1
|
Zhang Z, Zou Y, Song C, Cao K, Cai K, Chen S, Wu Y, Geng D, Sun G, Zhang N, Zhang X, Zhang Y, Sun Y, Zhang Y. Advances in the study of exosomes in cardiovascular diseases. J Adv Res 2024; 66:133-153. [PMID: 38123019 PMCID: PMC11674797 DOI: 10.1016/j.jare.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) has been the leading cause of death worldwide for many years. In recent years, exosomes have gained extensive attention in the cardiovascular system due to their excellent biocompatibility. Studies have extensively researched miRNAs in exosomes and found that they play critical roles in various physiological and pathological processes in the cardiovascular system. These processes include promoting or inhibiting inflammatory responses, promoting angiogenesis, participating in cell proliferation and migration, and promoting pathological progression such as fibrosis. AIM OF REVIEW This systematic review examines the role of exosomes in various cardiovascular diseases such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, heart failure and cardiomyopathy. It also presents the latest treatment and prevention methods utilizing exosomes. The study aims to provide new insights and approaches for preventing and treating cardiovascular diseases by exploring the relationship between exosomes and these conditions. Furthermore, the review emphasizes the potential clinical use of exosomes as biomarkers for diagnosing cardiovascular diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW Exosomes are nanoscale vesicles surrounded by lipid bilayers that are secreted by most cells in the body. They are heterogeneous, varying in size and composition, with a diameter typically ranging from 40 to 160 nm. Exosomes serve as a means of information communication between cells, carrying various biologically active substances, including lipids, proteins, and small RNAs such as miRNAs and lncRNAs. As a result, they participate in both physiological and pathological processes within the body.
Collapse
Affiliation(s)
- Zhaobo Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Xingang Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
2
|
Feng P, Yang F, Zang D, Bai D, Xu L, Fu Y, You R, Liu T, Yang X. Deciphering the roles of cellular and extracellular non-coding RNAs in chemotherapy-induced cardiotoxicity. Mol Cell Biochem 2024:10.1007/s11010-024-05143-5. [PMID: 39485641 DOI: 10.1007/s11010-024-05143-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024]
Abstract
Chemotherapy-induced cardiotoxicity is a major adverse effect, driven by multiple factors in its pathogenesis. Notably, RNAs have emerged as significant contributors in both cancer and heart failure (HF). RNAs carry genetic and metabolic information that mirrors the current state of cells, making them valuable as potential biomarkers and therapeutic tools for diagnosing, predicting, and treating a range of diseases, including cardiotoxicity. Over 97% of the genome is transcribed into non-coding RNAs (ncRNAs), including ribosomal RNA (rRNAs), transfer RNAs (tRNAs), and newly identified microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs). NcRNAs function not only within their originating cells but also in recipient cells by being transported through extracellular compartments, referred to as extracellular RNAs (exRNAs). Since ncRNAs were identified as key regulators of gene expression, numerous studies have highlighted their significance in both cancer and cardiovascular diseases. Nevertheless, the role of ncRNAs in cardiotoxicity remains not fully elucidated. The study aims to review the existing knowledge on ncRNAs in Cardio-Oncology and explore the potential of ncRNA-based biomarkers and therapies. These investigations could advance the clinical application of ncRNA research, improving early detection and mitigating of chemotherapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Pan Feng
- Baoji Hospital of Traditional Chinese Medicine, Baoji, 721000, China
| | - Fan Yang
- Guang'an Men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Dongmei Zang
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Dapeng Bai
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Liyan Xu
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Yueyun Fu
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Ranran You
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Tao Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710068, China.
| | - Xinyu Yang
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, 102400, China.
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
3
|
Louro AF, Meliciano A, Alves PM, Costa MHG, Serra M. A roadmap towards manufacturing extracellular vesicles for cardiac repair. Trends Biotechnol 2024; 42:1305-1322. [PMID: 38653588 DOI: 10.1016/j.tibtech.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
For the past two decades researchers have linked extracellular vesicle (EV)-mediated mechanisms to various physiological and pathological processes in the heart, such as immune response regulation, fibrosis, angiogenesis, and the survival and growth of cardiomyocytes. Although use of EVs has gathered momentum in the cardiac field, several obstacles in both upstream and downstream processes during EV manufacture need to be addressed before clinical success can be achieved. Low EV yields obtained in small-scale cultures deter clinical translation, as mass production is a prerequisite to meet therapeutic doses. Moreover, standardizing EV manufacture is critical given the inherent heterogeneity of EVs and the constraints of current isolation techniques. In this review, we discuss the critical steps for the large-scale manufacturing of high-potency EVs for cardiac therapies.
Collapse
Affiliation(s)
- Ana F Louro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Meliciano
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Marta H G Costa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
4
|
Barcelos SM, Rosa PMDS, Moura ABB, Villarroel CLP, Bridi A, Bispo ECI, Garcez EM, Oliveira GDS, Almeida MA, Malard PF, Peixer MAS, Pereira RW, de Alencar SA, Saldanha-Araujo F, Dallago BSL, da Silveira JC, Perecin F, Pogue R, Carvalho JL. Extracellular vesicles derived from bovine adipose-derived mesenchymal stromal cells enhance in vitro embryo production from lesioned ovaries. Cytotherapy 2024; 26:1141-1151. [PMID: 38904584 DOI: 10.1016/j.jcyt.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND AND AIMS Ovum pick-up (OPU) is an intrinsic step of in vitro fertilization procedures. Nevertheless, it can cause ovarian lesions and compromise female fertility in bovines. Recently, we have shown that intraovarian injection of adipose-derived mesenchymal stromal cells (AD-MSCs) effectively preserves ovarian function in bovines. Given that MSC-derived extracellular vesicles (MSC-EVs) have been shown to recapitulate several therapeutic effects attributed to AD-MSCs and that they present logistic and regulatory advantages compared to AD-MSCs, we tested whether MSC-EVs would also be useful to treat OPU-induced lesions. METHODS MSC-EVs were isolated from the secretome of bovine AD-MSCs, using ultrafiltration (UF) and ultracentrifugation methods. The MSC-EVs were characterized according to concentration and mean particle size, morphology, protein concentration and EV markers, miRNA, mRNA, long noncoding RNA profile, total RNA yield and potential for induction of the proliferation and migration of bovine ovarian stromal cells. We then investigated whether intraovarian injection of MSC-EVs obtained by UF would reduce the negative effects of acute OPU-induced ovarian lesions in bovines. To do so, 20 animals were divided into 4 experimental groups (n = 5), submitted to 4 OPU cycles and different experimental treatments including vehicle only (G1), MSC-EVs produced by 7.5 × 106 AD-MSCs (G2), MSC-EVs produced by 2.5 × 106 AD-MSCs (G3) or 3 doses of MSC-EVs produced by 2.5 × 106 AD-MSCs, injected after OPU sessions 1, 2 and 3 (G4). RESULTS Characterization of the MSC-EVs revealed that the size of the particles was similar in the different isolation methods; however, the UF method generated a greater MSC-EV yield. MSC-EVs processed by both methods demonstrated a similar ability to promote cell migration and proliferation in ovarian stromal cells. Considering the higher yield and lower complexity of the UF method, UF-MSC-EVs were used in the in vivo experiment. We evaluated three therapeutic regimens for cows subjected to OPU, noting that the group treated with three MSC-EV injections (G4) maintained oocyte production and increased in vitro embryo production, compared to G1, which presented compromised embryo production following the OPU-induced lesions. CONCLUSIONS MSC-EVs have beneficial effects both on the migration and proliferation of ovarian stromal cells and on the fertility of bovines with follicular puncture injury in vivo.
