M, Pratschke J, Lurje G. Prognostic and Predictive Molecular Markers in Cholangiocarcinoma. Cancers (Basel) 2022; 14:1026. [PMID: 35205774 PMCID: PMC8870611 DOI: 10.3390/cancers14041026] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common primary liver cancer and subsumes a heterogeneous group of malignant tumors arising from the intra- or extrahepatic biliary tract epithelium. A rising mortality from CCA has been reported worldwide during the last decade, despite significant improvement of surgical and palliative treatment. Over 50% of CCAs originate from proximal extrahepatic bile ducts and constitute the most common CCA entity in the Western world. Clinicopathological characteristics such as lymph node status and poor differentiation remain the best-studied, but imperfect prognostic factors. The identification of prognostic molecular markers as an adjunct to traditional staging systems may not only facilitate the selection of patients who would benefit the most from surgical, adjuvant or palliative treatment strategies, but may also be helpful in defining the aggressiveness of the disease and identifying patients at high-risk for tumor recurrence. The purpose of this review is to provide an overview of currently known molecular prognostic and predictive markers and their role in CCA.
Collapse
Affiliation(s)
- Sandra Pavicevic
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Sophie Reichelt
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Deniz Uluk
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Isabella Lurje
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (C.E.); (F.T.)
| | - Cornelius Engelmann
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (C.E.); (F.T.)
| | - Dominik P. Modest
- Department of Hematology, Oncology and Cancer Immunology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (D.P.M.); (U.P.); (S.S.)
| | - Uwe Pelzer
- Department of Hematology, Oncology and Cancer Immunology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (D.P.M.); (U.P.); (S.S.)
| | - Felix Krenzien
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Nathanael Raschzok
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Christian Benzing
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Igor M. Sauer
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Sebastian Stintzing
- Department of Hematology, Oncology and Cancer Immunology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (D.P.M.); (U.P.); (S.S.)
| | - Frank Tacke
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (C.E.); (F.T.)
| | - Wenzel Schöning
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Moritz Schmelzle
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Georg Lurje
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| |
Collapse
|