1
|
Bartho LA, Walker SP, Cannon P, Nguyen TV, Nguyen A, Botha SM, Hannan NJ, Tong S, Kaitu'u-Lino TJ. Leukocyte-associated immunoglobulin-like receptor 1 (LAIR1) is reduced with preeclampsia and small for gestational aged fetuses. Placenta 2024; 156:10-13. [PMID: 39216164 DOI: 10.1016/j.placenta.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Leukocyte-associated immunoglobulin-like receptor 1 (LAIR1) is an inhibitory receptor expressed on immune cells. We evaluated LAIR1 in placentas from preeclamptic or small for gestational age (SGA) pregnancies, and placental explant model (1 % O2, IL6 and TNFα, or control). LAIR1 mRNA was reduced in placentas from preeclamptic (p < 0.0001, n = 78) and SGA (p < 0.0001, n = 32) pregnancies. LAIR1 protein expression was reduced in placentas from preeclampsia (p < 0.0001, n = 43) and SGA (p = 0.009, n = 10) pregnancies. Hypoxia (1 % O2) reduced LAIR1 mRNA expression in placental explants (p = 0.008). These findings suggest hypoxia modulates LAIR1 expression in the placenta.
Collapse
Affiliation(s)
- Lucy A Bartho
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia.
| | - Susan P Walker
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Ping Cannon
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Tuong-Vi Nguyen
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Anna Nguyen
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Stefan M Botha
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität at Berlin and Humboldt-Universität, Berlin, Germany; Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center. for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK (German Center for Cardiovascular Research), partner site, Berlin, Germany
| | - Natalie J Hannan
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Stephen Tong
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| |
Collapse
|
2
|
Hu M, Zhang Y, Zhang X, Zhang X, Huang X, Lu Y, Li Y, Brännström M, Sferruzzi-Perri AN, Shao LR, Billig H. Defective Uterine Spiral Artery Remodeling and Placental Senescence in a Pregnant Rat Model of Polycystic Ovary Syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1916-1935. [PMID: 37689383 DOI: 10.1016/j.ajpath.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/28/2023] [Accepted: 08/23/2023] [Indexed: 09/11/2023]
Abstract
Pregnancy-related problems have been linked to impairments in maternal uterine spiral artery (SpA) remodeling. The mechanisms underlying this association are still unclear. It is also unclear whether hyperandrogenism and insulin resistance, the two common manifestations of polycystic ovary syndrome, affect uterine SpA remodeling. We verified previous work in which exposure to 5-dihydrotestosterone (DHT) and insulin (INS) in rats during pregnancy resulted in hyperandrogenism, insulin intolerance, and higher fetal mortality. Exposure to DHT and INS dysregulated the expression of angiogenesis-related genes in the uterus and placenta and also decreased expression of endothelial nitric oxide synthase and matrix metallopeptidases 2 and 9, increased fibrotic collagen deposits in the uterus, and reduced expression of marker genes for SpA-associated trophoblast giant cells. These changes were related to a greater proportion of unremodeled uterine SpAs and a smaller proportion of highly remodeled arteries in DHT + INS-exposed rats. Placentas from DHT + INS-exposed rats exhibited decreased basal and labyrinth zone regions, reduced maternal blood spaces, diminished labyrinth vascularity, and an imbalance in the abundance of vascular and smooth muscle proteins. Furthermore, placentas from DHT + INS-exposed rats showed expression of placental insufficiency markers and a significant increase in cell senescence-associated protein levels. Altogether, this work demonstrates that increased pregnancy complications in polycystic ovary syndrome may be mediated by problems with uterine SpA remodeling, placental functionality, and placental senescence.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China; Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xu Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - XiuYing Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyue Huang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yaxing Lu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yijia Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Zhang Y, Lai J, Wang X, Li M, Zhang Y, Ji C, Chen Q, Lu S. Genome-wide single nucleotide polymorphism (SNP) data reveal potential candidate genes for litter traits in a Yorkshire pig population. Arch Anim Breed 2023; 66:357-368. [PMID: 38111388 PMCID: PMC10726026 DOI: 10.5194/aab-66-357-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/10/2023] [Indexed: 12/20/2023] Open
Abstract
The litter trait is one of the most important economic traits, and increasing litter size is of great economic value in the pig industry. However, the molecular mechanisms underlying pig litter traits remain elusive. To identify molecular markers and candidate genes for pig litter traits, a genome-wide association study (GWAS) and selection signature analysis were conducted in a Yorkshire pig population. A total of 518 producing sows were genotyped with Illumina Porcine SNP 50 BeadChip, and 1969 farrowing records for the total number born (TNB), the number born alive (NBA), piglets born dead (PBD), and litter weight born alive (LWB) were collected. Then, a GWAS was performed for the four litter traits using a repeatability model. Based on the estimated breeding values (EBVs) of TNB, 15 high- and 15 low-prolificacy individuals were selected from the 518 sows to implement selection signature analysis. Subsequently, the selection signatures affecting the litter traits of sows were detected by using two methods including the fixation index (FST) and θ π . Combining the results of the GWAS and selection signature analysis, 20 promising candidate genes (NKAIN2, IGF1R, KISS1R, TYRO3, SPINT1, ADGRF5, APC2, PTBP1, CLCN3, CBR4, HPF1, FAM174A, SCP2, CLIC1, ZFYVE9, SPATA33, KIF5C, EPC2, GABRA2, and GABRA4) were identified. These findings provide novel insights into the genetic basis of pig litter traits and will be helpful for improving the reproductive performances of sows in pig breeding.