Collapse
Affiliation(s)
- Stefhani Martins Barcelos
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, DF, Brazil; Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil
| | - Paola Maria da Silva Rosa
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Ana Beatriz Bossois Moura
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | | | - Alessandra Bridi
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | | | - Emãnuella Melgaço Garcez
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil
| | | | - Maria Alice Almeida
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | | | | | | | - Sérgio Amorim de Alencar
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil
| | - Felipe Saldanha-Araujo
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Bruno Stéfano Lima Dallago
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, DF, Brazil
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Felipe Perecin
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Robert Pogue
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil
| | - Juliana Lott Carvalho
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, DF, Brazil; Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil.
| |
Collapse
|
5
|
Tetterton-Kellner J, Jensen BC, Nguyen J. Navigating cancer therapy induced cardiotoxicity: From pathophysiology to treatment innovations. Adv Drug Deliv Rev 2024; 211:115361. [PMID: 38901637 PMCID: PMC11534294 DOI: 10.1016/j.addr.2024.115361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Every year, more than a million people in the United States undergo chemotherapy or radiation therapy for cancer, as estimated by the CDC. While chemotherapy has been an instrumental tool for treating cancer, it also causes severe adverse effects. The more commonly acknowledged adverse effects include hair loss, fatigue, and nausea, but a more severe and longer lasting side effect is cardiotoxicity. Cardiotoxicity, or heart damage, is a common complication of cancer treatments. It can range from mild to severe, and it can affect some patients temporarily or others permanently, even after they are cured of cancer. Dexrazoxane is the only FDA-approved drug for treating anthracycline induced cardiotoxicity, but it also has drawbacks and adverse effects. There is no other type of chemotherapy induced cardiotoxicity that has an approved treatment option. In this review, we discuss the pathophysiology of chemotherapeutic-induced cardiotoxicity, methods and guidelines of diagnosis, methods of treatment and mitigation, and current drug delivery approaches in therapeutic development.
Collapse
Affiliation(s)
- Jessica Tetterton-Kellner
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian C Jensen
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Cardiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Zheng H, Liang X, Liu B, Huang X, Shen Y, Lin F, Chen J, Gao X, He H, Li W, Hu B, Li X, Zhang Y. Exosomal miR-9-5p derived from iPSC-MSCs ameliorates doxorubicin-induced cardiomyopathy by inhibiting cardiomyocyte senescence. J Nanobiotechnology 2024; 22:195. [PMID: 38643173 PMCID: PMC11032595 DOI: 10.1186/s12951-024-02421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/18/2024] [Indexed: 04/22/2024] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent widely used for tumor treatment. Nonetheless its clinical application is heavily limited by its cardiotoxicity. There is accumulated evidence that transplantation of mesenchymal stem cell-derived exosomes (MSC-EXOs) can protect against Dox-induced cardiomyopathy (DIC). This study aimed to examine the cardioprotective effects of EXOs isolated from human induced pluripotent stem cell-derived MSCs (iPSC-MSCs) against DIC and explore the potential mechanisms. EXOs were isolated from the cultural supernatant of human BM-MSCs (BM-MSC-EXOs) and iPSC-MSCs (iPSC-MSC-EXOs) by ultracentrifugation. A mouse model of DIC was induced by intraperitoneal injection of Dox followed by tail vein injection of PBS, BM-MSC-EXOs, or iPSC-MSC-EXOs. Cardiac function, cardiomyocyte senescence and mitochondrial dynamics in each group were assessed. In vitro, neonatal mouse cardiomyocytes (NMCMs) were subjected to Dox and treated with BM-MSC-EXOs or iPSC-MSC-EXOs. The mitochondrial morphology and cellular senescence of NMCMs were examined by Mitotracker staining and senescence-associated-β-galactosidase assay, respectively. Compared with BM-MSC-EXOs, mice treated with iPSC-MSC-EXOs displayed improved cardiac function and decreased cardiomyocyte mitochondrial fragmentation and senescence. In vitro, iPSC-MSC-EXOs were superior to BM-MSC-EXOs in attenuation of cardiomyocyte mitochondrial fragmentation and senescence caused by DOX. MicroRNA sequencing revealed a higher level of miR-9-5p in iPSC-MSC-EXOs than BM-MSC-EXOs. Mechanistically, iPSC-MSC-EXOs transported miR-9-5p into DOX-treated cardiomyocytes, thereby suppressing cardiomyocyte mitochondrial fragmentation and senescence via regulation of the VPO1/ERK signal pathway. These protective effects and cardioprotection against DIC were largely reversed by knockdown of miR-9-5p in iPSC-MSC-EXOs. Our results showed that miR-9-5p transferred by iPSC-MSC-EXOs protected against DIC by alleviating cardiomyocyte senescence via inhibition of the VPO1/ERK pathway. This study offers new insight into the application of iPSC-MSC-EXOs as a novel therapeutic strategy for DIC treatment.
Collapse
Affiliation(s)
- Huifeng Zheng
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Department of Intensive Care Unit, Chongqing General Hospital, Chongqing, China
| | - Xiaoting Liang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Baojuan Liu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xinran Huang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Shen
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Fang Lin
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiaqi Chen
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoyan Gao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Haiwei He
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Weifeng Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Bei Hu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| | - Yuelin Zhang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Barrère-Lemaire S, Vincent A, Jorgensen C, Piot C, Nargeot J, Djouad F. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. Physiol Rev 2024; 104:659-725. [PMID: 37589393 DOI: 10.1152/physrev.00009.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/05/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.
Collapse
Affiliation(s)
- Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Anne Vincent
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Christophe Piot
- Département de Cardiologie Interventionnelle, Clinique du Millénaire, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Farida Djouad
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| |
Collapse
|
8
|
Zhang X, Che X, Zhang S, Wang R, Li M, Jin Y, Wang T, Song Y. Mesenchymal stem cell-derived extracellular vesicles for human diseases. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:64-82. [PMID: 39698413 PMCID: PMC11648454 DOI: 10.20517/evcna.2023.47] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 12/20/2024]
Abstract
Stem cell therapy is a novel approach for treating various severe and intractable diseases, including autoimmune disorders, organ transplants, tumors, and neurodegenerative diseases. Nevertheless, the extensive utilization of stem cells is constrained by potential tumorigenicity, challenges in precise differentiation, rejection concerns, and ethical considerations. Extracellular vesicles possess the ability to carry diverse bioactive factors from stem cells and deliver them to specific target cells or tissues. Moreover, they offer the advantage of low immunogenicity. Consequently, they have the potential to facilitate the therapeutic potential of stem cells, mitigating the risks associated with direct stem cell application. Therefore, the use of stem cell extracellular vesicles in clinical diseases has received increasing attention. This review summarizes advances in the use of extracellular vesicles from mesenchymal stem cells (MSC). MSC extracellular vesicles are used in the treatment of inflammatory diseases such as rheumatoid arthritis, liver injury, COVID-19, and allergies; in the repair of tissue damage in heart disease, kidney injury, and osteoarthritic diseases; as a carrier in the treatment of tumors; and as a regenerative agent in neurodegenerative disorders such as Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Faculty of Medicine, Dalian University of Technology, Shenyang 110042, Liaoning, China
- Authors contributed equally
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
- Authors contributed equally
| | - Sibo Zhang
- The Fourth Hospital of China Medical University, Shenyang 110032, Liaoning, China
- Authors contributed equally
| | - Runze Wang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Faculty of Medicine, Dalian University of Technology, Shenyang 110042, Liaoning, China
| | - Mo Li
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Faculty of Medicine, Dalian University of Technology, Shenyang 110042, Liaoning, China
| | - Yi Jin
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Faculty of Medicine, Dalian University of Technology, Shenyang 110042, Liaoning, China
| | - Tianlu Wang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Faculty of Medicine, Dalian University of Technology, Shenyang 110042, Liaoning, China
| | - Yingqiu Song
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Faculty of Medicine, Dalian University of Technology, Shenyang 110042, Liaoning, China
| |
Collapse
|
9
|
Ali SA, Singla DK. Mesenchymal Stem Cell-Derived Exosomes Ameliorate Doxorubicin-Induced Cardiotoxicity. Pharmaceuticals (Basel) 2024; 17:93. [PMID: 38256928 PMCID: PMC10820693 DOI: 10.3390/ph17010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Doxorubicin (DOX) is an incessantly used chemotherapeutic drug that can cause detrimental dose-dependent effects such as cardiotoxicity and congestive heart failure. Hence, there is a need to discover innovative therapeutic approaches to counteract DOX-induced cardiotoxicity (DIC). MSC-Exos have shown to reduce apoptosis and cardiac fibrosis and promote cardiomyocyte proliferation in myocardial infracted mice. However, the effect of MSC-Exos on ameliorating DOX-induced pyroptosis has not been investigated. In this current study, H9c2 were first exposed to DOX to stimulate pyroptosis, followed by subsequent treatment with MSC-Exos, with further analysis performed through immunocytochemistry, western blotting, and RT-PCR. Our data depicted that post-treatment with MSC-Exos significantly (p < 0.05) reduced the HMGB1/TLR4 axis, inflammasome formation (NLRP3), pyroptotic markers (caspase-1, IL-1β, and IL-18), and the pyroptotic executioner (GSDMD) in DOX-treated H9c2 cells. In conclusion, our data show that MSC-Exos attenuates inflammation-induced pyroptosis in our in vitro DIC model. Our findings indicate that MSC-Exos may serve as a promising therapeutic intervention for mitigating DIC, as they maintain the therapeutic capabilities of MSCs while circumventing the drawbacks associated with traditional stem cell therapy.
Collapse
Affiliation(s)
| | - Dinender K. Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA;
| |
Collapse
|
10
|
Zalivina I, Barwari T, Yin X, Langley SR, Barallobre-Barreiro J, Wakimoto H, Zampetaki A, Mayr M, Avkiran M, Eminaga S. Inhibition of miR-199a-3p in a murine hypertrophic cardiomyopathy (HCM) model attenuates fibrotic remodeling. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 6:100056. [PMID: 38143961 PMCID: PMC10739604 DOI: 10.1016/j.jmccpl.2023.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
Background Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic disorder, characterized by cardiomyocyte hypertrophy, cardiomyocyte disarray and fibrosis, which has a prevalence of ∼1: 200-500 and predisposes individuals to heart failure and sudden death. The mechanisms through which diverse HCM-causing mutations cause cardiac dysfunction remain mostly unknown and their identification may reveal new therapeutic avenues. MicroRNAs (miRNAs) have emerged as critical regulators of gene expression and disease phenotype in various pathologies. We explored whether miRNAs could play a role in HCM pathogenesis and offer potential therapeutic targets. Methods and results Using high-throughput miRNA expression profiling and qPCR analysis in two distinct mouse models of HCM, we found that miR-199a-3p expression levels are upregulated in mutant mice compared to age- and treatment-matched wild-type mice. We also found that miR-199a-3p expression is enriched in cardiac non-myocytes compared to cardiomyocytes. When we expressed miR-199a-3p mimic in cultured murine primary cardiac fibroblasts and analyzed the conditioned media by proteomics, we found that several extracellular matrix (ECM) proteins (e.g., TSP2, FBLN3, COL11A1, LYOX) were differentially secreted (data are available via ProteomeXchange with identifier PXD042904). We confirmed our proteomics findings by qPCR analysis of selected mRNAs and demonstrated that miR-199a-3p mimic expression in cardiac fibroblasts drives upregulation of ECM gene expression, including Tsp2, Fbln3, Pcoc1, Col1a1 and Col3a1. To examine the role of miR-199a-3p in vivo, we inhibited its function using lock-nucleic acid (LNA)-based inhibitors (antimiR-199a-3p) in an HCM mouse model. Our results revealed that progression of cardiac fibrosis is attenuated when miR-199a-3p function is inhibited in mild-to-moderate HCM. Finally, guided by computational target prediction algorithms, we identified mRNAs Cd151 and Itga3 as direct targets of miR-199a-3p and have shown that miR-199a-3p mimic expression negatively regulates AKT activation in cardiac fibroblasts. Conclusions Altogether, our results suggest that miR-199a-3p may contribute to cardiac fibrosis in HCM through its actions in cardiac fibroblasts. Thus, inhibition of miR-199a-3p in mild-to-moderate HCM may offer therapeutic benefit in combination with complementary approaches that target the primary defect in cardiac myocytes.