Collapse
Affiliation(s)
- Yu Zhang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jinhua Lai
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiaoyi Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Mingli Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yanlin Zhang
- Yunnan Fuyuefa Livestock and Poultry Feeding Company Limited, Kunming, 650300, China
| | - Chunlv Ji
- Yunnan Fuyuefa Livestock and Poultry Feeding Company Limited, Kunming, 650300, China
| | - Qiang Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Shaoxiong Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|
4
|
Hong J, Kumar S. Circulating biomarkers associated with placental dysfunction and their utility for predicting fetal growth restriction. Clin Sci (Lond) 2023; 137:579-595. [PMID: 37075762 PMCID: PMC10116344 DOI: 10.1042/cs20220300] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
Fetal growth restriction (FGR) leading to low birth weight (LBW) is a major cause of neonatal morbidity and mortality worldwide. Normal placental development involves a series of highly regulated processes involving a multitude of hormones, transcription factors, and cell lineages. Failure to achieve this leads to placental dysfunction and related placental diseases such as pre-clampsia and FGR. Early recognition of at-risk pregnancies is important because careful maternal and fetal surveillance can potentially prevent adverse maternal and perinatal outcomes by judicious pregnancy surveillance and careful timing of birth. Given the association between a variety of circulating maternal biomarkers, adverse pregnancy, and perinatal outcomes, screening tests based on these biomarkers, incorporating maternal characteristics, fetal biophysical or circulatory variables have been developed. However, their clinical utility has yet to be proven. Of the current biomarkers, placental growth factor and soluble fms-like tyrosine kinase 1 appear to have the most promise for placental dysfunction and predictive utility for FGR.
Collapse
Affiliation(s)
- Jesrine Hong
- Mater Research Institute, University of Queensland, Level 3, Aubigny Place, Raymond Terrace, South Brisbane, Queensland 4101, Australia
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- School of Medicine, The University of Queensland, Herston, Queensland 4006, Australia
| | - Sailesh Kumar
- Mater Research Institute, University of Queensland, Level 3, Aubigny Place, Raymond Terrace, South Brisbane, Queensland 4101, Australia
- School of Medicine, The University of Queensland, Herston, Queensland 4006, Australia
| |
Collapse
|
5
|
Han L, Holland OJ, Da Silva Costa F, Perkins AV. Potential biomarkers for late-onset and term preeclampsia: A scoping review. Front Physiol 2023; 14:1143543. [PMID: 36969613 PMCID: PMC10036383 DOI: 10.3389/fphys.2023.1143543] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Preeclampsia is a progressive, multisystem pregnancy disorder. According to the time of onset or delivery, preeclampsia has been subclassified into early-onset (<34 weeks) and late-onset (≥34 weeks), or preterm (<37 weeks) and term (≥37 weeks). Preterm preeclampsia can be effectively predicted at 11-13 weeks well before onset, and its incidence can be reduced by preventively using low-dose aspirin. However, late-onset and term preeclampsia are more prevalent than early forms and still lack effective predictive and preventive measures. This scoping review aims to systematically identify the evidence of predictive biomarkers reported in late-onset and term preeclampsia. This study was conducted based on the guidance of the Joanna Briggs Institute (JBI) methodology for scoping reviews. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis extension for scoping reviews (PRISMA-ScR) was used to guide the study. The following databases were searched for related studies: PubMed, Web of Science, Scopus, and ProQuest. Search terms contain "preeclampsia," "late-onset," "term," "biomarker," or "marker," and other synonyms combined as appropriate using the Boolean operators "AND" and "OR." The search was restricted to articles published in English from 2012 to August 2022. Publications were selected if study participants were pregnant women and biomarkers were detected in maternal blood or urine samples before late-onset or term preeclampsia diagnosis. The search retrieved 4,257 records, of which 125 studies were included in the final assessment. The results demonstrate that no single molecular biomarker presents sufficient clinical sensitivity and specificity for screening late-onset and term preeclampsia. Multivariable models combining maternal risk factors with biochemical and/or biophysical markers generate higher detection rates, but they need more effective biomarkers and validation data for clinical utility. This review proposes that further research into novel biomarkers for late-onset and term preeclampsia is warranted and important to find strategies to predict this complication. Other critical factors to help identify candidate markers should be considered, such as a consensus on defining preeclampsia subtypes, optimal testing time, and sample types.