Collapse
Affiliation(s)
- Irina Zalivina
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Temo Barwari
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Xiaoke Yin
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Sarah R. Langley
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Zampetaki
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Manuel Mayr
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Metin Avkiran
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Seda Eminaga
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| |
Collapse
|
11
|
Yin X, Lin L, Fang F, Zhang B, Shen C. Mechanisms and Optimization Strategies of Paracrine Exosomes from Mesenchymal Stem Cells in Ischemic Heart Disease. Stem Cells Int 2023; 2023:6500831. [PMID: 38034060 PMCID: PMC10686715 DOI: 10.1155/2023/6500831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
The morbidity and mortality of myocardial infarction (MI) are increasing worldwide. Mesenchymal stem cells (MSCs) are multipotent stem cells with self-renewal and differentiation capabilities that are essential in tissue healing and regenerative medicine. However, the low implantation and survival rates of transplanted cells hinder the widespread clinical use of stem cells. Exosomes are naturally occurring nanovesicles that are secreted by cells and promote the repair of cardiac function by transporting noncoding RNA and protein. In recent years, MSC-derived exosomes have been promising cell-free treatment tools for improving cardiac function and reversing cardiac remodeling. This review describes the biological properties and therapeutic potential of exosomes and summarizes some engineering approaches for exosomes optimization to enhance the targeting and therapeutic efficacy of exosomes in MI.
Collapse
Affiliation(s)
- Xiaorong Yin
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Lizhi Lin
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Fang Fang
- Department of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Cheng Shen
- Department of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
12
|
Zhang S, Yahaya BH, Pan Y, Liu Y, Lin J. Menstrual blood-derived endometrial stem cell, a unique and promising alternative in the stem cell-based therapy for chemotherapy-induced premature ovarian insufficiency. Stem Cell Res Ther 2023; 14:327. [PMID: 37957675 PMCID: PMC10644549 DOI: 10.1186/s13287-023-03551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Chemotherapy can cause ovarian dysfunction and infertility since the ovary is extremely sensitive to chemotherapeutic drugs. Apart from the indispensable role of the ovary in the overall hormonal milieu, ovarian dysfunction also affects many other organ systems and functions including sexuality, bones, the cardiovascular system, and neurocognitive function. Although conventional hormone replacement therapy can partly relieve the adverse symptoms of premature ovarian insufficiency (POI), the treatment cannot fundamentally prevent deterioration of POI. Therefore, effective treatments to improve chemotherapy-induced POI are urgently needed, especially for patients desiring fertility preservation. Recently, mesenchymal stem cell (MSC)-based therapies have resulted in promising improvements in chemotherapy-induced ovary dysfunction by enhancing the anti-apoptotic capacity of ovarian cells, preventing ovarian follicular atresia, promoting angiogenesis and improving injured ovarian structure and the pregnancy rate. These improvements are mainly attributed to MSC-derived biological factors, functional RNAs, and even mitochondria, which are directly secreted or indirectly translocated with extracellular vesicles (microvesicles and exosomes) to repair ovarian dysfunction. Additionally, as a novel source of MSCs, menstrual blood-derived endometrial stem cells (MenSCs) have exhibited promising therapeutic effects in various diseases due to their comprehensive advantages, such as periodic and non-invasive sample collection, abundant sources, regular donation and autologous transplantation. Therefore, this review summarizes the efficacy of MSCs transplantation in improving chemotherapy-induced POI and analyzes the underlying mechanism, and further discusses the benefit and existing challenges in promoting the clinical application of MenSCs in chemotherapy-induced POI.
Collapse
Affiliation(s)
- Shenghui Zhang
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia
| | - Ying Pan
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, , China
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China.
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China.
| |
Collapse
|
13
|
Zhang X, Sun S, Ren G, Liu W, Chen H. Advances in Intercellular Communication Mediated by Exosomal ncRNAs in Cardiovascular Disease. Int J Mol Sci 2023; 24:16197. [PMID: 38003385 PMCID: PMC10671547 DOI: 10.3390/ijms242216197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases are a leading cause of worldwide mortality, and exosomes have recently gained attention as key mediators of intercellular communication in these diseases. Exosomes are double-layered lipid vesicles that can carry biomolecules such as miRNAs, lncRNAs, and circRNAs, and the content of exosomes is dependent on the cell they originated from. They can be involved in the pathophysiological processes of cardiovascular diseases and hold potential as diagnostic and monitoring tools. Exosomes mediate intercellular communication, stimulate or inhibit the activity of target cells, and affect myocardial hypertrophy, injury and infarction, ventricular remodeling, angiogenesis, and atherosclerosis. Exosomes can be released from various types of cells, including endothelial cells, smooth muscle cells, cardiomyocytes, fibroblasts, platelets, adipocytes, immune cells, and stem cells. In this review, we highlight the communication between different cell-derived exosomes and cardiovascular cells, with a focus on the roles of RNAs. This provides new insights for further exploring targeted therapies in the clinical management of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China;
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (S.S.); (G.R.)
| | - Shengjie Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (S.S.); (G.R.)
| | - Gang Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (S.S.); (G.R.)
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Hong Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China;
| |
Collapse
|
14
|
Taghavi S, Abdullah S, Shaheen F, Packer J, Duchesne J, Braun SE, Steele C, Pociask D, Kolls JK, Jackson-Weaver O. EXOSOMES AND MICROVESICLES FROM ADIPOSE-DERIVED MESENCHYMAL STEM CELLS PROTECTS THE ENDOTHELIAL GLYCOCALYX FROM LPS INJURY. Shock 2023; 60:56-63. [PMID: 37086080 DOI: 10.1097/shk.0000000000002133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
ABSTRACT Introduction: Endothelial glycocalyx damage occurs in numerous pathological conditions and results in endotheliopathy. Extracellular vesicles, including exosomes and microvesicles, isolated from adipose-derived mesenchymal stem cells (ASCs) have therapeutic potential in multiple disease states; however, their role in preventing glycocalyx shedding has not been defined. We hypothesized that ASC-derived exosomes and microvesicles would protect the endothelial glycocalyx from damage by LPS injury in cultured endothelial cells. Methods : Exosomes and microvesicles were collected from ASC conditioned media by centrifugation (10,000 g for microvesicles, 100,000 g for exosomes). Human umbilical vein endothelial cells (HUVECs) were exposed to 1 μg/mL lipopolysaccharide (LPS). LPS-injured cells (n = 578) were compared with HUVECS with concomitant LPS injury plus 1.0 μg/mL of exosomes (n = 540) or microvesicles (n = 510) for 24 hours. These two cohorts were compared with control HUVECs that received phosphate-buffered saline only (n = 786) and HUVECs exposed to exosomes (n = 505) or microvesicles (n = 500) alone. Cells were fixed and stained with FITC-labeled wheat germ agglutinin to quantify EGX. Real-time quantitative reverse-transcription polymerase chain reaction was used on HUVECs cell lystate to quantify hyaluron synthase-1 (HAS1) expression. Results: Exosomes alone decreased endothelial glycocalyx staining intensity when compared with control (4.94 vs. 6.41 AU, P < 0.001), while microvesicles did not cause a change glycocalyx staining intensity (6.39 vs. 6.41, P = 0.99). LPS injury resulted in decreased glycocalyx intensity as compared with control (5.60 vs. 6.41, P < 0.001). Exosomes (6.85 vs. 5.60, P < 0.001) and microvesicles (6.35 vs. 5.60, P < 0.001) preserved endothelial glycocalyx staining intensity after LPS injury. HAS1 levels were found to be higher in the exosome (1.14 vs. 3.67 RE, P = 0.02) and microvesicle groups (1.14 vs. 3.59 RE, P = 0.02) when compared with LPS injury. Hyaluron synthase-2 and synthase-3 expressions were not different in the various experimental groups. Conclusions: Exosomes alone can damage the endothelial glycocalyx. However, in the presence of LPS injury, both exosomes and microvesicles protect the glycocalyx layer. This effect seems to be mediated by HAS1. Level of Evidence : Basic science study.
Collapse
Affiliation(s)
- Sharven Taghavi
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana
| | - Sarah Abdullah
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana
| | - Farhana Shaheen
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana
| | - Jacob Packer
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana
| | - Juan Duchesne
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana
| | - Stephen E Braun
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Chad Steele
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Derek Pociask
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, Louisiana
| | - Olan Jackson-Weaver
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
15
|
Zhu Z, Zhu P, Fan X, Mo X, Wu X. Mesenchymal stem cell-derived exosomes: a possible therapeutic strategy for repairing heart injuries. Front Cell Dev Biol 2023; 11:1093113. [PMID: 37457298 PMCID: PMC10348815 DOI: 10.3389/fcell.2023.1093113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are one of the most potent therapeutic strategies for repairing cardiac injury. It has been shown in the latest studies that MSCs cannot survive in the heart for a long time. Consequently, the exosomes secreted by MSCs may dominate the repair of heart injury and promote the restoration of cardiac cells, vascular proliferation, immune regulation, etc. Based on the current research, the progress of the acting mechanism, application prospects and challenges of exosomes, including non-coding RNA, in repairing cardiac injuries are summarised in this article.
Collapse
Affiliation(s)
- Zeshu Zhu
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, Guangdong, China
| | - Xiongwei Fan
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoyang Mo
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xiushan Wu
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Yarmohammadi F, Ebrahimian Z, Karimi G. MicroRNAs target the PI3K/Akt/p53 and the Sirt1/Nrf2 signaling pathways in doxorubicin-induced cardiotoxicity. J Biochem Mol Toxicol 2023; 37:e23261. [PMID: 36416353 DOI: 10.1002/jbt.23261] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/06/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
Doxorubicin (DOX) is used as a chemotherapeutic agent in the treatment of solid tumors. Irreversible cardiotoxicity is the major limitation in the clinical use of DOX. Several microRNAs (miRNAs) with diversified functions are identified that participate in exacerbating or suppressing DOX-induced cardiac damage. The miRNAs are small noncoding regulatory RNAs that modify the expression of the native genes. Studies have demonstrated that miRNAs by modifying the expression of proteins such as PTEN, Akt, and survivin can affect DOX-induced cardiac apoptosis. Moreover, miRNAs can modulate cardiac oxidative stress in DOX treatment through the posttranscriptional regulation of Sirt1, p66shc, and Nrf2 expressions. This manuscript has reviewed the regulation of the PI3K/Akt/p53 and the Sirt1/Nrf2 pathways by miRNAs in DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zainab Ebrahimian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Extracellular Vesicles from NMN Preconditioned Mesenchymal Stem Cells Ameliorated Myocardial Infarction via miR-210-3p Promoted Angiogenesis. Stem Cell Rev Rep 2023; 19:1051-1066. [PMID: 36696015 DOI: 10.1007/s12015-022-10499-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 01/26/2023]
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSCs-EVs) possess cardioprotection in acute myocardial infarction. Nevertheless, the therapeutic intervention potential and the molecular mechanism of EVs from NMN (Nicotinamide mononucleotide) preconditioned hUCMSCs (N-EVs) in acute myocardial infarction remains unknown. In the present study, EVs from hUCMSCs (M-EVs) and N-EVs were identified by electron microscopy, immunoblotting and nanoparticle tracking analysis. Compared with M-EVs, N-EVs significantly increased the proliferation, migration, and angiogenesis of HUVECs. Meanwhile, N-EVs markedly reduced apoptosis and cardiac fibrosis and promoted angiogenesis in the peri-infarct region in the MI rats. A high-throughput miRNA sequencing and qPCR methods analysis revealed that miR-210-3p was abundant in N-EVs and the expression of miR-210-3p was obviously upregulated in HUVECs after N-EVs treated. Overexpression of miR-210-3p in HUVECs significantly enhanced the tube formation, migration and proliferative capacities of HUVECs. However, downregulation of miR-210-3p in HUVECs markedly decreased the tube formation, migration and proliferative capacities of HUVECs. Furthermore, bioinformatics analysis and luciferase assays revealed that EphrinA3 (EFNA3) was a direct target of miR-210-3p. Knockdown of miR-210-3p in N-EVs significantly impaired its ability to protect the heart after myocardial infarction. Altogether, these results indicated that N-EVs promoted the infarct healing through improvement of angiogenesis by miR-210-3p via targeting the EFNA3. Created with Biorender.com.