Collapse
Affiliation(s)
- Luhao Han
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Olivia J. Holland
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Fabricio Da Silva Costa
- Maternal Fetal Medicine Unit, Gold Coast University Hospital, Gold Coast, QLD, Australia
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
| | - Anthony V. Perkins
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
- School of Health, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| |
Collapse
|
6
|
Andres F, Hannan NJ, Walker SP, MacDonald TM, Wong GP, Murphy C, Cannon P, Kandel M, Masci J, Nguyen TV, Abboud A, Idzes D, Kyritsis V, Pritchard N, Tong S, Kaitu'u-Lino TJ. Endothelial protein C receptor is increased in preterm preeclampsia and fetal growth restriction. FASEB J 2022; 36:e22651. [PMID: 36394528 DOI: 10.1096/fj.202201150r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022]
Abstract
Placental dysfunction is the leading cause of both preeclampsia and fetal growth restriction. This study aimed to characterize endothelial protein C receptor (EPCR) in preterm preeclampsia, term preeclampsia, and fetal growth restriction (defined by delivery of a small for gestational age [SGA] infant [<10% birthweight centile]) and examine its regulation in primary syncytiotrophoblast. Placental EPCR mRNA and protein were significantly increased in patients with preterm preeclampsia (<34 weeks gestation) compared to gestation-matched controls (p < .0001). In the plasma, EPCR was also significantly elevated (p = .01) in established preterm preeclampsia while its substrate, protein C (PC) was significantly reduced (p = .0083). Placentas from preterm small for gestational age (SGA) cases, had elevated EPCR mRNA expression (p < .0001) relative to controls. At 36 weeks, no significant changes in plasma EPCR were detected in samples from patients destined to develop preeclampsia or deliver an SGA infant at term. In terms of syncytiotrophoblast, hypoxia significantly increased EPCR mRNA expression (p = .008), but Tumor Necrosis Factor Alpha (TNF-α) decreased EPCR mRNA. Interleukin-6 (IL-6) had no significant effect on EPCR mRNA expression. When isolated syncytiotrophoblast was treated with metformin under hypoxia (1% O2 ) or normoxia (8% O2 ), EPCR mRNA expression was significantly reduced (p = .008) relative to control. In conclusion, EPCR is markedly elevated in the placenta and the circulation of patients with established preterm preeclampsia and placental increases may be associated with hypoxia. Additionally, fetal growth-restricted pregnancies (as defined by the delivery of an SGA infant) also demonstrated elevated placental EPCR.