Collapse
|
18
|
Mesenchymal Stem Cells and Their Exocytotic Vesicles. Int J Mol Sci 2023; 24:ijms24032085. [PMID: 36768406 PMCID: PMC9916886 DOI: 10.3390/ijms24032085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stem cells (MSCs), as a kind of pluripotent stem cells, have attracted much attention in orthopedic diseases, geriatric diseases, metabolic diseases, and sports functions due to their osteogenic potential, chondrogenic differentiation ability, and adipocyte differentiation. Anti-inflammation, anti-fibrosis, angiogenesis promotion, neurogenesis, immune regulation, and secreted growth factors, proteases, hormones, cytokines, and chemokines of MSCs have been widely studied in liver and kidney diseases, cardiovascular and cerebrovascular diseases. In recent years, many studies have shown that the extracellular vesicles of MSCs have similar functions to MSCs transplantation in all the above aspects. Here we review the research progress of MSCs and their exocrine vesicles in recent years.
Collapse
|
19
|
Luo Z, Hu X, Wu C, Chan J, Liu Z, Guo C, Zhu R, Zhang L, Zhang Y, Jin S, He S. Plasma exosomes generated by ischaemic preconditioning are cardioprotective in a rat heart failure model. Br J Anaesth 2023; 130:29-38. [PMID: 36347723 PMCID: PMC9875906 DOI: 10.1016/j.bja.2022.08.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Exosomes released into the plasma after brief cardiac ischaemia mediate subsequent cardioprotection. Whether donor exosomes can provide cardioprotection to recipients with chronic heart failure, which confers the highest perioperative risk, is unknown. We examined whether ischaemic preconditioning (IPC)-induced plasma exosomes exerted cardioprotection after their transfer from normal donors to post-infarcted failing hearts. METHODS Plasma exosomes were obtained from adult rats after IPC or sham. An exosome inhibitor GW4869 was administrated before IPC in an in vivo model of ischaemia/reperfusion (I/R) injury in normal rats. The IPC exosomes or control exosomes from normal donor rats were perfused to the normal or post-infarcted failing rat hearts before ischaemia in Langendorff perfusion experiments. Infarct size, cardiac enzymes, cardiac function, and pro-survival kinases were quantified. RESULTS The IPC stimulus increased the release of exosomes, whereas GW4869 inhibited the rise of plasma exosomes. Pre-treatment with GW4869 reversed IPC-mediated cardioprotection against in vivo I/R injury. In the Langendorff perfusion experiments, IPC exosomes from normal donor rats reduced mean infarct size from 41.05 (1.87)% to 31.43 (1.81)% and decreased lactate dehydrogenase activity in the post-infarcted failing rat hearts. IPC exosomes but not control exosomes activated pro-survival kinases in the heart tissues. CONCLUSIONS Ischaemic preconditioning-induced exosomes from normal rats can restore cardioprotection in heart failure after myocardial infarction, which is associated with activation of pro-survival protein kinases. These results suggest a potential perioperative therapeutic role for ischaemic preconditioning-induced exosomes.
Collapse
Affiliation(s)
- Zhaofei Luo
- Department of Anesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Xudong Hu
- Department of Anesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Chao Wu
- Department of Anesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jinzhong Chan
- Department of Anesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Zhong Liu
- Department of Anesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Chengxiao Guo
- Department of Anesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Rui Zhu
- Department of Anesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Ye Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Shiyun Jin
- Department of Anesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| | - Shufang He
- Department of Anesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| |
Collapse
|
20
|
Ivanenko KA, Prassolov VS, Khabusheva ER. Transcription Factor Sp1 in the Expression of Genes Encoding Components of Mapk, JAK/STAT, and PI3K/Akt Signaling Pathways. Mol Biol 2022. [DOI: 10.1134/s0026893322050089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Understanding the Protective Role of Exosomes in Doxorubicin-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2852251. [PMID: 36132225 PMCID: PMC9484956 DOI: 10.1155/2022/2852251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 12/06/2022]
Abstract
Doxorubicin (DOX) is a class of effective chemotherapeutic agents widely used in clinical practice. However, its use has been limited by cardiotoxicity. The mechanism of DOX-induced cardiotoxicity (DIC) is complex, involving oxidative stress, Ca2+ overload, inflammation, pyroptosis, ferroptosis, apoptosis, senescence, etc. Exosomes (EXOs), as extracellular vesicles (EVs), play an important role in the material exchange and signal transmission between cells by carrying components such as proteins and RNAs. More recently, there has been a growing number of publications focusing on the protective effect of EXOs on DIC. Here, this review summarized the main mechanisms of DIC, discussed the mechanism of EXOs in the treatment of DIC, and further explored the value of EXOs as diagnostic biomarkers and therapeutic strategies for DIC.
Collapse
|
22
|
You B, Yang Y, Zhou Z, Yan Y, Zhang L, Jin J, Qian H. Extracellular Vesicles: A New Frontier for Cardiac Repair. Pharmaceutics 2022; 14:pharmaceutics14091848. [PMID: 36145595 PMCID: PMC9503573 DOI: 10.3390/pharmaceutics14091848] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The ability of extracellular vesicles (EVs) to regulate a broad range of cellular processes has recently been used to treat diseases. Growing evidence indicates that EVs play a cardioprotective role in heart disease by activating beneficial signaling pathways. Multiple functional components of EVs and intracellular molecular mechanisms are involved in the process. To overcome the shortcomings of native EVs such as their heterogeneity and limited tropism, a series of engineering approaches has been developed to improve the therapeutic efficiency of EVs. In this review, we present an overview of the research and future directions for EVs-based cardiac therapies with an emphasis on EVs-mediated delivery of therapeutic agents. The advantages and limitations of various modification strategies are discussed, and possible opportunities for improvement are proposed. An in-depth understanding of the endogenous properties of EVs and EVs engineering strategies could lead to a promising cell-free therapy for cardiac repair.
Collapse
Affiliation(s)
- Benshuai You
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yang Yang
- Clinical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225317, China
| | - Zixuan Zhou
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yongmin Yan
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China
| | - Leilei Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jianhua Jin
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China
- Correspondence: (J.J.); (H.Q.)
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (J.J.); (H.Q.)
| |
Collapse
|
23
|
Yang S, Li J, Tang M, Gao X, Liu W, Wei S. Mesenchymal Stem Cell-Derived Exosomes in Cardioprotection: A Novel Application to Prevent Myocardial Injury. Rev Cardiovasc Med 2022; 23:310. [PMID: 39077717 PMCID: PMC11262356 DOI: 10.31083/j.rcm2309310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/03/2022] [Accepted: 07/19/2022] [Indexed: 07/31/2024] Open
Abstract
Perioperative myocardial injury is a common complication caused by major surgery. Many pharmacological and nonpharmacological studies have investigated perioperative cardioprotection. However, the methods are insufficient to meet the increasing clinical needs for cardioprotection. The application of Mesenchymal Stem Cell-Derived Exosomes (MSC-Exos) is a novel cell-free therapeutic strategy and has significantly benefitted patients suffering from various diseases. In this review, we comprehensively analyzed the application of MSC-Exos to prevent myocardial infarction/injury by regulating inflammatory reactions, inhibiting cardiomyocyte apoptosis and autophagy, promoting angiogenesis, and mediating cardiac remodeling. Finally, we assessed the therapeutic effects and the challenges associated with the application of MSC-Exos from a clinical perspective.
Collapse
Affiliation(s)
- Shaokang Yang
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, 130021 Changchun, Jilin, China
| | - Jialin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, 130021 Changchun, Jilin, China
| | - Mingbo Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, 130021 Changchun, Jilin, China
| | - Xinliang Gao
- Department of Thoracic Surgery, The First Hospital of Jilin University, 130021 Changchun, Jilin, China
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, 130021 Changchun, Jilin, China
| | - Shixiong Wei
- Department of Thoracic Surgery, The First Hospital of Jilin University, 130021 Changchun, Jilin, China
| |
Collapse
|
24
|
Sun W, Xu J, Wang L, Jiang Y, Cui J, Su X, Yang F, Tian L, Si Z, Xing Y. Non-coding RNAs in cancer therapy-induced cardiotoxicity: Mechanisms, biomarkers, and treatments. Front Cardiovasc Med 2022; 9:946137. [PMID: 36082126 PMCID: PMC9445363 DOI: 10.3389/fcvm.2022.946137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/28/2022] [Indexed: 02/06/2023] Open
Abstract
As a result of ongoing breakthroughs in cancer therapy, cancer patients' survival rates have grown considerably. However, cardiotoxicity has emerged as the most dangerous toxic side effect of cancer treatment, negatively impacting cancer patients' prognosis. In recent years, the link between non-coding RNAs (ncRNAs) and cancer therapy-induced cardiotoxicity has received much attention and investigation. NcRNAs are non-protein-coding RNAs that impact gene expression post-transcriptionally. They include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). In several cancer treatments, such as chemotherapy, radiotherapy, and targeted therapy-induced cardiotoxicity, ncRNAs play a significant role in the onset and progression of cardiotoxicity. This review focuses on the mechanisms of ncRNAs in cancer therapy-induced cardiotoxicity, including apoptosis, mitochondrial damage, oxidative stress, DNA damage, inflammation, autophagy, aging, calcium homeostasis, vascular homeostasis, and fibrosis. In addition, this review explores potential ncRNAs-based biomarkers and therapeutic strategies, which may help to convert ncRNAs research into clinical practice in the future for early detection and improvement of cancer therapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Wanli Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juping Xu
- The Second People's Hospital of Jiaozuo, Jiaozuo, China
| | - Li Wang
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, China
| | - Yuchen Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingrun Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Tian
- Beijing University of Chinese Medicine, Beijing, China
| | - Zeyu Si
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Taiyuan, China
- Zeyu Si
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanwei Xing
| |
Collapse
|
25
|
MiRNAs and circRNAs for the Diagnosis of Anthracycline-Induced Cardiotoxicity in Breast Cancer Patients: A Narrative Review. J Pers Med 2022; 12:jpm12071059. [PMID: 35887556 PMCID: PMC9315470 DOI: 10.3390/jpm12071059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/25/2022] [Indexed: 11/28/2022] Open
Abstract
Breast cancer (BC) is the most frequent type of female cancer with increasing incidence in recent years. Doxorubicin (DOX) is an important backbone chemotherapy in BC, responsible for cardiotoxicity (CTX) in about 9% of treated women within the first year. Biomarkers of early CTX diagnosis are essential to avoid complicated DOX-related cardiac diseases. Traditional serum biomarkers are either poorly sensitive with transient elevation, and even absent if investigated outside their diagnostic window, or arise only in late-stage CTX. Emerging biomarkers such as non-coding RNA (ncRNA) have been recently investigated in DOX-related CTX. In our review, we revised the role of microRNAs, the most studied type of ncRNA, both in animal and human models, highlighting the interesting but often contrasting results. Moreover, we reviewed a novel class of ncRNA, circular RNA (circRNA), focusing on their modulatory mechanisms also involving microRNAs. MicroRNA and circRNA are players in a wide homeostatic balance with their perturbation representing a possible compensation for DOX damage. Further studies are required to assess the modalities of early detection of their variation in BC patients suffering from heart disease induced by DOX treatment.
Collapse
|
26
|
Improvement of Myocardial Cell Injury by miR-199a-3p/mTOR Axis through Regulating Cell Apoptosis and Autophagy. J Immunol Res 2022; 2022:1642301. [PMID: 35785031 PMCID: PMC9242751 DOI: 10.1155/2022/1642301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background Myocardial ischemia-reperfusion injury (MIRI) is characterized by its high incidence rate and mortality. miR-199a-3p is thought to be strongly linked with the development of some myocardial diseases, but the influence of miR-199a-3p in MIRI remains unclear. Methods AC16 cells were used. The concentrations of mammalian target of rapamycin (mTOR), light chain 3 II/light chain 3 I, and Beclin-1 were detected with western blotting and qRT-PCR. The binding site between mTOR and miR-199a-3p was evaluated via luciferase report assay. Cell apoptosis was evaluated through flow cytometry. Results Knockdown of miR-199a-3p accelerated the myocardial cell injury after L-oxygen treatment. Increased expression of mTOR and suppressed autophagy were observed after knockdown of miR-199a-3p. Knockdown of miR-199a-3p or overexpression of mTOR greatly aggravated cell injury through inhibiting autophagy. Conclusions. This study might be helpful for the therapeutic method of MIRI through by regulating miR-199a-3p/mTOR.