Collapse
Affiliation(s)
- Faith Andres
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, The University of Melbourne, Heidelberg, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Natalie J Hannan
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia.,Therapeutics Discovery and Vascular Function Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Susan P Walker
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, The University of Melbourne, Heidelberg, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Teresa M MacDonald
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, The University of Melbourne, Heidelberg, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Georgia P Wong
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, The University of Melbourne, Heidelberg, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Ciara Murphy
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, The University of Melbourne, Heidelberg, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Ping Cannon
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, The University of Melbourne, Heidelberg, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Manju Kandel
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, The University of Melbourne, Heidelberg, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Joshua Masci
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, The University of Melbourne, Heidelberg, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Tuong-Vi Nguyen
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, The University of Melbourne, Heidelberg, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Alison Abboud
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Danica Idzes
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Valerie Kyritsis
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Natasha Pritchard
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, The University of Melbourne, Heidelberg, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Stephen Tong
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, The University of Melbourne, Heidelberg, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, The University of Melbourne, Heidelberg, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
7
|
King VJ, Bennet L, Stone PR, Clark A, Gunn AJ, Dhillon SK. Fetal growth restriction and stillbirth: Biomarkers for identifying at risk fetuses. Front Physiol 2022; 13:959750. [PMID: 36060697 PMCID: PMC9437293 DOI: 10.3389/fphys.2022.959750] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Fetal growth restriction (FGR) is a major cause of stillbirth, prematurity and impaired neurodevelopment. Its etiology is multifactorial, but many cases are related to impaired placental development and dysfunction, with reduced nutrient and oxygen supply. The fetus has a remarkable ability to respond to hypoxic challenges and mounts protective adaptations to match growth to reduced nutrient availability. However, with progressive placental dysfunction, chronic hypoxia may progress to a level where fetus can no longer adapt, or there may be superimposed acute hypoxic events. Improving detection and effective monitoring of progression is critical for the management of complicated pregnancies to balance the risk of worsening fetal oxygen deprivation in utero, against the consequences of iatrogenic preterm birth. Current surveillance modalities include frequent fetal Doppler ultrasound, and fetal heart rate monitoring. However, nearly half of FGR cases are not detected in utero, and conventional surveillance does not prevent a high proportion of stillbirths. We review diagnostic challenges and limitations in current screening and monitoring practices and discuss potential ways to better identify FGR, and, critically, to identify the “tipping point” when a chronically hypoxic fetus is at risk of progressive acidosis and stillbirth.
Collapse
Affiliation(s)
- Victoria J. King
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Peter R. Stone
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Alys Clark
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
- Auckland Biomedical Engineering Institute, The University of Auckland, Auckland, New Zealand
| | - Alistair J. Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K. Dhillon
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
- *Correspondence: Simerdeep K. Dhillon,
| |
Collapse
|
8
|
Lee ED, Mistry HD. Placental Related Disorders of Pregnancy. Int J Mol Sci 2022; 23:ijms23073519. [PMID: 35408880 PMCID: PMC8998756 DOI: 10.3390/ijms23073519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
We are pleased to present this Special Issue of International Journal of Molecular Sciences, entitled 'Placental Related Disorders of Pregnancy' [...].
Collapse
Affiliation(s)
- Eun D. Lee
- Department of Microbiology and Immunology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Hiten D. Mistry
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London SE5 9NU, UK
- Correspondence:
| |
Collapse
|
9
|
Andres F, Wong GP, Walker SP, MacDonald TM, Keenan E, Cannon P, Nguyen TV, Hannan NJ, Tong S, Kaitu'u-Lino TJ. A disintegrin and metalloproteinase 12 (ADAM12) is reduced at 36 weeks' gestation in pregnancies destined to deliver small for gestational age infants. Placenta 2021; 117:1-4. [PMID: 34768162 DOI: 10.1016/j.placenta.2021.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 11/26/2022]
Abstract
First trimester circulating ADAM12 is reduced in fetal growth restriction (FGR) and preeclampsia. We measured plasma ADAM12 at 36 weeks' gestation preceding diagnosis of term preeclampsia or delivery of a small for gestational age (SGA; birthweight <10th centile) infant in two independent cohorts (Cohort 1 90 SGA, 41 preeclampsia, 862 controls; Cohort 2121 SGA 23 preeclampsia; 190 controls). ADAM12 was reduced with SGA in both cohorts (p = 0.0015 and 0.011 respectively), and further reduced with birthweight <5th centile (p = 0.0013 and 0.0058 respectively). This validates ADAM12 as an SGA biomarker near term. Circulating ADAM12 preceding preeclampsia was not consistently altered.
Collapse
Affiliation(s)
- Faith Andres
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Georgia P Wong
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Susan P Walker
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Teresa M MacDonald
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Emerson Keenan
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Ping Cannon
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Tuong-Vi Nguyen
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Natalie J Hannan
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Stephen Tong
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia.
| |
Collapse
|