Collapse
|
27
|
Xiong Y, Song J, Huang X, Pan Z, Goldbrunner R, Stavrinou L, Lin S, Hu W, Zheng F, Stavrinou P. Exosomes Derived From Mesenchymal Stem Cells: Novel Effects in the Treatment of Ischemic Stroke. Front Neurosci 2022; 16:899887. [PMID: 35585925 PMCID: PMC9108502 DOI: 10.3389/fnins.2022.899887] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is defined as an infarction in the brain, caused by impaired cerebral blood supply, leading to local brain tissue ischemia, hypoxic necrosis, and corresponding neurological deficits. At present, revascularization strategies in patients with acute ischemic stroke include intravenous thrombolysis and mechanical endovascular treatment. However, due to the short treatment time window (<4.5 h) and method restrictions, clinical research is focused on new methods to treat ischemic stroke. Exosomes are nano-sized biovesicles produced in the endosomal compartment of most eukaryotic cells, containing DNA, complex RNA, and protein (30-150 nm). They are released into surrounding extracellular fluid upon fusion between multivesicular bodies and the plasma membrane. Exosomes have the characteristics of low immunogenicity, good innate stability, high transmission efficiency, and the ability to cross the blood-brain barrier, making them potential therapeutic modalities for the treatment of ischemic stroke. The seed sequence of miRNA secreted by exosomes is base-paired with complementary mRNA to improve the microenvironment of ischemic tissue, thereby regulating downstream signal transduction activities. With exosome research still in the theoretical and experimental stages, this review aims to shed light on the potential of exosomes derived from mesenchymal stem cells in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yu Xiong
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Jianping Song
- Department of Neurosurgery, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- Department of Neurosurgery, National Regional Medical Center, Fudan University Huashan Hospital Fujian Campus, The First Affiliated Hospital Binhai Campus, Fujian Medical University, Fuzhou, China
| | - Xinyue Huang
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Zhigang Pan
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Roland Goldbrunner
- Department of Neurosurgery, Faculty of Medicine and University Hospital, Center for Neurosurgery, University of Cologne, Cologne, Germany
| | - Lampis Stavrinou
- 2nd Department of Neurosurgery, Athens Medical School, “Attikon” University Hospital, National and Kapodistrian University, Athens, Greece
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Weipeng Hu
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Pantelis Stavrinou
- Department of Neurosurgery, Faculty of Medicine and University Hospital, Center for Neurosurgery, University of Cologne, Cologne, Germany
- Department of Neurosurgery, Metropolitan Hospital, Athens, Greece
| |
Collapse
|
28
|
Martinez-Arroyo O, Ortega A, Forner MJ, Cortes R. Mesenchymal Stem Cell-Derived Extracellular Vesicles as Non-Coding RNA Therapeutic Vehicles in Autoimmune Diseases. Pharmaceutics 2022; 14:pharmaceutics14040733. [PMID: 35456567 PMCID: PMC9028692 DOI: 10.3390/pharmaceutics14040733] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/26/2022] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases (ADs) are characterized by the activation of the immune system against self-antigens. More common in women than in men and with an early onset, their incidence is increasing worldwide, and this, combined with their chronic nature, is contributing to an enlarged medical and economic burden. Conventional immunosuppressive agents are designed to alleviate symptoms but do not constitute an effective therapy, highlighting a need to develop new alternatives. In this regard, mesenchymal stem cells (MSCs) have demonstrated powerful immunosuppressive and regenerative effects. MSC-derived extracellular vesicles (MSC-EVs) have shown some advantages, such as less immunogenicity, and are proposed as novel therapies for ADs. In this review, we summarize current perspectives on therapeutic options for ADs based on MSCs and MSC-EVs, focusing particularly on their mechanism of action exerted through their non-coding RNA (ncRNA) cargo. A complete state-of-the-art review was performed, centralized on some of the most severe ADs (rheumatoid arthritis, autoimmune type 1 diabetes mellitus, and systemic lupus erythematosus), giving evidence that a promising field is evolving to overcome the current knowledge and provide new therapeutic possibilities centered on MSC-EVs and their role as ncRNA delivery vehicles for AD gene therapy.
Collapse
Affiliation(s)
- Olga Martinez-Arroyo
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (M.J.F.)
| | - Ana Ortega
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (M.J.F.)
- Correspondence: (A.O.); (R.C.); Tel.: +34-96398-3916 (R.C.); Fax: +34-96398-7860 (R.C.)
| | - Maria J. Forner
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (M.J.F.)
- Internal Medicine Unit, Hospital Clinico Universitario, 46010 Valencia, Spain
| | - Raquel Cortes
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (M.J.F.)
- Correspondence: (A.O.); (R.C.); Tel.: +34-96398-3916 (R.C.); Fax: +34-96398-7860 (R.C.)
| |
Collapse
|
29
|
Chacko KM, Nouri MZ, Schramm WC, Malik Z, Liu LP, Denslow ND, Alli AA. Tempol Alters Urinary Extracellular Vesicle Lipid Content and Release While Reducing Blood Pressure during the Development of Salt-Sensitive Hypertension. Biomolecules 2021; 11:biom11121804. [PMID: 34944449 PMCID: PMC8699083 DOI: 10.3390/biom11121804] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022] Open
Abstract
Salt-sensitive hypertension resulting from an increase in blood pressure after high dietary salt intake is associated with an increase in the production of reactive oxygen species (ROS). ROS are known to increase the activity of the epithelial sodium channel (ENaC), and therefore, they have an indirect effect on sodium retention and increasing blood pressure. Extracellular vesicles (EVs) carry various molecules including proteins, microRNAs, and lipids and play a role in intercellular communication and intracellular signaling in health and disease. We investigated changes in EV lipids, urinary electrolytes, osmolality, blood pressure, and expression of renal ENaC and its adaptor protein, MARCKS/MARCKS Like Protein 1 (MLP1) after administration of the antioxidant Tempol in salt-sensitive hypertensive 129Sv mice. Our results show Tempol infusion reduces systolic blood pressure and protein expression of the alpha subunit of ENaC and MARCKS in the kidney cortex of hypertensive 129Sv mice. Our lipidomic data show an enrichment of diacylglycerols and monoacylglycerols and reduction in ceramides, dihydroceramides, and triacylglycerols in urinary EVs from these mice after Tempol treatment. These data will provide insight into our understanding of mechanisms involving strategies aimed to inhibit ROS to alleviate salt-sensitive hypertension.
Collapse
Affiliation(s)
- Kevin M. Chacko
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA; (K.M.C.); (W.C.S.); (Z.M.); (L.P.L.)
| | - Mohammad-Zaman Nouri
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32610, USA; (M.-Z.N.); (N.D.D.)
| | - Whitney C. Schramm
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA; (K.M.C.); (W.C.S.); (Z.M.); (L.P.L.)
| | - Zeeshan Malik
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA; (K.M.C.); (W.C.S.); (Z.M.); (L.P.L.)
| | - Lauren P. Liu
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA; (K.M.C.); (W.C.S.); (Z.M.); (L.P.L.)
| | - Nancy D. Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32610, USA; (M.-Z.N.); (N.D.D.)
| | - Abdel A. Alli
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA; (K.M.C.); (W.C.S.); (Z.M.); (L.P.L.)
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
- Correspondence: ; Tel.: +1-(352)-273-7877
| |
Collapse
|